RU2293951C2 - Технологический передающий датчик с беспроводным каналом связи - Google Patents

Технологический передающий датчик с беспроводным каналом связи Download PDF

Info

Publication number
RU2293951C2
RU2293951C2 RU2004133897/28A RU2004133897A RU2293951C2 RU 2293951 C2 RU2293951 C2 RU 2293951C2 RU 2004133897/28 A RU2004133897/28 A RU 2004133897/28A RU 2004133897 A RU2004133897 A RU 2004133897A RU 2293951 C2 RU2293951 C2 RU 2293951C2
Authority
RU
Russia
Prior art keywords
electronic circuit
transmitting sensor
sensor
transmitting
technological
Prior art date
Application number
RU2004133897/28A
Other languages
English (en)
Other versions
RU2004133897A (ru
Inventor
Роберт К. ХЕДТКЕ (US)
Роберт К. ХЕДТКЕ
Original Assignee
Роузмаунт Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роузмаунт Инк. filed Critical Роузмаунт Инк.
Publication of RU2004133897A publication Critical patent/RU2004133897A/ru
Application granted granted Critical
Publication of RU2293951C2 publication Critical patent/RU2293951C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

Технологический передающий датчик с беспроводным каналом связи предназначен для измерения технологического параметра промышленного процесса. Датчик содержит чувствительный элемент, связанный с первой электронной схемой, которая связана со второй электронной схемой бесконтактным электромагнитным каналом и отделена от нее перегородкой в корпусе, образующей герметично уплотненную полость. Двухпроводный технологический контур управления обеспечивает питание схем. Бесконтактный электромагнитный канал может представлять собой радиочастотный канал, емкостную или индуктивную связь. Вторая электронная схема может быть расположена в корпусе либо вне его и может получать питание через бесконтактный электромагнитный канал от первой электронной схемы. Такое техническое решение позволяет уменьшить количество соединений в корпусе передающего датчика, обеспечивает большую гибкость при его монтаже. 3 н. и 16 з.п. ф-лы, 3 ил.

Description

Область техники
Настоящее изобретение относится к передающим датчикам, используемым для измерения технологических параметров промышленных процессов.
Предшествующий уровень техники
Технологические контуры управления используются в различных отраслях промышленности для управления или контроля за операциями промышленного процесса. Обычно технологический передающий датчик является частью технологического контура управления и расположен таким образом, чтобы измерять и передавать технологические параметры, такие как давление, расход или температура, к приборам на пульте управления. Некоторые технологические контуры управления включают устройство управления, например устройство управления клапаном, которое управляется в ответ на технологический параметр, измеряемый передающим датчиком.
Технологические передающие датчики часто используются в жестких агрессивных средах или в средах, содержащих потенциально взрывоопасные газы или их смеси. Таким образом, передающий датчик, как правило, содержит корпус, надежно герметизирующий внутренние элементы датчика, чтобы уменьшить вероятность повреждения внутренних элементов агрессивной средой и уменьшить вероятность возгорания взрывоопасных газов, что может быть вызвано внутренней схемой датчика. Однако корпус должен иметь отверстия для связи схемы передающего датчика с внешней схемой. Для поддержания герметичности этих отверстий каждое отверстие корпуса должно быть герметизировано с использованием специальной изоляции и специальных методик. Для герметизации каждого отверстия в корпусе передающего датчика требуются дополнительные технологические операции, что увеличивает стоимость передающего датчика.
Краткое изложение сущности изобретения
В основу настоящего изобретения поставлена задача создания технологического передающего датчика с беспроводным каналом связи, в котором исключены указанные недостатки.
Поставленная задача решена путем создания технологического передающего датчика для измерения технологического параметра промышленного процесса, который содержит чувствительный элемент для измерения технологического параметра, первую электронную схему передающего датчика, связанную с чувствительным элементом, и вторую электронную схему передающего датчика, связанную с первой электронной схемой передающего датчика, причем корпус передающего датчика имеет первую полость, содержащую первую электронную схему передающего датчика, перегородка в корпусе проходит между первой и второй электронными схемами передающего датчика, а бесконтактный электромагнитный канал связывает первую электронную схему передающего датчика со второй электронной схемой передающего датчика и передает данные между ними.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопровождающие чертежи, на которых:
фиг.1 изображает блок-схему технологической системы, включающей технологический передающий датчик, согласно изобретению;
фиг.2 - общий вид одного из вариантов реализации технологического передающего датчика согласно изобретению;
фиг.3 - блок-схему технологической системы согласно изобретению.
Подробное описание предпочтительных вариантов воплощения изобретения
В соответствии с одним аспектом настоящего изобретения предложен промышленный технологический передающий датчик, корпус которого содержит меньшее количество отверстий или сквозных соединений по сравнению с известными датчиками.
На фиг.1 представлена блок-схема системы 10 контроля за ходом технологического процесса. Система 10 содержит передающий датчик 12, который связан с приборами на пульте 14 управления посредством технологического контура 16 управления. Технологический контур 16 управления показан в виде двухпроводного технологического контура управления, но может быть выполнен в соответствии с любым форматом и обычно используется для передачи данных и подачи напряжения на передающий датчик 12. Схема на пульте 14 управления содержит источник 18 напряжения и сопротивление 20. Технологические контуры управления включают в себя 4-20 мА двухпроводные линии (линии в соответствии со стандартами HART® и Fieldbus).
Передающий датчик 12 содержит корпус 38, который имеет первую полость 40 и вторую полость 42. Перегородка 44 разделяет полости 40 и 42. Полость 42 герметично уплотнена для предотвращения попадания в нее агрессивных технологических жидкостей и дальнейшего предотвращения возгорания огнеопасных технологических жидкостей из-за электрического разряда в схеме внутри полости 42. Электронная схема 50 передающего датчика расположена в полости 42 и связана с двухпроводным технологическим контуром 16 управления посредством соединений 52. Соединения 52 размещены в перегородке 44 и могут содержать одно или более отверстий и предназначены для включения электрических элементов, например элементов для уменьшения электрического разряда, фильтров и так далее. Электронная схема 50 передающего датчика связана с чувствительным элементом 54 для измерения технологического параметра. Чувствительные элементы включают в себя чувствительные элементы для измерения температуры, давления и расхода. Чувствительный элемент 54 может быть расположен в полости 42 или вне полости 42.
Полость 40 содержит электронную схему 60 передающего датчика, которая также связана с двухпроводным технологическим контуром 16 управления. Передающий датчик 12 связан с контуром 16 посредством соединительных цепей 90. В некоторых случаях через контур 16 может подаваться вся мощность, потребляемая схемами 50 и 60. В соответствии с одним аспектом настоящего изобретения бесконтактный электромагнитный канал 70 проходит через перегородку 44 и обеспечивает канал связи между схемами 50 и 60. Канал 70 может быть однонаправленным или двунаправленным. Канал 70 связи образован преобразователем 64, соединенным с электронной схемой 50 передающего датчика, и преобразователем 62, соединенным с электронной схемой 60 передающего датчика. Преобразователи 62 и 64 могут являться, например, антеннами, пластинами конденсатора или элементами катушки индуктивности.
Бесконтактный электромагнитный канал 70 может быть электромагнитным каналом любого типа, не требующим непосредственной связи. Например, это может быть радиочастотный канал, индуктивная или емкостная связь. Если канал 70 является радиочастотным каналом, то преобразователи 62 и 64 могут состоять из антенн, сконфигурированных на отправку и/или получение радиочастотных сигналов. Частота радиочастотных сигналов может быть выбрана произвольным образом с учетом формы и конфигурации антенн, образующих преобразователи 62 и 64. Если канал 70 является индуктивной связью, то преобразователи 62 и 64 могут состоять из индукторов, размещенных достаточно близко, чтобы осуществить передачу сигнала между ними. Аналогично, если канал 70 является емкостной связью, то преобразователи 62 и 64 могут являться пластинами конденсатора.
Канал 70 может передавать данные с любой необходимой скоростью. Более высокие скорости передачи данных, как правило, приводят к более высокому потреблению электроэнергии. Конкретный формат данных и протоколы, используемые в канале 70, могут быть выбраны в соответствии со стандартизованными или патентованными форматами. Канал 70 передачи данных может однонаправлено передавать данные в одном из двух направлений между схемами 50 и 60 или быть двунаправленным каналом. В реализациях с существенно низким энергопотреблением у схем 50 и 60, канал 70 также может подводить электропитание к схемам 50 или 60, так что эта схема не требует отдельного соединения с контуром 16.
Во время работы электронная схема 50 передающего датчика связана с чувствительным элементом 54 и используется для измерения технологического параметра, например давления, температуры, расхода, уровня. В одном варианте реализации передающий датчик полостью снабжается энергией через технологический контур 16 управления. Данные, относящиеся к измеряемому технологическому параметру, передаются по контуру 16 в цифровом или аналоговом формате на пульт 14 управления или к другому оборудованию контура 16.
Канал 70 обеспечивает безопасную линию связи с электронной схемой 60, не требуя дополнительных соединений в перегородке 44. Более того, для функционирования канала 70 не требуется дополнительного источника питания. Из-за уменьшения количества соединений в перегородке и уменьшения требований к дополнительным источникам питания также уменьшается стоимость изготовления. Данная конфигурация обеспечивает гибкость при монтаже.
Электронная схема 60 передающего датчика может состоять из схем любых типов, причем желательно иметь схему, отделенную от схемы 50. Датчик содержит дисплей такой, что информация может быть отображена локально на передающем датчике 12. Например, могут отображаться показания чувствительного элемента 54 или установочные параметры или конфигурационная информация, относящаяся к электронной схеме 50 передающего датчика. Другой пример схемы 60 включает в себя переключатели для локально управляемых элементов регулирования производственным процессом, например клапанами или другими компонентами. В другом примере схема 60 может содержать в себе схему ввода, например кнопки для ручного ввода данных, или электронную связь с конфигурационной и контрольной схемами. В этом случае данные, введенные через схему 60, используются для программирования, калибровки и/или опроса электронной схемы 50 передающего датчика.
На фиг.2 представлен общий вид технологического передающего датчика 12. В качестве электронной схемы 60 передающего датчика представлен дисплей. Дисплей может отображать показания чувствительного датчика, калибровочную информацию, диагностическую информацию и тому подобное. На фиг.2 схематично показано расположение чувствительного датчика 54, схемы 50, перегородки 44.
На фиг.3 представлена блок-схема технологической системы 100 в соответствии с другим аспектом настоящего изобретения. Технологическая система 100 содержит несколько передающих датчиков 12A, 12B и 12C, связанных с технологическим контуром 16 управления. Хотя на фиг.3 показан один технологический контур 16 управления, может быть использовано несколько технологических контуров 16 управления. Полевой измеритель 102 связан с технологическим контуром 16 управления. Измеритель 102 может быть соединен с тем же контуром 16, что и передающие датчики 12, или с другим контуром 16 управления. Бесконтактные электромагнитные каналы 106 обеспечивают канал связи между передающими датчиками 12A, 12B и 12C и измерителем 102. Канал может быть однонаправленным или двунаправленным. Каналы могут работать на разных частотах, активироваться в разные моменты времени или использовать методики кодирования таким образом, чтобы можно было различить данные к или от разных передающих датчиков.
В реализации на фиг.3 один измеритель 102 используется для контроля нескольких передающих датчиков 12A, 12B и 12C. Более того, в некоторых случаях передающий датчик 12 расположен таким образом, что его трудно увидеть. В таком случае измеритель 102 может быть расположен в более доступном месте, чтобы выходные данные передающего датчика 12 могли быть просмотрены.
Измеритель 102 и передающие датчики 12A, 12B и 12C могут быть полностью запитаны от технологического контура 16 управления. В одном варианте реализации элемент 102 содержит переключатель или другое устройство для управления процессом или для ввода данных передающим датчикам 12A, 12B и 12C. Передающие датчики 12A, 12B и 12C могут также включать внутренний бесконтактный канал 70 связи (фиг.1) для связи с электронной схемой 60 передающего датчика, расположенной внутри отдельного передающего датчика 12A, 12B и 12C.
Хотя настоящее изобретение было описано со ссылкой на предпочтительные варианты реализации, специалисту в данной области должно быть понятно что, могут быть сделаны изменения в форме и деталях настоящего изобретения без выхода за пределы объема и сущности настоящего изобретения. В различных аспектах настоящего изобретения достигается уменьшение количества соединений в корпусе передающего датчика. Настоящее изобретение не требует дополнительных батарей или источников питания и позволяет уменьшить стоимость. Более того, изобретение обеспечивает большую гибкость при монтаже технологического передающего датчика. Изобретение может быть использовано с другими типами передающих датчиков, чувствительных элементов, измеряющих технологический параметр, или технологических контуров управления. Данные могут передаваться по каналу связи в произвольном формате. Данные, передаваемые по каналу, могут быть произвольного типа, включая технологический параметр, данные программирования, калибровочные и конфигурационные данные.

Claims (19)

1. Технологический передающий датчик, предназначенный для измерения технологического параметра процесса, содержащий
чувствительный элемент для измерения технологического параметра и обеспечения выходных данных измеряемого технологического параметра,
первую электронную схему передающего датчика, связанную с чувствительным элементом, измеряющим технологический параметр,
вторую электронную схему передающего датчика, предназначенную для взаимодействия с первой электронной схемой передающего датчика,
двухпроводный технологический контур управления, предназначенный для питания схем,
корпус, имеющий первую полость, содержащую первую электронную схему передающего датчика, причем корпус включает перегородку между первой и второй электронными схемами передающего датчика,
бесконтактный электромагнитный канал между первой электронной схемой передающего датчика и второй электронной схемой передающего датчика, предназначенный для передачи данных между схемами.
2. Датчик по п.1, отличающийся тем, что бесконтактный электромагнитный канал содержит радиочастотный (RF) канал.
3. Датчик по п.1, отличающийся тем, что бесконтактный электромагнитный канал содержит емкостную связь.
4. Датчик по п.1, отличающийся тем, что бесконтактный электромагнитный канал содержит индуктивную связь.
5. Датчик по п.1, отличающийся тем, что вторая электронная схема передающего датчика размещена внутри корпуса.
6. Датчик по п.1, отличающийся тем, что вторая электронная схема передающего датчика размещена вне корпуса.
7. Датчик по п.1, отличающийся тем, что данные состоят из технологического параметра, данных программирования, калибровочных и конфигурационных данных.
8. Датчик по п.1, отличающийся тем, что вторая электронная схема передающего датчика полностью запитана от первой электронной схемы передающего датчика через бесконтактный электромагнитный канал.
9. Способ получения выходных данных передающего датчика, заключающийся в том, что
подключают первую электронную схему передающего датчика к чувствительному элементу для измерения технологического параметра,
размещают первую электронную схему передающего датчика в герметично уплотненной полости,
размещают вторую электронную схему передающего датчика вне полости, причем вторая электронная схема передающего датчика отделена от первой электронной схемы перегородкой,
обеспечивают соединительную цепь для связи передающего датчика с двухпроводным технологическим контуром управления, причем передающий датчик получает электропитание от технологического контура управления,
осуществляют связь первой электронной схемы передающего датчика со второй электронной схемой передающего датчика посредством бесконтактного электромагнитного канала.
10. Способ по п.9, отличающийся тем, что используют бесконтактный электромагнитный канал, содержащий радиочастотный (RF) канал.
11. Способ по п.9, отличающийся тем, что используют бесконтактный электромагнитный канал, содержащий емкостную связь.
12. Способ по п.9, отличающийся тем, что используют бесконтактный электромагнитный канал, содержащий индуктивную связь.
13. Способ по п.9, отличающийся тем, что вторую электронную схему передающего датчика размещают внутри корпуса.
14. Способ по п.9, отличающийся тем, что вторую электронную схему передающего датчика размещают вне корпуса.
15. Способ по п.9, отличающийся тем, что данные состоят из технологического параметра, данных программирования, калибровочных и конфигурационных данных.
16. Способ по п.9, отличающийся тем, что вторую электронную схему передающего датчика полностью запитывают от первой электронной схемы передающего датчика через бесконтактный электромагнитный канал.
17. Система управления технологическим процессом, содержащая
технологический передающий датчик для измерения технологического параметра промышленного процесса, содержащий
чувствительный элемент для измерения технологического параметра и обеспечения выходных данных измеряемого технологического параметра,
первую электронную схему передающего датчика, связанную с чувствительным элементом, измеряющим технологический параметр,
двухпроводный технологический контур управления, предназначенный для питания схем,
корпус, имеющий первую полость, содержащую первую электронную схему передающего датчика, причем корпус включает перегородку между первой и второй электронными схемами передающего датчика,
вторую электронную схему передающего датчика, расположенную на некотором расстоянии от технологического передающего датчика и взаимодействующую с первой электронной схемой передающего датчика,
бесконтактный электромагнитный канал между первой электронной схемой передающего датчика и второй электронной схемой передающего датчика для передачи данных между ними.
18. Система по п.17, отличающаяся тем, что вторая электронная схема передающего датчика обеспечивает взаимодействие с множеством первых электронных схем множества передающих датчиков посредством множества бесконтактных электромагнитных каналов.
19. Система по п.17, отличающаяся тем, что вторая электронная схема передающего датчика содержит дисплей для отображения данных, полученных от множества датчиков.
RU2004133897/28A 2002-04-22 2003-04-04 Технологический передающий датчик с беспроводным каналом связи RU2293951C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/128,769 2002-04-22
US10/128,769 US6839546B2 (en) 2002-04-22 2002-04-22 Process transmitter with wireless communication link

Publications (2)

Publication Number Publication Date
RU2004133897A RU2004133897A (ru) 2005-04-20
RU2293951C2 true RU2293951C2 (ru) 2007-02-20

Family

ID=29248499

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004133897/28A RU2293951C2 (ru) 2002-04-22 2003-04-04 Технологический передающий датчик с беспроводным каналом связи

Country Status (7)

Country Link
US (1) US6839546B2 (ru)
JP (1) JP5039269B2 (ru)
CN (1) CN1310014C (ru)
AU (1) AU2003223460A1 (ru)
DE (1) DE10392554B4 (ru)
RU (1) RU2293951C2 (ru)
WO (1) WO2003089881A1 (ru)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2347921C2 (ru) * 2004-03-02 2009-02-27 Роузмаунт Инк. Технологическое устройство с усовершенствованным обеспечением электропитанием
US8538560B2 (en) * 2004-04-29 2013-09-17 Rosemount Inc. Wireless power and communication unit for process field devices
US8145180B2 (en) * 2004-05-21 2012-03-27 Rosemount Inc. Power generation for process devices
US8160535B2 (en) 2004-06-28 2012-04-17 Rosemount Inc. RF adapter for field device
US7262693B2 (en) * 2004-06-28 2007-08-28 Rosemount Inc. Process field device with radio frequency communication
US7680460B2 (en) * 2005-01-03 2010-03-16 Rosemount Inc. Wireless process field device diagnostics
US9184364B2 (en) 2005-03-02 2015-11-10 Rosemount Inc. Pipeline thermoelectric generator assembly
EP1896910A1 (en) 2005-06-27 2008-03-12 Rosemount, Inc. Field device with dynamically adjustable power consumption radio frequency communication
DE102005040238A1 (de) * 2005-08-24 2007-03-01 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße
DE102005059662A1 (de) * 2005-12-12 2007-06-14 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgrösse
CA2643051C (en) * 2006-02-21 2013-01-29 Rosemount Inc. Industrial process field device with energy limited battery assembly
US7913566B2 (en) * 2006-05-23 2011-03-29 Rosemount Inc. Industrial process device utilizing magnetic induction
US8188359B2 (en) * 2006-09-28 2012-05-29 Rosemount Inc. Thermoelectric generator assembly for field process devices
US20080102906A1 (en) * 2006-10-30 2008-05-01 Phonak Ag Communication system and method of operating the same
US8250924B2 (en) 2008-04-22 2012-08-28 Rosemount Inc. Industrial process device utilizing piezoelectric transducer
CN102084307B (zh) * 2008-06-17 2014-10-29 罗斯蒙特公司 用于具有低压本质安全钳的现场设备的rf适配器
CA2726534C (en) * 2008-06-17 2016-03-22 Rosemount Inc. Rf adapter for field device with loop current bypass
US8929948B2 (en) * 2008-06-17 2015-01-06 Rosemount Inc. Wireless communication adapter for field devices
US8694060B2 (en) * 2008-06-17 2014-04-08 Rosemount Inc. Form factor and electromagnetic interference protection for process device wireless adapters
CA2726601C (en) 2008-06-17 2016-08-09 Rosemount Inc. Rf adapter for field device with variable voltage drop
US7977924B2 (en) * 2008-11-03 2011-07-12 Rosemount Inc. Industrial process power scavenging device and method of deriving process device power from an industrial process
US8626087B2 (en) * 2009-06-16 2014-01-07 Rosemount Inc. Wire harness for field devices used in a hazardous locations
US9674976B2 (en) 2009-06-16 2017-06-06 Rosemount Inc. Wireless process communication adapter with improved encapsulation
US10761524B2 (en) 2010-08-12 2020-09-01 Rosemount Inc. Wireless adapter with process diagnostics
US8315058B2 (en) * 2010-09-14 2012-11-20 Rosemount Inc. Capacitive touch interface assembly
US9310794B2 (en) 2011-10-27 2016-04-12 Rosemount Inc. Power supply for industrial process field device
US9518852B2 (en) * 2012-09-27 2016-12-13 Rosemount Inc. Hybrid power module with fault detection
US9048901B2 (en) * 2013-03-15 2015-06-02 Rosemount Inc. Wireless interface within transmitter
DE102017207783B3 (de) 2017-05-09 2018-06-07 Vega Grieshaber Kg Radarfüllstandmessgerät mit einem Phasenregelkreis
US10422684B2 (en) 2017-05-30 2019-09-24 Rosemount Tank Radar Ab Field device with second auxiliary interface

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2533339A (en) 1946-06-22 1950-12-12 Jabez Burns & Sons Inc Flammable vapor protection
US3012432A (en) 1957-09-23 1961-12-12 Richard H Moore Leak tester
GB1023042A (en) 1962-05-07 1966-03-16 Wayne Kerr Lab Ltd Improvements in or relating to pressure responsive apparatus
US3232712A (en) 1962-08-16 1966-02-01 Continental Lab Inc Gas detector and analyzer
US3374112A (en) 1964-03-05 1968-03-19 Yeda Res & Dev Method and apparatus for controlled deposition of a thin conductive layer
US3249833A (en) 1964-11-16 1966-05-03 Robert E Vosteen Capacitor transducer
US3557621A (en) 1969-07-07 1971-01-26 C G S Scient Corp Inc Variable capacitance detecting devices
GB1354025A (en) 1970-05-25 1974-06-05 Medicor Muevek Capacitive pressure transducer
US3924219A (en) 1971-12-22 1975-12-02 Minnesota Mining & Mfg Gas detection device
US3808480A (en) 1973-04-16 1974-04-30 Bunker Ramo Capacitive pressure transducer
US4008619A (en) 1975-11-17 1977-02-22 Mks Instruments, Inc. Vacuum monitoring
US4177496A (en) 1976-03-12 1979-12-04 Kavlico Corporation Capacitive pressure transducer
US4158217A (en) 1976-12-02 1979-06-12 Kaylico Corporation Capacitive pressure transducer with improved electrode
US4168518A (en) 1977-05-10 1979-09-18 Lee Shih Y Capacitor transducer
US4227419A (en) 1979-09-04 1980-10-14 Kavlico Corporation Capacitive pressure transducer
US4434451A (en) 1979-10-29 1984-02-28 Delatorre Leroy C Pressure sensors
US4322775A (en) 1979-10-29 1982-03-30 Delatorre Leroy C Capacitive pressure sensor
US4287553A (en) 1980-06-06 1981-09-01 The Bendix Corporation Capacitive pressure transducer
US4336567A (en) 1980-06-30 1982-06-22 The Bendix Corporation Differential pressure transducer
US4370890A (en) 1980-10-06 1983-02-01 Rosemount Inc. Capacitive pressure transducer with isolated sensing diaphragm
US4358814A (en) 1980-10-27 1982-11-09 Setra Systems, Inc. Capacitive pressure sensor
US4422335A (en) 1981-03-25 1983-12-27 The Bendix Corporation Pressure transducer
US4458537A (en) 1981-05-11 1984-07-10 Combustion Engineering, Inc. High accuracy differential pressure capacitive transducer
US4389895A (en) 1981-07-27 1983-06-28 Rosemount Inc. Capacitance pressure sensor
US4455874A (en) 1981-12-28 1984-06-26 Paroscientific, Inc. Digital pressure transducer
US4422125A (en) 1982-05-21 1983-12-20 The Bendix Corporation Pressure transducer with an invariable reference capacitor
SE445389B (sv) 1982-06-28 1986-06-16 Geotronics Ab Forfarande och anordning for att erhalla metdata fran en kemisk process
DE3340834A1 (de) 1983-11-11 1985-05-23 Philips Patentverwaltung Gmbh, 2000 Hamburg Schaltungsanordnung zur konstanthaltung der temperaturabhaengigen empfindlichkeit eines differenzdruckmessgeraetes
US4490773A (en) 1983-12-19 1984-12-25 United Technologies Corporation Capacitive pressure transducer
US4542436A (en) 1984-04-10 1985-09-17 Johnson Service Company Linearized capacitive pressure transducer
US4562742A (en) 1984-08-07 1986-01-07 Bell Microcomponents, Inc. Capacitive pressure transducer
GB8426964D0 (en) 1984-10-25 1984-11-28 Sieger Ltd Adjusting circuit parameter
DE3503347A1 (de) 1985-02-01 1986-08-14 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Vorrichtung zur drahtlosen messsignaluebertragung
US4670733A (en) 1985-07-01 1987-06-02 Bell Microsensors, Inc. Differential pressure transducer
JPS63121934A (ja) * 1986-11-10 1988-05-26 Oki Electric Ind Co Ltd 評価用ワンチツプマイクロコンピユ−タ
US4860232A (en) 1987-04-22 1989-08-22 Massachusetts Institute Of Technology Digital technique for precise measurement of variable capacitance
US4785669A (en) 1987-05-18 1988-11-22 Mks Instruments, Inc. Absolute capacitance manometers
US4875369A (en) 1987-09-08 1989-10-24 Panex Corporation Pressure sensor system
US4878012A (en) 1988-06-10 1989-10-31 Rosemount Inc. Charge balanced feedback transmitter
US4977480A (en) 1988-09-14 1990-12-11 Fuji Koki Mfg. Co., Ltd. Variable-capacitance type sensor and variable-capacitance type sensor system using the same
US4926674A (en) 1988-11-03 1990-05-22 Innovex Inc. Self-zeroing pressure signal generator
US4951174A (en) 1988-12-30 1990-08-21 United Technologies Corporation Capacitive pressure sensor with third encircling plate
JPH03113542A (ja) * 1989-09-28 1991-05-14 Ricoh Co Ltd エラー検出方式
US5194819A (en) 1990-08-10 1993-03-16 Setra Systems, Inc. Linearized capacitance sensor system
US5094109A (en) 1990-12-06 1992-03-10 Rosemount Inc. Pressure transmitter with stress isolation depression
US5168419A (en) 1991-07-16 1992-12-01 Panex Corporation Capacitor and pressure transducer
DE4124662A1 (de) 1991-07-25 1993-01-28 Fibronix Sensoren Gmbh Relativdrucksensor
US5230250A (en) 1991-09-03 1993-07-27 Delatorre Leroy C Capacitor and pressure transducer
US5233875A (en) 1992-05-04 1993-08-10 Kavlico Corporation Stable capacitive pressure transducer system
US5329818A (en) 1992-05-28 1994-07-19 Rosemount Inc. Correction of a pressure indication in a pressure transducer due to variations of an environmental condition
US5492016A (en) 1992-06-15 1996-02-20 Industrial Sensors, Inc. Capacitive melt pressure measurement with center-mounted electrode post
JP3157942B2 (ja) * 1993-02-23 2001-04-23 松下電工株式会社 遠隔監視制御システムの端末機能の設定方式
US5606513A (en) * 1993-09-20 1997-02-25 Rosemount Inc. Transmitter having input for receiving a process variable from a remote sensor
DE4344071A1 (de) * 1993-12-23 1995-07-06 Josef Femboeck Vorrichtung zur Übertragung von Energie und/oder Daten
US5542300A (en) 1994-01-24 1996-08-06 Setra Systems, Inc. Low cost, center-mounted capacitive pressure sensor
US5642301A (en) 1994-01-25 1997-06-24 Rosemount Inc. Transmitter with improved compensation
US5583294A (en) * 1994-08-22 1996-12-10 The Foxboro Company Differential pressure transmitter having an integral flame arresting body and overrange diaphragm
US5793963A (en) 1994-10-24 1998-08-11 Fisher Rosemount Systems, Inc. Apparatus for providing non-redundant secondary access to field devices in a distributed control system
DE69529180T2 (de) 1994-10-24 2003-09-25 Fisher Rosemount Systems Inc Feldgeräte zur Verwendung in einem verteilten Steuerungssystem
US5656782A (en) * 1994-12-06 1997-08-12 The Foxboro Company Pressure sealed housing apparatus and methods
US5637802A (en) 1995-02-28 1997-06-10 Rosemount Inc. Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates
US5610552A (en) * 1995-07-28 1997-03-11 Rosemount, Inc. Isolation circuitry for transmitter electronics in process control system
US5705978A (en) 1995-09-29 1998-01-06 Rosemount Inc. Process control transmitter
US5727110A (en) * 1995-09-29 1998-03-10 Rosemount Inc. Electro-optic interface for field instrument
US5992240A (en) 1995-11-21 1999-11-30 Fuji Electric Co., Ltd. Pressure detecting apparatus for measuring pressure based on detected capacitance
US5757608A (en) 1996-01-25 1998-05-26 Alliedsignal Inc. Compensated pressure transducer
US5665899A (en) 1996-02-23 1997-09-09 Rosemount Inc. Pressure sensor diagnostics in a process transmitter
US5851083A (en) 1996-10-04 1998-12-22 Rosemount Inc. Microwave level gauge having an adapter with a thermal barrier
US5954526A (en) 1996-10-04 1999-09-21 Rosemount Inc. Process control transmitter with electrical feedthrough assembly
DE19719730C1 (de) * 1997-05-09 1998-10-22 Bartec Mestechnik Und Sensorik Steckverbindung
US5911162A (en) 1997-06-20 1999-06-08 Mks Instruments, Inc. Capacitive pressure transducer with improved electrode support
US5872494A (en) 1997-06-27 1999-02-16 Rosemount Inc. Level gage waveguide process seal having wavelength-based dimensions
DE19813700C2 (de) * 1998-03-27 2003-03-27 Samson Ag Eingangsschaltung für ein Feldgerät
WO1999053286A1 (de) 1998-04-09 1999-10-21 Ploechinger Heinz Kapazitive druck- oder kraftsensorstruktur und verfahren zur herstellung derselben
US6236096B1 (en) 1998-10-06 2001-05-22 National Science Council Of Republic Of China Structure of a three-electrode capacitive pressure sensor
US6508131B2 (en) 1999-05-14 2003-01-21 Rosemount Inc. Process sensor module having a single ungrounded input/output conductor
US6295875B1 (en) 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation
AT410041B (de) 2000-04-17 2003-01-27 Voest Alpine Ind Anlagen Verfahren und einrichtung zur aufnahme von messdaten in einem hüttenwerk
DE10026175C2 (de) * 2000-04-18 2003-02-27 Schleifring Und Appbau Gmbh Anordnung zur kontaktlosen Übertragung elektrischer Signale bzw. Energie zwischen einer feststehenden Einheit und mehreren ortsveränderlichen Einheiten

Also Published As

Publication number Publication date
JP2005523503A (ja) 2005-08-04
JP5039269B2 (ja) 2012-10-03
DE10392554T5 (de) 2005-06-16
CN1310014C (zh) 2007-04-11
WO2003089881A1 (en) 2003-10-30
AU2003223460A1 (en) 2003-11-03
RU2004133897A (ru) 2005-04-20
US6839546B2 (en) 2005-01-04
US20040203421A1 (en) 2004-10-14
DE10392554B4 (de) 2014-12-11
CN1646881A (zh) 2005-07-27

Similar Documents

Publication Publication Date Title
RU2293951C2 (ru) Технологический передающий датчик с беспроводным каналом связи
EP2294364B1 (en) Wireless communication adapter for field devices
RU2389056C2 (ru) Полевое устройство с радиочастотной связью, в которой потребляемая мощность динамически регулируется
EP2761264B1 (en) Process fluid pressure transmitter with separated sensor and sensor electronics
US9674976B2 (en) Wireless process communication adapter with improved encapsulation
RU2467373C2 (ru) Улучшенные форм-фактор и защита от электромагнитных помех для беспроводных адаптеров технологического устройства
US8275472B2 (en) Variable field device for process automation
JP4905956B2 (ja) バスによってゲージ圧力計算回路に接続された絶対圧力センサおよび大気圧センサを有する圧力測定装置
EP1825238B1 (en) Instrument loop adapter
EP2972115B1 (en) Wireless interface within transmitter
EP3049765B1 (en) Industrial process field device with humidity-sealed electronics module
CN105593646A (zh) 具有双隔间式壳体的过程变量变送器
EP3047285B1 (en) Customizable averaging pitot tube probe and process variable transmitter
CN102478850B (zh) 用于过程现场设备的通信系统
EP3049764B1 (en) Process variable transmitter with dual compartment housing

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120405