RU2293918C1 - Способ термической переработки бытовых отходов и устройство для его осуществления - Google Patents

Способ термической переработки бытовых отходов и устройство для его осуществления Download PDF

Info

Publication number
RU2293918C1
RU2293918C1 RU2005118897/03A RU2005118897A RU2293918C1 RU 2293918 C1 RU2293918 C1 RU 2293918C1 RU 2005118897/03 A RU2005118897/03 A RU 2005118897/03A RU 2005118897 A RU2005118897 A RU 2005118897A RU 2293918 C1 RU2293918 C1 RU 2293918C1
Authority
RU
Russia
Prior art keywords
furnace
gas
waste
plasma
drying
Prior art date
Application number
RU2005118897/03A
Other languages
English (en)
Inventor
Анатолий Тимофеевич Неклеса (UA)
Анатолий Тимофеевич Неклеса
Original Assignee
Анатолий Тимофеевич Неклеса
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анатолий Тимофеевич Неклеса filed Critical Анатолий Тимофеевич Неклеса
Application granted granted Critical
Publication of RU2293918C1 publication Critical patent/RU2293918C1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/085High-temperature heating means, e.g. plasma, for partly melting the waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/04Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/30Combustion in a pressurised chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/201Plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/101Arrangement of sensing devices for temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50209Compacting waste before burning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Объект изобретения: Способ термической переработки бытовых отходов и устройство для его осуществления. Область применения: Переработка бытовых и промышленных отходов, содержащих органические вещества, а также растительных отходов в сельскохозяйственном производстве. Способ термической переработки бытовых отходов включает подготовку, загрузку в шахту, нагрев в плазменных струях в окислительной среде с циркуляцией газов в герметизированном реакционном пространстве с последующим выпуском образующихся расплавов шлака, металла и газов с очисткой и утилизацией последних, возврата части отходящих газов в реакционное пространство. Подготовленные отходы подвергают объемному сжатию, нейтрализуют выделенную жидкую фазу, а полученный твердый продукт направляют на подсушку, которую производят тепловым воздействием отходящего после утилизации газа. Подсушенный продукт периодически загружают в шахтную печь без теплового воздействия плазменных струй. После полной загрузки печи продукт уплотняют при одновременном нагреве продуктов плазменными струями, при этом в процессе уплотнения понижают исходный уровень столба продуктов в реакционном пространстве печи со скоростью, пропорциональной скорости газификации. Полученный пиролизный газ за счет давления в шахтной печи, которое создают плазмотронами, отводят из верхней части шахтной печи, перепускают через систему газоочистки, аккумулируют в ресивере и направляют на утилизацию тепловой и химической энергии. Рабочим телом плазмотронов служат очищенный, сжатый в компрессоре газ, отходящий после подсушки, и вода, а оставшиеся в шахтной печи отходы уплотняют и плавят плазменной струей, после чего сливают металл и шлак из шахтной печи. Технический результат: обеспечение высокой производительности при переработке мусора с повышенными экологическими параметрами. 2 н. и 7 з.п. ф-лы, 1 ил.

Description

Взаимосвязанная группа изобретений относится к технике переработки бытовых и промышленных отходов, содержащих органические вещества, а также растительных отходов в сельскохозяйственном производстве.
Известен способ пиролиза твердых бытовых отходов, включающий загрузку отходов с последующим их измельчением и подачей в реактор пиролиза, обогреваемый сжиганием в окружающей его рубашке пиролитического газообразного топлива, выгрузку отходов с отделением фракций черных металлов, ввод солей в пиролизный газ за реактором для связывания токсичных газообразных веществ, последующую очистку газов от солей и подачу очищенного пиролизного газа в камеру сжигания, разделение отходящих газов из камеры сжигания на два потока и подачу одного из них в котел-утизизатор для выработки пара, а другого в рубашку реактора, в котором осуществляют циркуляцию потоков газов путем отбора части очищенных пиролизных газов за газоочистителем с последующим нагревом ее в камере сжигания и подачей в реактор, в котором осуществляют совместное пересыпание и ворошение отходов струями очищенных пиролизных газов, а горючие отходящие газы из рубашки реактора отсасывают, смешивают со свежим воздухом и смесь газов подают в камеру сжигания (А.с. СССР №1548601, кл. F 23 G 5/027, приоритет 20.01.88, дата публикации Бюл. №9, 1990).
Недостаток способа заключается в сложности технологической схемы, а полученные продукты нуждаются в дальнейшей нейтрализации и переработке, что частично ведет к значительным нагрузкам на окружающую среду.
Наиболее близким по технической сущности и достигаемому результату (прототип) принят способ термической переработки бытовых отходов в шахтной печи, включающий подготовку, загрузку в шахту, нагрев в плазменных струях в окислительной среде с последующим выпуском образующихся расплавов шлака, металла и газов с очисткой и утилизацией последних, согласно изобретению переработку ведут в герметизированном реакционном пространстве, а газы пропускают сначала через образовавшийся расплав, после чего воздействуют на них электроискровым разрядом, а часть отходящих после очистки газов возвращают в реакционное пространство, при этом в реакционной зоне осуществляют циркуляцию газов, а шлак перед выпуском подогревают (Патент России №1836603, кл. F 23 G 5/00, приоритет 24.06.91, дата публикации Бюл. №31, 1993).
Однако известный способ не пригоден для обработки таких отходов, как, например, пастообразные, а также жидкие субстанции, как с точки зрения техники и рентабельности, так и в экологическом отношении, получая при этом пригодные для повторного применения сырьевые материалы, кроме того, к недостаткам следует отнести низкую эффективность использования физической теплоты пиролизных газов.
Известно устройство для переработки мусора и бытовых отходов, содержащее корпус, футерованный огнеупорным материалом, загрузочный бункер, сужающийся книзу с окном в нижней части, примыкающим к корпусу, и крышкой в верхней части, патрубки подачи газа и воздуха и отвода газов, при этом корпус по высоте разделен на зоны сушки, пиролиза и сжигания с помощью парных створок, расположенных под углом друг к другу, причем пары створок, расположенные на входе и выходе в корпус, выполнены сплошными, а пары створок, разделяющие зоны, выполнены с отверстиями, патрубок подачи газа и воздуха расположен над парой створок, расположенных на выходе, а патрубок отвода отходящих газов - над парой створок, расположенных на входе, а бункер снабжен патрубком отвода воздуха (Патент России №2023211, кл. F 23 G 5/00, приоритет 18.06.92, дата публикации Бюл. №21, 1994).
Технология переработки мусора и бытовых отходов, осуществляемая в описанном реакторе, является непроизводительной и неэффективной вследствие низкой степени управления и поддержания температурного уровня процессов, происходящих параллельно в соседних зонах с учетом определенных требований к составу и размерам исходного сырья.
Наиболее близким по технической сущности и достигаемому результату (прототип) принято устройство для термической переработки бытовых отходов, включающее шахту с загрузочным устройством в верхней части, плазменные горелки, установленные в надгорной зоне шахты по ее периметру, летку для выпуска шлака и газоход для отходящих газов, согласно изобретению оно снабжено примыкающей к горну шахты подсводовой ванной с леткой для выпуска расплава металла, а герметизированные рабочие пространства шахты и ванны разделены вертикальной перегородкой с окном в придонной части с образованием гидрозатвора, причем летка для выпуска шлака выполнена сифонной и расположена на дальнем от шахты конце ванны с уровнем сливного порога выше окна перегородки, а газоход установлен перед леткой, в котором установлено электроразрядное устройство, при этом в ванне со сливным порогом сифонной летки установлен один электропечной электрод или плазмотрон, а по периметру шахты над плазмотронами расположены топливные горелки (Патент России №1836603, кл. F 23 G 5/00, приоритет 24.06.91, дата публикации Бюл. №31, 1993).
Недостатком устройства является низкая производительность печи, обусловленная двухступенчатым процессом - сжигание и пиролиз, кроме того, устройство не предназначено для переработки таких отходов, как жидкие субстанции, пастообразные отходы и другие материалы, обладающие высокими вязкоупругими свойствами.
В основу первого из группы изобретений поставлено задачу усовершенствования способа термической переработки бытовых отходов, в котором за счет создания замкнутой технологической системы перевода отходов в металлическую, шлаковую и газовую составляющие и утилизации при этом тепла и химической энергии отходящих газов для энергопреобразующих устройств, нейтрализации выделенной жидкой фазы из отходов, обеспечить эффективность переработки отходов, сократить вредные выбросы в атмосферу и повысить производительность процесса.
В основу второго из группы изобретений поставлена задача усовершенствования устройства для термической переработки бытовых отходов, в которой путем изменения конструкции реактора, а также технологической схемы компоновки узлов и связей между ними, можно обеспечить экономически выгодный режим работы устройства, повысить его удельную производительность и снизить загрязнение окружающей среды.
Первая поставленная задача решается тем, что в способе термической переработки бытовых отходов, включающем подготовку, загрузку в шахту, нагрев в плазменных струях в окислительной среде с циркуляцией газов в герметизированном реакционном пространстве с последующим выпуском образующихся расплавов шлака, металла и газов с очисткой и утилизацией последних, возврата части отходящих газов в реакционное пространство, согласно изобретению подготовленные отходы подвергают объемному сжатию, нейтрализуют выделенную жидкую фазу, а полученный твердый продукт направляют на подсушку, которую производят тепловым воздействием отходящего после утилизации газа, периодически загружают подсушенный продукт в шахтную печь без теплового воздействия плазменных струй, а после полной загрузки печи продукт уплотняют при одновременном нагреве продуктов плазменными струями, при этом в процессе уплотнения понижают исходный уровень столба продуктов в реакционном пространстве печи со скоростью, пропорциональной скорости газификации, а полученный пиролизный газ за счет давления в шахтной печи, которое создают плазмотронами, отводят из верхней части шахтной печи, перепускают через систему газоочистки, аккумулируют в ресивере и направляют на утилизацию тепловой и химической энергии, при этом рабочим телом плазмотронов служат очищенный, сжатый в компрессоре газ, отходящий после подсушки, и вода, а оставшиеся в шахтной печи отходы уплотняют и плавят плазменной струей, после чего сливают металл и шлак из шахтной печи.
Способ включает четыре этапа:
- подготовка отходов, экологическое обезвреживание в них жидкой фазы и сушка;
- загрузка, уплотнение осушенных отходов в шахтной печи с одновременным нагревом их в окислительной среде плазменными струями, пиролиз и получение пиролизного газа;
- транспортирование пиролизного газа по замкнутому тракту, включающему очистку и утилизацию тепла, использование отходящих газов для получения электроэнергии и пара, выделение и аккумулирование конденсата воды, использование ее и пиролизного газа для работы плазмотронов, возврат части воды в теплообменник и отбор с него нагретого газа для сушки отходов;
- получение металла и шлака в результате воздействия плазменной струей на уплотненный слой отходов в печи, полученных после пиролиза.
Последовательность осуществляемых действий данного процесса, регулирование теплового режима в печи путем изменения мощности и расходов плазмообразующего газа в плазмотронах, обеспечивают достаточную гибкость технологического процесса в отношении температурных условий на отдельных этапах, что приводит к полной утилизации отходов в заданном режиме и завершенности всего технологического цикла при сохранении чистоты окружающей среды.
Вторая поставленная задача решается тем, что в устройстве для термической переработки бытовых отходов, включающем шахтную печь с загрузочным устройством, плазмотроны, установленные в нижней части шахтной печи, летки для выпуска шлака и расплава металла, дополнительный плазмотрон и газоход для отходящих газов, согласно изобретению, шахтная печь в верхней торцевой части снабжена штоком с перфорированным поршнем с размещенными в нем термопарами и установленным в полости печи с возможностью фиксированного продольного перемещения по высоте реакционного пространства печи, при этом термопары электрически связаны с блоком памяти, механизмом привода поршня и переключателем режима работы печи, взаимодействующим с упором на штоке во время его перемещения, а в нижней части шахтной печи расположен копильник с дополнительным плазмотроном, а выше копильника, по внешнему периметру шахтной печи, расположен газовый коллектор, связанный с плазмохимическим газогенератором с установленными в нем плазмотронами, при этом загрузочное устройство сообщено с пресс-фильтром для обезвоживания отходов, с которым последовательно соединены устройство для сушки, шлюзовое устройство, выполненное в виде приемной емкости осушенных отходов с двумя приводными шиберами, в нижней части которой установлен шнековый питатель, связанный с внутренней полостью печи через проем, выполненный в ее боковой стенке, ниже границы верхнего положения поршня, а в верхней части печи расположен трубопровод отвода пиролизного газа, который через обратный клапан связан с газоочистителем циклонного типа, устройством для удаления серы и ресивером, выход которого через управляемый вентиль и компрессор связан с устройством утилизации тепловой и химической энергии пиролизного газа, трубопровод отходящего газа которого через теплообменник парогенератора соединен с устройством для сушки, а контур газа, отходящего из устройства сушки, через воздуходувку подключен к плазмохимическому газогенератору и через дополнительный теплообменник, фильтр и компрессор - к плазмотронам плазмохимического газогенератора, при этом плазмотроны плазмохимического газогенератора, в момент разогрева шахтной печи, подключены к внешнему источнику электрической энергии и к воздушному компрессору, а внутренняя полость печи через вспомогательную систему подвода соединена с устройством для сушки через управляющий вентиль, дополнительный плазмотрон, установленный в копильнике, подключен к баллону со сжиженным газом, например пропаном, и к воздушному компрессору, а устройство для сушки снабжено пластинчатым конвейером, установленным по длине его внутренней полости. Устройство утилизации тепловой энергии может быть выполнено в виде газовой турбины или двигателя внутреннего сгорания, а пресс-фильтр снабжен емкостью для сбора жидкой фазы, связанной с баком нейтрализации, при этом поршень выполнен водоохлаждаемым.
Поршень в шахтной печи выполнен перфорированным для обеспечения перетока газа во время его перемещения, а благодаря наличию установленных на поршне термопар, электрически связанных с механизмом привода штока, блоком памяти, переключателем режима работы, обеспечивается управляемый реверсивный ход поршня, сжатие отходов в печи при одновременном их нагреве, что приводит к уменьшению размеров пустот в загруженных отходах, увеличению теплопроводности отходов и ускорению их разогрева.
Наличие поршня с автономным приводом позволяет в более широких пределах варьировать режим деформации сжатия отходов в шахтной печи, что в комплексе обеспечивает существенное повышение удельной производительности печи по перерабатываемым отходам, снижает удельные затраты тепла на переработку и повышает качество и энергосодержание пиролизного газа.
Газовый коллектор предназначен для формирования направленных нагретых газовых струй в герметизированном реакционном пространстве печи.
Предложенная конструкция шахтной печи обеспечивает заданный тепловой режим плазмотронами плазмохимического газогенератора путем изменения их мощности и расхода плазмообразующего газа, а при значительном увеличении высоты шахтной печи и ее диаметра, количество плазмохимических газогенераторов устанавливается с учетом масштабного фактора.
Система подготовки отходов включает пресс-фильтр, в котором происходит прессование отходов и отделение жидкости от твердой массы, при этом жидкая фаза отводится в бак, где ее нейтрализуют, а твердая масса поступает в устройство для сушки, оборудованное, например, пластинчатым конвейером, и через шлюзовое устройство - во внутреннюю полость печи.
Энергия отходящего из печи пиролизного газа реализуется с помощью устройств утилизации тепловой энергии, например двигателя внутреннего сгорания или газовой турбины с электрогенератором. Отходящий из устройства утилизации газ поступает в теплообменник парогенератора, из которого газ поступает в устройство для сушки. Часть газа, отходящего из устройства для сушки, через газодувку, фильтр, дополнительный теплообменник и компрессор поступает в плазмотроны плазмохимического газогенератора, а вторая часть - непосредственно в плазмохимический газогенератор.
При значительных размерах шахтной печи и, как следствие, получении больших объемов пиролизного газа, для дополнительной утилизации тепла, в устройстве после теплообменника парогенератора установлена паровая турбина с электрогенератором, отработанный пар из которой конденсируется в конденсаторе и поступает в резервуар питательной воды, из которого насосом подается обратно в теплообменник парогенератора и через управляемый регулятор на плазмотроны плазмохимического газогенератора.
Таким образом, устройство позволяет полностью использовать теплосодержание отработанного газа, даже если его энергетическое содержание не очень высоко, не оказывая влияние на окружающую среду.
Устройство обеспечивает высокую производительность переработки мусора с повышенными экологическими параметрами, переработку нерассортированных отходов, создает условия увеличения объемов переработки отходов по мере возрастания потребностей и, при этом вырабатываемую в самом устройстве электроэнергию преобразовывать в тепло плазмотронами и - в механическую энергию, за счет подключения электрооборудования, задействованного в технологической схеме.
Способ осуществляется следующим образом.
Способ термической переработки бытовых отходов включает предварительный прогрев шахтной печи плазмотронами плазмохимического газогенератора, которые на время прогрева работают от внешнего источника электроэнергии и воздушного компрессора без отвода отходящих из печи пиролизных газов. После прогрева шахтной печи до температуры 150-200°С твердые и жидкие бытовые отходы направляют в загрузочное устройство пресс-фильтра, в котором их подвергают объемному сжатию с одновременным выжиманием жидкой фазы, которую собирают в отдельную емкость и нейтрализуют химическим раствором. Полученный твердый продукт направляют на сушку, где в качестве греющего агента служат нагретые в реакционной зоне печи газы, которые поступают через вспомогательную систему подвода.
При достижении значений температуры внутренних стенок печи в диапазоне 300-400°С в зоне пиролиза, подсушенный твердый продукт через шлюзовую камеру загружают в печь без теплового воздействия на него плазменными струями. Запирают вспомогательную систему подвода агента сушки и включают контур отходящих из печи пиролизных газов. После полной загрузки печи подсушенным продуктом его уплотняют при одновременном нагреве плазменными струями с регулируемой температурой газов на входе в печь от 300 до 600°С. В процессе нагрева идет пиролиз органической составляющей отходов. По мере пиролиза в процессе уплотнения понижают исходный уровень столба продуктов в реакционном пространстве печи со скоростью, пропорциональной скорости газификации.
Воздействие давления и сдвиговых деформаций на твердый продукт происходит в процессе его нагрева. Материал подвергают постепенному сжатию, при этом уменьшаются размеры имеющихся в материале пустот. В результате увеличивается теплотворность материала, начинается интенсивное тепловыделение во всем объеме перерабатываемого материала, приводящее к быстрому разогреву.
Пиролизный газ в шахтной печи идет снизу вверх под давлением, необходимым для преодоления гидравлического сопротивления всего столба загруженного материала и обеспечивающим давление, которое задается потребителем пиролизного газа на выходе, при этом давление газовых струй, поступающих в шахтную печь из плазмохимического газогенератора, регулируют в пределах 0,05-0,1 МПа из-за относительного низкого содержания влаги в подсушенных твердых продуктах. За счет давления в реакционном пространстве печи пиролизный газ отводят из ее верхней части и аккумулируют в ресивере. Температура газа на выходе из печи составляет 200-500°С. При накоплении в ресивере достаточного количества газа, последний, после очистки от твердых частиц и серы утилизируют, например, в двигателе внутреннего сгорания или в газовой турбине, с целью получения электроэнергии. Отработанный после утилизации газ отводят в теплообменник парогенератора, а пар подают в паровую турбину, которая приводит во вращение электрогенератор. Для образования замкнутого термодинамического цикла, отработанный в паровой турбине пар конденсируется, а конденсат аккумулируют в резервуаре питательной воды, из которого воду снова подводят к теплообменнику парогенератора. Нагретый в теплообменнике газ с температурой 150-200°С направляют в зону сушки подготовленных отходов. Часть газа после сушки, с остаточной температурой 50-120°С, с помощью газодувки направляют в плазмохимический газогенератор, а вторую часть газа фильтруют, снижают его температуру до значения менее 30°С и подают на плазмотроны плазмохимического газогенератора. Воду из резервуара питательной воды под давлением до 4 атм подают на плазмотроны плазмохимического газогенератора и дополнительный плазмотрон. При мощности плазмотрона 0,5 МВт, расход воды составляет до 10 г/с. После каждой полной загрузки печи и термического разложения подготовленных твердых отходов, процесс пиролиза завершается образованием и накоплением твердых отходов в копильнике и в нижней части печи.
Оставшиеся в результате пиролиза твердые отходы остаются в нижней части печи, а остальную часть печи загружают новыми порциями подсушенного твердого продукта, который подвергают уплотнению и нагреву так, как это описано выше. По мере накопления отходов, оставшихся после пиролиза, их уплотняют и нагревают при температуре 1500-2000°С плазменной струей плазмотрона, установленного в копильнике, до образования расплава, после чего сливают полученный металл и шлак.
Таким образом, для обеспечения экологической чистоты отходящих газов бытовые отходы подвергаются двукратному разложению при температурах, исключающих образование или сохранение сложных химических соединений.
Энергия полученного пиролизного газа может быть использована различными способами, а также сочетанием нескольких способов использования. Предлагаемый способ позволяет в энергопреобразующих устройствах использовать электроэнергию, вырабатываемую в самой системе переработки отходов, и приводить в действие механизмы, задействованные для реализации способа.
На чертеже представлена принципиальная схема устройства для термической переработки бытовых отходов.
Устройство включает шахтную печь 1, выполненную из металлического вертикально расположенного корпуса, футерованного огнеупорным кирпичом. В верхней торцевой части печи на штоке 2 расположен поршень 3, установленный во внутренней полости печи с возможностью фиксированного продольного перемещения с помощью механизма 4 привода. Поршень выполнен со сквозными отверстиями 5 для перетока газа и внутренними каналами для охлаждающего агента (на чертеже не показано). На поршне 3 установлены термопары 6 и 7. Устройство также включает блок памяти 8, электрически связанный с термопарами 6 и 7, механизмом привода 4 и переключателем 9 режима работы печи, взаимодействующим с упором 10 на штоке 2 во время перемещения последнего. В нижней части шахтной печи 1 расположен копильник 11 с дополнительным плазмотроном 12. В копильнике размещены летки 13 и 14 для выпуска металла и шлака. По внешнему периметру печи 1, выше копильника, расположен газовый коллектор 15, соединенный теплоизолированным каналом с плазмохимическим газогенератором 16 с установленными в нем плазмотронами 17. В верхней части печи расположен трубопровод 18 отвода пиролизного газа с расходомером 19, который через контролер 20 связан с механизмом привода 4. Трубопровод 18 через обратный клапан 21 соединен с газоочистителем 22 циклонного типа, устройством 23 для удаления серы и ее соединений и ресивером 24. Загрузочное устройство 25 сообщено с пресс-фильтром 26, служащим для обезвоживания отходов и отвода жидкой фазы в емкость 27. Бак 28 заполнен веществом для нейтрализации жидкой фазы. С пресс-фильтром 26 последовательно соединены устройство 29 для сушки, шлюзовое устройство 30, выполненное в виде приемной емкости осушенных отходов с двумя приводными шиберами 31 и 32, в нижней части которой установлен шнековый питатель 33, связанный с внутренней полостью печи 1 через проем 34, выполненный в ее боковой стенке ниже границы верхнего положения поршня 3. Устройство 29 для сушки снабжено пластинчатым конвейером 35, установленным по длине его внутренней полости. Дополнительный плазмотрон 12, установленный в копильнике 11, подсоединен к баллону 36 со сжиженным газом, например пропаном, и к воздушному компрессору 37.
В предложенном изобретении возможно использование любых устройств утилизации тепловой энергии, что диктуется запросами потребителя.
На приведенной схеме устройства для термической переработки бытовых отходов ресивер 24 через управляемый вентиль 38 соединен с компрессором 39, сообщенным с камерой 40 сжигания газотурбинной установки 41, к которой присоединен электрогенератор 42. Трубопровод отвода из турбины соединен с теплообменником парогенератора 43. Теплообменник 43 паропроводом связан с паровой турбиной 44, которая служит для вращения электрогенератора 45. Трубопровод отвода пара с паровой турбины 44 подключен к конденсатору 46 и далее через конденсатный насос 47 - к резервуару питательной воды 48, из которого вода с помощью питательного насоса 49 подводится обратно к теплообменнику 43 и через управляемый регулятор 50 к плазмотронам 17 плазмохимического газогенератора 16 и к дополнительному плазмотрону 12. Теплообменник 43, кроме того, газопроводом подключен к устройству 29 для сушки, из которого отводящий газопровод через газодувку 51 разветвляется - одна ветвь подведена к плазмохимическому газогенератору 16, а вторая - через фильтр 52, дополнительный теплообменник 53, компрессор 37 на плазмотроны 17 плазмохимического газогенератора 16 и дополнительный плазмотрон 12. Плазмотроны 17 плазмохимического газогенератора 16, в момент разогрева шахтной печи подключены к внешнему источнику электрической энергии и к воздушному компрессору 37, а внутренняя полость печи 1 через вспомогательную систему 54 соединена с устройством 29 для сушки через управляемый вентиль 55.
Устройство работает следующим образом.
Прогрев шахтной печи 1 осуществляют низкотемпературной плазмой, генерируемой плазмохимическим газогенератором 16, в котором на время прогрева печи плазмотроны 17 питаются от внешнего источника электроэнергии и воздушного компрессора 37. Обратный клапан 21 трубопровода 18 отвода пиролизного газа закрыт. Через загрузочное устройство 25 бытовые отходы поступают в пресс-фильтр 26, в котором отходы прессуют и при этом отделяют жидкость от твердой массы. Жидкая фаза отводится в емкость 27, куда одновременно подается нейтрализующее вещество из бака 28. Твердые отходы после пресс-фильтра поступают в устройство 29 для сушки, непосредственно на пластинчатый конвейер 35. Во время прогрева печи включают вспомогательную систему подвода горячего газа 54, которая связывает внутреннюю полость печи 1 с устройством 29 для сушки. Прогрев печи 1 осуществляют до получения значений температур 500-700°С внутренних стенок. После прогрева печи отключают управляемым вентилем 55 вспомогательную систему 54, открывают шибер 31 и с помощью конвейера 35 перегружают осушенный материал в приемную емкость 30. Отключают плазмотроны 17 плазмохимического газогенератора 16, открывают шибер 32, включают шнековый питатель 33 и через проем 34 материал поступает в шахтную печь до полного заполнения ее объема. Закрывают шибер 32 и включают плазмотроны 17. Включают механизм 4 привода штока 2. Поршень 3 опускается вниз и уплотняет осушенный материал в полости печи при одновременном его нагреве плазменными струями с регулируемой температурой газов на входе в печь от 300 до 600°С. В процессе нагрева происходит пиролиз органической составляющей отходов и при повышении давления газа в печи, срабатывает обратный клапан 21 и пиролизный газ поступает через газоочиститель 22, устройство 23 для удаления серы в ресивер 24. По величине электрического сигнала, который выдает расходомер 19, определяют скорость газификации. Во время пиролиза, материал подвергается постепенному сжатию поршнем, который перемещается со скоростью, пропорциональной скорости газификации. Термопарами 6 и 7 контролируют температуру нагрева поршня по мере его перемещения в сторону зоны пиролиза.
Режимы реверса поршня определяются значением температуры нагрева нижней его части, соответствующим расстоянию от переключателя 9 режима работы печи до места установки на поршне упора 10, которое подбирается экспериментально в зависимости от типа перерабатываемого материала. Сигналы с термопар 6 и 7 и переключателя 9 режима работы печи введены в блок памяти 8, выход которого связан с механизмом 4 привода. Если во время перемещения поршня его температура достигла 400°С после срабатывания сигнала переключателя 9 режима работы печи, то блок памяти 8 вырабатывает сигнал возврата поршня в исходное положение с помощью механизма 4 привода и выдает команду на повторную загрузку. Если во время перемещения поршня его температура достигла 400°С до срабатывания сигнала переключателя 9, то блок памяти 8 выдает сигнал на начало плавления, при этом отключается плазмохимический газогенератор 16 и включается дополнительный плазмотрон 12, а поршень продолжает движение вниз до температуры нагрева 600°С его нижней части, и по достижении температуры этого значения, поршень возвращается в исходное положение, а плавка продолжается до окончания плавления отходов пиролиза.
После заполнения ресивера пиролизным газом вся система приведена в готовность. В этот момент открывают управляемый вентиль 38, и газ после очистки через компрессор 39 подают на его утилизацию, например в двигатель внутреннего сгорания или на газовую турбину 41. Отработанный после утилизации газ отводят в теплообменник парогенератора 43, пар из которого подают в паровую турбину 44, которая вращает электрогенератор 45. Отобранный в турбине пар направляют в конденсатор 46, а конденсат аккумулируют в резервуаре 48 питательной воды, из которого с помощью питательного насоса 49 отдельными трубопроводами воду подают в теплообменник 43 и через управляемый регулятор 50 на плазмотроны 17 или дополнительный плазмотрон 12. Газ из теплообменника парогенератора 43 подают в устройство 29 для сушки. Отходящий после сушки газ через газодувку 51 транспортируют газовым трактом в плазмохимический газогенератор 16, а через отходящую из газового тракта магистраль газ пропускают через фильтр 52, дополнительный теплообменник 53, в котором газ охлаждают до температуры менее 30°С, и через компрессор 37 направляют в зависимости от режима работы печи на плазмотроны 17 плазмохимического газогенератора или на дополнительный плазмотрон 12. Подготовленный в плазмохимическом газогенераторе газ подают в газовый коллектор 15 и далее в реакционную зону печи 1.
Анализ протекающих физико-химических и электротермических процессов показывает, что при использовании заявленных способа и устройства качественно изменяется механизм утилизации отходов, повышается эффективность утилизации, увеличивается коэффициент использования получаемого тепла за счет выработки электроэнергии непосредственно в процессе переработки отходов и обеспечивается экологическая чистота процесса при замкнутой циркуляции теплоносителя.

Claims (9)

1. Способ термической переработки бытовых отходов, включающий подготовку, загрузку в шахту, нагрев в плазменных струях в окислительной среде с циркуляцией газов в герметизированном реакционном пространстве с последующим выпуском образующихся расплавов шлака, металла и газов, с очисткой и утилизацией последних, возврата части отходящих газов в реакционное пространство, отличающийся тем, что подготовленные отходы подвергают объемному сжатию, нейтрализуют выделенную жидкую фазу, а полученный твердый продукт направляют на подсушку, которую производят тепловым воздействием отходящего после утилизации газа, периодически загружают подсушенный продукт в шахтную печь без теплового воздействия плазменных струй, а после полной загрузки печи продукт уплотняют при одновременном нагреве продуктов плазменными струями, при этом в процессе уплотнения понижают исходный уровень столба продуктов в реакционном пространстве печи со скоростью, пропорциональной скорости газификации, а полученный пиролизный газ за счет давления в шахтной печи, которое создают плазмотронами, отводят из верхней части шахтной печи, перепускают через систему газоочистки, аккумулируют в ресивере и направляют на утилизацию тепловой и химической энергии, при этом рабочим телом плазмотронов служат очищенный, сжатый в компрессоре газ, отходящий после подсушки, и вода, а оставшиеся в шахтной печи отходы уплотняют и плавят плазменной струей, после чего сливают металл и шлак из шахтной печи.
2. Устройство для термической переработки бытовых отходов, включающее шахтную печь с загрузочным устройством, плазмотроны, установленные в нижней части печи, летки для выпуска шлака и расплава металла, дополнительный плазмотрон и газоход для отходящих газов, отличающееся тем, что шахтная печь в верхней торцевой части снабжена штоком с перфорированным поршнем с размещенными в нем термопарами и установленным в полости печи с возможностью фиксированного продольного перемещения по высоте реакционного пространства печи, при этом термопары электрически связаны с блоком памяти, механизмом привода поршня и переключателем режима работы печи, взаимодействующим с упором на штоке во время его перемещения, а в нижней части шахтной печи расположен копильник с дополнительным плазмотроном, а выше копильника по внешнему периметру шахтной печи расположен газовый коллектор, связанный с плазмохимическим газогенератором с установленными в нем плазмотронами, при этом загрузочное устройство сообщено с пресс-фильтром для обезвоживания отходов, с которым последовательно соединены устройство для сушки, шлюзовое устройство, выполненное в виде приемной емкости осушенных отходов с двумя приводными шиберами, в нижней части которой установлен шнековый питатель, связанный с внутренней полостью печи через проем, выполненный в ее боковой стенке, ниже границы верхнего положения поршня, а в верхней части печи расположен трубопровод отвода пиролизного газа, который через обратный клапан соединен с газоочистителем циклонного типа, устройством для удаления серы и ресивером, выход которого через управляемый вентиль и компрессор связан с устройством утилизации тепловой и химической энергии пиролизного газа, трубопровод отходящего из устройства утилизации газа через теплообменник парогенератора соединен с устройством для сушки, а контур газа, отходящего из устройства сушки, через воздуходувку подключен к плазмохимическому газогенератору и через дополнительный теплообменник, фильтр и компрессор - к плазмотронам плазмохимического газогенератора.
3. Устройство по п.2, отличающееся тем, что плазмотроны плазмохимического газогенератора в момент разогрева шахтной печи подключены к внешнему источнику электрической энергии и к воздушному компрессору, а внутренняя полость печи через вспомогательную систему подвода соединена с устройством для сушки через управляющий вентиль.
4. Устройство по п.2, отличающееся тем, что дополнительный плазмотрон, установленный в копильнике, подключен к баллону со сжиженным газом, например пропаном, и к воздушному компрессору.
5. Устройство по п.2, отличающееся тем, что устройство для сушки снабжено пластинчатым конвейером, установленным по длине его внутренней полости.
6. Устройство по п.2, отличающееся тем, что устройство утилизации тепловой энергии выполнено в виде газовой турбины.
7. Устройство по п.2, отличающееся тем, что устройство утилизации тепловой энергии выполнено в виде двигателя внутреннего сгорания.
8. Устройство по п.2, отличающееся тем, что пресс-фильтр снабжен емкостью для сбора жидкой фазы, связанной с баком нейтрализации.
9. Устройство по п.2, отличающееся тем, что поршень выполнен водоохлаждаемым.
RU2005118897/03A 2005-03-28 2005-06-17 Способ термической переработки бытовых отходов и устройство для его осуществления RU2293918C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAA200502785A UA77108C2 (en) 2005-03-28 2005-03-28 Method for thermal processing of domestic waste and unit for its implementation
UAA200502785 2005-03-28

Publications (1)

Publication Number Publication Date
RU2293918C1 true RU2293918C1 (ru) 2007-02-20

Family

ID=37053659

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005118897/03A RU2293918C1 (ru) 2005-03-28 2005-06-17 Способ термической переработки бытовых отходов и устройство для его осуществления

Country Status (4)

Country Link
AU (1) AU2005237099B2 (ru)
RU (1) RU2293918C1 (ru)
UA (1) UA77108C2 (ru)
WO (1) WO2006104471A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488042C1 (ru) * 2012-02-16 2013-07-20 Михаил Васильевич Жуков Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов
RU2502017C1 (ru) * 2012-05-10 2013-12-20 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления
RU2672363C1 (ru) * 2017-10-23 2018-11-14 Виктор Юрьевич Колесников Установка пиролиза отходов
RU215503U1 (ru) * 2022-06-24 2022-12-15 Автономная некоммерческая организация высшего образования "Белгородский университет кооперации, экономики и права" Плазменная стекловаренная печь

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294707B (zh) * 2007-04-27 2011-09-14 韩枫 生物质燃料热解汽化燃烧方法
FR3017874B1 (fr) * 2014-02-24 2016-03-25 Lohr Electromecanique Reacteur chimique a plasma ameliore
ES2569545B1 (es) * 2014-11-11 2017-03-02 Technological Transformation S.L. Reactor para gasificación por plasma de materiales y procedimiento de gasificación por plasma realizado en dicho reactor
CN104964287B (zh) * 2015-06-27 2017-07-28 北京博信晟益环保科技有限公司 垃圾压干焚烧装置
CN106500107B (zh) * 2016-12-12 2018-08-21 神雾科技集团股份有限公司 一种垃圾热解气化熔融的系统及方法
CN106838913A (zh) * 2017-01-13 2017-06-13 安徽未名鼎和环保有限公司 一种高热解率的垃圾分仓处理装置
CN114576630B (zh) * 2021-12-14 2023-03-03 淮安市第二人民医院 基于智能控制的医疗废物处理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534302A (en) * 1981-05-18 1985-08-13 Pazar Charles A Apparatus for burning bales of trash
RU2125082C1 (ru) * 1995-04-04 1999-01-20 Малое инновационное научно-производственное предприятие "Колорит" Способ термической переработки твердого топлива и энерготехнологическая установка для его осуществления
RU2108517C1 (ru) * 1995-07-31 1998-04-10 Сергей Васильевич Иляхин Способ термической переработки отходов

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488042C1 (ru) * 2012-02-16 2013-07-20 Михаил Васильевич Жуков Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов
RU2502017C1 (ru) * 2012-05-10 2013-12-20 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления
RU2672363C1 (ru) * 2017-10-23 2018-11-14 Виктор Юрьевич Колесников Установка пиролиза отходов
RU215503U1 (ru) * 2022-06-24 2022-12-15 Автономная некоммерческая организация высшего образования "Белгородский университет кооперации, экономики и права" Плазменная стекловаренная печь
RU2814348C1 (ru) * 2022-11-09 2024-02-28 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук Способ плавления золошлаковых отходов мусоросжигающего завода

Also Published As

Publication number Publication date
UA77108C2 (en) 2006-10-16
AU2005237099A1 (en) 2006-10-12
AU2005237099B2 (en) 2012-02-02
WO2006104471A1 (fr) 2006-10-05

Similar Documents

Publication Publication Date Title
RU2293918C1 (ru) Способ термической переработки бытовых отходов и устройство для его осуществления
KR102262779B1 (ko) 폐합성수지와 가연성 폐기물의 연속투입은 물론 열분해된 부산물을 연속적으로 배출하고 미세먼지와 폐수의 배출이 없이 고품질 오일을 생성하는 열분해 유화 방법 및 장치
RU2392543C2 (ru) Способ и устройство переработки бытовых и промышленных органических отходов
US5634414A (en) Process for plasma pyrolysis and vitrification of municipal waste
CN102329652B (zh) 下吸式等离子垃圾气化反应室及其气化工艺
RU2659924C1 (ru) Способ пиролизной утилизации твердых углеродсодержащих отходов и мусороперерабатывающий комплекс для его осуществления
CN102329653B (zh) 等离子垃圾气化装备及其气化工艺
RU2763026C2 (ru) Печь
EP1877700A1 (en) Integrated process for waste treatment by pyrolysis and related plant
BRPI1000208A2 (pt) equipamento trocador de calor vibrante para conversão de baixa temperatura para tratamento de resìduos orgánicos e processo de tratamento de resìduos orgánicos mediante emprego de equipamento trocador de calor vibrante para conversão de baixa temperatura
AU777849B2 (en) Method and device for disposing of waste products
RU2422478C1 (ru) Способ переработки органических отходов и устройство для переработки органических отходов
CN104976621A (zh) 一种生活垃圾热解气化炉
RU2645029C1 (ru) Установка для термического разложения несортированных твердых органических отходов
CN115899709A (zh) 一种连续处理危险废弃物的热等离子体装置及方法
JP7352993B2 (ja) 廃樹脂熱分解油プラントシステム
RU2700862C1 (ru) Способ утилизации полимерных компонентов коммунальных и промышленных отходов и устройство для его осуществления
AU6834800A (en) Method of evaluating gas from a sedimentation basin
EA008111B1 (ru) Устройство для переработки твердого топлива
RU2076272C1 (ru) Устройство для переработки твердых отходов
KR102547205B1 (ko) 고분자 폐기물의 초음파 열분해 이동장치
RU2734311C1 (ru) Пиролизная установка непрерывного действия и способ переработки твердых бытовых отходов
RU92150U1 (ru) Установка для переработки углеводородного сырья
JP2011522200A (ja) マテリアル酸化プロセスおよび関連装置
KR200427758Y1 (ko) 폐변압기 내부에 함유된 폐절연유를 활용한 전기에너지생산장치

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100618