RU2488042C1 - Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов - Google Patents
Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов Download PDFInfo
- Publication number
- RU2488042C1 RU2488042C1 RU2012105427/03A RU2012105427A RU2488042C1 RU 2488042 C1 RU2488042 C1 RU 2488042C1 RU 2012105427/03 A RU2012105427/03 A RU 2012105427/03A RU 2012105427 A RU2012105427 A RU 2012105427A RU 2488042 C1 RU2488042 C1 RU 2488042C1
- Authority
- RU
- Russia
- Prior art keywords
- plasma
- generator
- working gas
- water
- electrolyzer
- Prior art date
Links
Images
Landscapes
- Fuel Cell (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Изобретение относится к автономной водородной энергетике. Технический результат изобретения позволит повысить КПД генератора электроэнергии. Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и отходов состоит из магнитопроводного корпуса низкого давления с замкнутыми на него верхним и нижним кольцевыми магнитами, генератора сверхвысокочастотного излучения, открытого низкодобротного резонатора и реактора плазмы с размещенными в нем электролизером, топливным элементом и генератором рабочего газа. Генератор рабочего газа оснащен молекулярными ситами, автоматизированными патрубками подачи стоков и удаления компонентов удобрений и воды с возможностью агрегатирования с генераторами органоводных эмульсий. 4 з.п. ф-лы, 1 ил., 1 табл.
Description
Изобретение относится к автономной водородной энергетике. Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и отходов состоит из магнитопроводного корпуса низкого давления с замкнутыми на него верхним и нижним кольцевыми магнитами, генератора сверхвысокочастотного излучения, открытого низкодобротного резонатора и реактора плазмы, с размещенными в нем электролизером, топливным элементом и генератором рабочего газа. Интенсификация процессов электрогенерации осуществляется за счет рециркуляции плазмы, обогащенной энергией в генераторе рабочего газа, через электролизер и топливный элемент направленными ускоренными пучками ионов, при эжектировании ионов из зон плазмообразования, межэлектродных пространств электролизера и топливного элемента и генератора рабочего газа объемными статическими зарядами положительного знака, образованными в результате ухода электронов из указанных зон по силовым линиям магнитного поля и поглощения их топливными элементами. Предусмотрена автоматизация режимов предотвращения цепных реакций и уменьшения влияния реакции холодного ядерного синтеза на надежность электродов. Генератор рабочего газа оснащен молекулярными ситами, автоматизированными патрубками подачи стоков и удаления компонентов удобрений и воды с возможностью агрегатирования с генераторами органоводных эмульсий. Техническим результатом изобретения является повышение экономической и экологической эффективности автономных водородных электрогенераторов широкого номенклатурного ряда по мощности.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Изобретение относится к области автономной водородной энергетики населенных пунктов, сельскохозяйственных, лесных и промышленных предприятий. Плазмоэлектролизный генератор электроэнергии, удобрений и воды работает за счет переработки стоков и отходов [1], [2]. Изобретение может быть использовано на мусороперерабатывающих заводах как на стационаре [3]-[6], так и на транспорте [7] взамен ДВС, газотурбинных и паротурбинных электростанций.
Наибольшие экологические и экономические эффекты от использования изобретения будут получены в жилищно-производственных вертикальных фермах маршала Г.К.Жукова (патент RU 2436917 C1). Эти вертикальные фермы содержат интегрированные производства животноводческой, растениеводческой, рыбной продукции, а также жилые помещения, пищевые и фармацевтические производства, торгово-развлекательные комплексы, находящиеся все под одной крышей, в соответствии с законом многоцелевой интеграции [8].
В населенных и промышленных пунктах добычи углеводородного топлива плазмоэлектролизные электрогенераторы также способны конкурировать с ДВС, газотурбинными и паротурбинными электростанциями.
Плазмоэлектролизные генераторы электроэнергии, удобрений и воды незаменимы в воинских частях и личных крестьянских хозяйствах России, в странах СНГ, во всех объектах земного шара (Африка, Китай, Индия, Южная Америка, Австралия). Данные объекты находятся под спонсорской опекой великой семьи частных бизнесменов, управляемых верой в то, что «все люди на земле имеют одинаковую цену - жизнь», создавших и успешно реализующих фонд "Bill & Melinda Gates Foun dation", под руководством Билла и Мелинды Гейтса и Уоррена Баффета [29].
Большой экономический и социальный эффект принесут предлагаемые электростанции в создании системы автоматических брантсбойных скважин для предотвращения лесных пожаров и скважинное водоснабжение в пустынях и полупустынях.
В настоящее время в пунктах переработки стоков находят применение электрогенераторы термоэмиссионного типа [9], [10]. Их недостаток заключается в том, что они требуют либо плазменно-термических, либо биологических генераторов рабочего газа и не могут работать напрямую на стоках и органических отходах. К тому же конструкция таких электрогенераторов еще не достигла промышленной мощности.
Ждут поддержки бизнес-сообщества и государственных вложений электрогенераторы на новых физических принципах. Среди них конверторы космонавтов, академиков М.Л.Попович и И.П.Волк [11], конверторы Stiv Sirla - И.Г.Богданова [12] как фундамента энергетики ядерного синтеза и квазиэффективной замены действующей энергетики.
Важнейшим этапом на пути создания квазиэффективной энергетики является развитие автономной экологически чистой электроэнергетики электролизных электростанций - топливных элементов и на базе холодного ядерного синтеза, открытого И.С.Филимоненко, А.И.Колдамасовым и НПО «Луч» [13]. Данная проблема поддержана академиком Курчатовым И.В., академиком Королевым С.П. и маршалом Г.К.Жуковым.
Опережающее развитие в мировой энергетике получили работы по снижению стоимости автономных электрогенераторов на базе твердооксидных и биологических топливных элементов (ТЭ) [14]. Если на сегодня упразднением ионообменных мембран финишировала работа по модернизации щелочных ТЭ [15], то совершенствование твердооксидных топливных элементов (ТОТЭ) находится лишь в начальной стадии.
Прежде всего, осуществляется поиск путей снижения температуры реакции в ТОТЭ, что может способствовать долговечности и упразднению устройств утилизации теплопотерь.
В первую очередь ведутся работы по созданию электролитов с высокими ионопроводными свойствами на базе оксидов циркония и иттрия [16], [17]. Разрабатывают покрытия на стандартные электролиты, оксидно-кремниевые и оксидно-графитовые электроды на базе титанат стронция (SrTiO3) [18], [21]. Оснащают ТОТЭ рециркуляторами водорода [19].
Активизируются исследования по применению плазмы в качестве электролита [20] как наиболее экологичные и экономичные модернизаторы автономной водородной энергетики.
Вышеприведенные направления модернизации ТОТЭ еще не полностью решают проблему привлекательности ТОТЭ для многоотраслевого бизнеса по созданию экожилищ, экогородов и автономного электроснабжения населения, сельскохозяйственного и промышленного производства. Они не оснащены генераторами синтез-газа (CO+H2) из бытовых и сельскохозяйственных стоков и отходов как резервных источников энергии и катализаторов водорода и кислорода из воды. Известные ТОТЭ не имеют генераторов водорода и кислорода и требуют отдельных устройств, для их доставки, не имеют генераторов удобрений и не производят очистку и утилизацию воды. Биотопливные элементы [22], помимо указанных недостатков, требуют большого количества оборудования и финишных строительных сооружений для использования их на мусороперерабатывающих заводах.
Широко рекламируемые в США, Европе, Японии и Кореи электростанции на топливных элементах компаний "Bloom Energy", "Kluner Perkins Caulfield & Byers", "Google", " Amazon", "Genentech", "Nortwest Power Systems" [21] не имеют генераторов синтез-газа из бытовых и сельскохозяйственных стоков и отходов, работают на газовом и жидком привозном углеводородном топливе и не оснащены генераторами водорода и кислорода из водяных паров на случай прекращения поставок топлива. Они требуют дорогостоящую систему аккумуляции и реализации CO2, азота и систему очистки топлива от серы. Указанные электростанции по этим причинам не могут заменить традиционные ДВС, газотурбинные и паротурбинные электростанции на мусороперерабатывающих заводах без устройств газоочистки и без потребителей удобрений в виде действующих круглогодично сооружений защищенного грунта и крытых бассейнов с регулируемыми температурными и световыми режимами.
Наиболее близкими, в совокупности, прототипами изобретения являются:
1. «Реактор для получения водорода и кислорода плазмохимическим и электролизным методами». Патент RU 2291228. [24], [25].
2. «Ионный двигатель Кошкина». Патент RU 2246035 [27].
3. «Способ осуществления ядерных реакций синтеза в твердом теле». Патент RU 2022373 [20], [26]. «Плазма в качестве электролита электрохимических источников тока». Заявка Чурилова Т.И., РАН, на проведение исследований в 2012-2020 годах.
4. «Разделители парогазовых смесей» [28].
Из технических решений по патенту RU 2291228 авторов Фатеева В.В., Широкова - Брюхова Е.Ф. [24] для предлагаемого генератора электроэнергии, удобрений и питьевой воды мы используем плазмоэлектролизный способ производства водорода и кислорода с углекислотным катализатором воды. Вместо устройств подачи и рециркуляции CO2 и воды мы используем эксклюзивную конструкцию генератора рабочего газа, синтез-газа (CO+H2) и водяного пара и рециркулятор плазмы на базе ионного двигателя В.В.Кошкина [27]. По существу мы предлагаем третий способ производства водорода и кислорода, совмещенный с производством рабочего газа, который способен конкурировать, а в ряде случаев и заменить самый распространенный способом получения водорода из органического топлива.
Вместо электролизера мы предлагаем установить каскад электролизер - топливный элемент без устройств аккумуляции водорода и кислорода и без всех транспортно-складских и рефрижераторных расходов, которые помимо капиталовложений требуют энергию более 3 кВт·час на 1 куб. метр водорода, что равнозначно более чем 400% энергозатрат на весь электролизный процесс в предлагаемом генераторе.
Для создания конкурентоспособного генератора электроэнергии, удобрений и питьевой воды представляет интерес конструктивное решение ионного двигателя Кошкина В.В. (патент RU 2246035) [27].
Генератор сверхвысокой частоты рассчитан на использование любого рабочего газа. Резонатор, реактор плазмы и магнитная система способны сепарировать потоки ионов и электронов и обеспечивать рециркуляцию плазмы, тем самым ликвидировать неравновесные состояния как промежуточных, так и основных реакций производства водорода и кислорода [24].
В конструкцию ионного двигателя мы вносим следующие изменения. В реакторе плазмы мы размещаем электролизер, топливный элемент и генератор рабочего газа, в том числе синтез-газа и водяных паров с возможностью аккумуляции энергии ядерного синтеза. Выходное отверстие ионов соплового аппарата мы закрываем генератором рабочего газа из водоорганических эмульсий стоков и бытовых отходов, оснащенных мембранами для сепарации газа, с возможностью агрегатирования с генераторами водоорганических эмульсий. Магнитная система формирует контуры силовых линий, направляющие плазму на рециркуляцию по тороидальной траектории на вход реактора плазмы после прохода ее через электролизер, топливный элемент и генератор рабочего газа. Штатное устройство подачи рабочего газа упразднено. Для увеличения коэффициента полезного использования энергии корпус генератора электроэнергии, удобрений и воды на внешней стороне оснащен дополнительными термоэмиссионными, термопарными и инфракрасными генераторами электроэнергии. Данная операция выполняется по специальному заказу.
Следует отметить, что предлагаемое изобретение - электрогенератор имеет штатную илососную систему подачи стоков в генератор рабочего газа из септиков, емкостей и лагун. Этот ил содержит большое количество тяжелой D2O и сверхтяжелой T2O воды, накопленный серобактериями, насекомыми, водорослями, грибными и дрожжевыми спорами [8].
Наибольшее количество тяжелой и сверхтяжелой воды содержит ил широко распространенных технологий сбраживания и компостирования стоков с метанной системой аэрации. К тому же содержание углеводородов в иле может носить случайный характер, и зачастую генерация электроэнергии в изобретении осуществляется за счет многократной рециркуляции CO2, H2O, H2, O2.
Плазмоэлектролизный генератор энергии может самостоятельно вырабатывать некоторое количество дейтерия и трития.
В связи с этим проблема защиты конструкции от разрушительного действия реакций ядерного синтеза при воздействии дейтерия и трития в плазмоэлектролизных электрогенераторах предлагаемой конструкции становится весьма актуальной. Эту проблему решают работы НПО «Луч» [20]. Патент RU 2022373 «Способ осуществления ядерных реакций синтеза в твердом теле» Ромоданова В.А. и др. мы принимаем в качестве руководства для предотвращения режимов разрушения электродов электролизера, топливного элемента и молекулярных сит генератора рабочего газа. Параметры плазмоэлектролизных генераторов электроэнергии, обеспечивающие надежность конструкции следующие: энергия потоков плазмы должна быть на уровне 20000 1,610-19 Дж; температура электродов 700 К; скорость изменения температуры электродов не выше 0,04 Кс-1; скорость движения плазмы 2÷50 м·c-1.
Исследования, запланированные на 2012-2020 годы в РАН, позволят внести коррективы в данные параметры.
Техническим результатом изобретения является плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и отходов с высокой экологической и экономической эффективностью автономного электроснабжения населенных пунктов, крестьянских хозяйств, армейских частей и предприятий сельскохозяйственного и промышленного производства.
Это достигается тем, что плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов состоит из магнитопроводного корпуса низкого давления с замкнутым на него внешними верхним и нижним кольцевыми магнитами, генератора сверхвысокочастотного излучения, открытого низкодобротного резонатора и реактора плазмы с размещенными в нем электролизером, топливным элементом и генератором рабочего газа. Интенсификация процессов электрогенерации достигается за счет рециркуляции плазмы, обогащенной энергией в генераторе рабочего газа, через электролизер и топливный элемент направленными ускоренными пучками ионов. Эжектирование ионов из зон плазмообразования, межэлектродных пространств электролизера, топливного элемента и генератора рабочего газа осуществляется объемными статическими зарядами положительного знака. Эти заряды образованы в результате ухода электронов из указанных зон по силовым линиям магнитного поля и поглощения их топливными элементами.
Генератор рабочего газа оснащен молекулярными ситами, автоматизированными патрубками подачи стоков и удаления компонентов удобрений и воды, с возможностью утилизации тепла и агрегатирования с генераторами органоводных эмульсий.
Резонатор выполнен в виде усеченного конуса, автоматически согласующего импеданс плазмы СВЧ генератора, формирующего и направляющего рабочую моду в область плазмообразования, в электролизер, топливный элемент и генератор рабочего газа.
Устройство, создающее магнитное поле, содержит магнитную систему, полюса которой разной полярности замкнуты магнитопроводом с наружной стороны реактора плазмы. Контуры силовых линий внутри реактора плазмы формируются за счет незамкнутых полюсов магнитной системы.
В реакторе плазмы, в электролизере и в топливном элементе используется только нижняя составляющая магнитного поля, образованная верхним кольцевым магнитом. Магнитное поле, образованное нижним кольцевым магнитом, используется в генераторе рабочего газа и для направления плазмы, обогащенной в генераторе рабочего газа, на рециркуляцию к плазмогенератору.
Разнополярные перфорированные электроды с катализаторами, как электролизера, так и топливного элемента, установлены в потоке действия СВЧ излучения на расстоянии устойчивости межэлектродных стоячих волн с возможностью разделения в них плазмы на ионы и электроны магнитной системой.
Автоматические устройства стабилизации режимов предотвращения цепных реакций водорода и окиси углерода и уменьшения влияния реакции холодного ядерного синтеза на надежность электродов и исключения нарушения экологических норм эксплуатации имеют стартеры и устройства изменения нагрузки на клеммах топливного элемента и теплоутилизационных электростанций.
Используются и устройства изменения подачи углеводородного сырья и удаления углекислоты и других компонентов удобрений и воды из генератора рабочего газа.
В соответствии с творческим замыслом авторов и во имя светлой памяти о святой троице гениев научно-технической революции, обеспечивавших государственную защиту развития новых физических принципов в энергетике, наше изобретение следует называть «Плазмоэлектролизные генераторы электроэнергии, удобрений и воды из стоков и органических отходов имени академика Курчатова И.В., академика Королева С.П., маршала Жукова Г.К.»
Плазмоэлектролизный генератор электроэнергии, удобрений и воды изображен на фиг.1. Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов состоит из магнитопроводного корпуса низкого давления 1 с замкнутыми на него верхним 2 и нижним 3 кольцевыми магнитами, генератора сверхвысокочастотного излучения 4 открытого низкодобротного резонатора 5 и реактора плазмы 6 с размещенными в нем электролизером 7, топливным элементом 8 и генератором рабочего газа 9 с возможностью интенсификации процессов электрогенерации за счет рециркуляции плазмы, обогащенной энергией в генераторе рабочего газа 9, через электролизер 7 и топливный элемент 8 направленными ускоренными пучками ионов при эжектировании ионов из зон плазмообразования, межэлектродных пространств электролизера 7 и топливного элемента 8 и из генератора рабочего газа 9 объемными статическими зарядами положительного знака, образованными в результате ухода электронов из указанных зон по силовым линиям магнитного поля, создаваемого кольцевым магнитом 2, и поглощения их топливными элементами 8, с возможностью автоматизации режимов предотвращения цепных реакций и уменьшения влияния реакций холодного ядерного синтеза на надежность конструкции.
Генератор рабочего газа 9 оснащен молекулярными ситами 10, автоматизированными патрубками подачи стоков 11 и удаления компонентов удобрений 12 и воды 13 с возможностью агрегатирования с генераторами органоводных эмульсий.
Резонатор 5 выполнен в виде усеченного конуса, автоматически согласующего импеданс плазмы нагрузки и СВЧ генератора 4, формирующего и направляющего рабочую моду в область плазмообразования 6, в электролизер 7, топливный элемент 8 и в генератор рабочего газа 9.
Устройство, создающее магнитное поле, содержит магнитную систему, полюса которой разной полярности замкнуты магнитопроводом 1 с наружной стороны реактора плазмы 6. Контуры силовых линий внутри реактора плазмы, а также в электролизере и в топливном элементе формируются за счет незамкнутых полюсов магнитной системы и нижней составляющей магнитного поля, образованного верхним кольцевым магнитом 2. Причем магнитное поле, образованное нижним кольцевым магнитом 3, используется в генераторе рабочего газа 9 и для направления плазмы, обогащенной в генераторе рабочего газа 9, на рециркуляцию к реактору плазмы 6.
Разнополярные перфорированные электроды с катализаторами как электролизера 7, так и топливного элемента 8 установлены в потоке СВЧ излучения на расстоянии устойчивости межэлектродных стоячих волн с возможностью разделения в них плазмы на ионы и электроны магнитной системой.
Автоматические устройства стабилизации режимов предотвращения цепных реакций и уменьшения влияния реакций холодного ядерного синтеза на надежность электродов и исключения нарушения экологических норм эксплуатации имеют стартеры 14 и устройства изменения нагрузки 15 на клеммах топливного элемента 8 и теплоутилизационных электростанций, а также устройства изменения подачи стоков и органических отходов 11 и удаления углекислоты и других компонентов удобрений 12 и воды 13 из генератора рабочего газа 9.
Принцип действия плазмоэлектролизного генератора электроэнергии, удобрений и воды из стоков и органических отходов заключается в следующем. После подачи электроэнергии на плазмоэлектролизный генератор стартером 14 включается СВЧ генератор 4 и электромагнитная система 2 и 3. В результате подается энергия от СВЧ генератора 4 через резонатор 5 в реактор плазмы 6 и межэлектродные пространства электролизера 7 и топливного элемента 8 и от нижнего кольцевого магнита 3 к генератору рабочего газа 9.
В генераторе рабочего газа 9 энергия СВЧ генератора 4 и индуктивная энергия нижнего кольцевого магнита 3 превращает стоки и органические отходы в рабочий газ (H2O+CO+H2) и через молекулярные сита 10 и каналы рециркуляции подает этот газ на вход реактора плазмы 6, в открытый низкодобротный резонатор 5 и через него направляет в поток сверхвысокочастотного излучения. Таким образом, реактор плазмы 6 после ввода СВЧ энергии резонатором 5 в рабочий газ образует плазму (H2+O2+CO+H2O) и направляет ее через межэлектродные пространства электролизера 7 и топливного элемента 8 к генератору рабочего газа 9. В электролизере 7 между разнополярными электродами происходит сепарация водорода и кислорода. После прохода электролизера плазма в составе (H2+O2+CO2) направляется в межэлектродные пространства топливного элемента 8. Топливный элемент 8 превращает плазму в парогазовую смесь (H2O+CO2) и вырабатывает электрическую энергию.
Полученная газовая смесь обогащается энергией новой партии рабочего газа (CO+H2+H2O) и направляется в реактор плазмы 6 на рециркуляцию нижним кольцевым магнитом 3 при помощи конусной тороидальной поверхности молекулярного сита 10 генератора рабочего газа 9.
Интенсификация процессов производства водорода и кислорода, а вместе с этим и увеличение выработки электроэнергии, осуществляется увеличением скорости циркуляции плазмы через электролизер 7 и топливный элемент 8, уплотнением в плазме потоков ионов и электронов, повышением их энергетического потенциала. Увеличение скорости циркуляции плазмы и ее рециркуляцию обеспечивает магнитная система. Верхний кольцевой магнит 2 совместно с замкнутым магнитопроводным корпусом 1 и нижним кольцевым магнитом 3 создают направленные ускоренные пучки ионов в межэлектродных пространствах электролизера 7 и топливного элемента 8.
Ускоренные пучки ионов эжектируют из зон плазмообразования 6, из межэлектродных пространств электролизера 7 и топливного элемента 8 и из генератора рабочего газа 9. Это происходит по причине ухода электронов из указанных зон по силовым линия магнитного поля, созданного внешним магнитом 2 и поглощения электронов топливными элементами 8. В результате ухода электронов образуются ионы с объемными статическими зарядами положительного знака, обладающие большим эжектирующим потенциалом. Нижний кольцевой магнит 3 разворачивает поток электронов и направляет его к оси симметрии. Поток ионов при пересечении с потоком электронов приобретает дополнительную энергию, доходит до конусной тороидальной поверхности молекулярного сита 10 генератора рабочего газа 9. Здесь поток ионов с остатком электронов забирает рабочий газ и направляется к реактору плазмы 6. Механизм уплотнения и разделения потоков ионов и электронов в плазме подробно изложен в [27]. В предлагаемом плазмоэлектролизном генераторе этот механизм используется для уменьшения межэлектродных расстояний электролизера 7 и топливного элемента 8 до значений намного меньших длины СВЧ волны и упразднения ионообменных мембран [15], [23]. Сущность процесса приготовления плазмы заключается в следующем. Вектор электрической составляющей СВЧ электромагнитной волны и прикладываемое магнитное поле 2 в зоне плазмообразования 6 образуют ортогональную систему, в которой реализуется электрон - циклотронный резонанс. Вместе с этим в скрещенных электрических и магнитных полях происходит дрейф центра вращения электронов в направлении, ортогональном суммарному вектору перескающихся потоков энергий. В этом случае электрон, вращаясь вокруг силовых линий магнитного поля по циклотронным орбитам, дрейфует по спирали к оси симметрии системы, что приводит к увеличению траектории электронов, повышает тем самым количество столкновений с частицами, а следовательно, повышает степень ионизации рабочего газа. Затем электрон следует по силовым линиям, образованным магнитной системой, магнитные полюса которой разной полярности, замкнутые магнитопроводом 1 с наружной стороны реактора плазмы 6. Контуры силовых линий в реакторе плазмы 6, в электролизере 7 и в топливном элементе 8 формируются за счет незамкнутых полюсов магнитной системы нижней составляющей магнитного поля верхнего кольцевого магнита 2, прилегающего к резонатору 5. Нетрудно заметить, что максимальная электрическая мощность плазмоэлектролизного генератора может быть получена при условии равенства количества незамкнутых полюсов кольцевых магнитов 2 и 3 количеству анодно-катодных пар электролизера 7 и топливного элемента 8.
Рассмотренная конструкция СВЧ и индукционной системы плазмообразования обеспечивает нечувствительность плазмоэлектролизного генератора к неустойчивым электрохимическим реакциям [24] в широком диапазоне электрогенерации. Выработка рабочего газа из стоков и органических отходов выдвигает особые требования к конструкции реактора плазмы 6, СВЧ генератора 4 и резонатора 5. Конструкция должна быть «всеядной».
Это требование реализуется следующим образом [27]. Открытый четвертьволновой резонатор 5 автоматически согласует импеданс нагрузки плазмы и генератора СВЧ 4, формирует рабочую моду и направляет СВЧ излучение в область плазмообразования 6, в электролизер 7, в топливный элемент 8 и в генератор рабочего газа 9. При изменении проводимости плазмы и ее импеданса, являющегося нагрузкой открытого резонатора 5, изменяется его добротность энергии. Это позволяет использовать различные виды рабочих газов и их расход в широком диапазоне. Следовательно, для подготовки рабочих газов мы можем использовать стоки, отходы убойных цехов, водоэмульсионные растительные, древесные, угольные, торфяные, сланцевые, сапропелевые и другие органические отходы.
Автоматика поддержания режимов предотвращения цепных реакций водорода [24] осуществляет изменение СВЧ и индуктивной энергии. Алгоритмы управления учитывают следующие параметры протекания электролизно-химических реакций:
Температура плазмы <1500 К;
Степень ионизации плазмы То~0,2; 0,3 эВ;
Устойчивое соотношение углекислоты и водяных паров n=CO2/H2O=3÷10.
Помимо указанных параметров алгоритм управления плазмоэлектролизным генератором формирует параметры стабилизации следующих режимов протекания безопасных реакций:
Н+O2→ОН+O; Ео=0,7 эВ/мол; Ко=10Е-10 см3/с;
Н+O2+М→М+НО, К3=3Е-31 см3/с;
То<Eoln(Ко/К3·n).
В связи с возможностью появления в стоках и в других органических отходах тяжелой (D2O) или сверхтяжелой (T2O) воды [8] в плазмоэлектролизном генераторе будут возникать многокомпонентные реакции холодного ядерного синтеза под названием "LENR-CANR". В соответствии с [20] нами включены в алгоритм управления плазмоэлектролизного генератора следующие параметры протекания реакций холодного ядерного синтеза, обеспечивающие надежность электродов 7, 8 и экологическую безопасность.
Энергия потоков плазмы <20000 1,6 10-19 Дж;
Температура электродов <700 К;
Скорость изменения температуры электродов <0,04 Кс-1;
Скорость движения плазмы = 2÷50 м·с-1.
Управляющие воздействия системы автоматического управления плазмоэлектролизным генератором реализуются следующими исполнительными устройствами: устройством изменения нагрузки 15 на клеммах топливного элемента 8 и на клеммах теплоутилизационных электростанций-конвертеров; устройством изменения подачи стоков и органических отходов 11; устройствами удаления CO2 и других компонентов удобрений 12 и воды 13 из генератора рабочего газа 9.
Конкурентные преимущества плазмоэлектролизных генераторов электроэнергии, удобрений и воды из стоков и органических отходов имени И.В.Курчатова, С.П.Королева, Г.К.Жукова
Интеграция СВЧ плазмотронов 4, 5, 6 с индукционными плазмотронами 1, 2, 3, с электролизерами 7, с топливными элементами 8 и с генераторами рабочего газа 9 из стоков и органических отходов позволит получить следующие технологические преимущества. Стало возможным разрабатывать и производить плазмоэлектролизные генераторы электроэнергии широкого диапазона единичных мощностей до 1,1 МВт. По сравнению с известными мусороперерабатывающими заводами мы будем осуществлять эффективную, без дополнительных капиталовложений, переработку стоков и органических отходов в электрическую энергию, удобрения и воду в жилых помещениях и производственных предприятиях города и деревни, имеющих травяные, древесные, торфяные, сланцевые, сапропелевые и угольные водоэмульсионные углеводородные отходы.
Произведенные удобрения CO2, NO, SO, Na, K, Ca, P и другие микроэлементы являются высокоэффективными экологически чистыми удобрениями и могут напрямую подаваться из генератора рабочего газа 9 в системы аэрации водоемов и в системы полива сельскохозяйственных угодий, интенсифицируя продуктивность водорослей, рыбной продукции, пастбищных и продовольственных культур.
Удобрения в генераторе рабочего газа 9 при необходимости могут быть использованы в проточном рециркуляционном режиме в качестве аккумулятора энергии, возможно холодного ядерного синтеза, для увеличения интенсивности генерации рабочего газа из ила, стоков и органических отходов.
В генераторе рабочего газа при заборе ила из сточных каналов ферм возможно поступление аммиака NH3, который не нарушит технологический процесс и поможет реализовать технологию датской компании "Amminex" [30] по производству окислов азота и серы, как наиболее продуктивных форм азотных и серных удобрений, непосредственно в генераторе рабочего газа 9.
В конструкции плазмоэлектролизного генератора предусмотрена возможность периодического использования азота для профилактической очистки поверхностей электролизера 7, топливного элемента 8 и внутренних поверхностей корпуса 1.
Предлагаемый СВЧ плазмотрон 4, 5, 6, интегрированный с индукционным плазмотроном 1, 2, 3, позволил самым экономичным способом упразднить ионообменные мембраны, которые в известных электролизерах и топливных элементах снижают в 1,5 раза кпд и на 20-40% повышают капиталовложения [23].
Плазмотрон 4, 5, 6, 1, 2, 3 позволяет весь процесс производства водорода и кислорода завершать в генераторе рабочего газа 9, а электролизер 7 будет использован как финишный сепаратор ионов и электронов перед подачей плазмы в топливный элемент 8, что приводит к увеличению электрогенерации и ηэ+тэ.
Область максимальной производительности производства водорода и кислорода при ηэ=0,6 в СВЧ электролизерах [24], без индукционных плазмотронов 1, 2, 3 достигается при соблюдении следующих пропорций между расходом углекислоты и водяного пара CO2/H2O=3÷10. Работоспособность электролизера сохраняется при CO2/H2O=1,5÷15 при кпд электролизера ηэ=0,3÷0,6 и степени ионизации плазмы от 0,05 до 0,3 эВ. В этой связи влагосодержание ила стоков и органических отходов в генераторе рабочего газа 9, по аналогии с [24], допускается соответственно от 40% до 6,7%. Однако конструкция плазмоэлектролизного генератора допускает более чем в 1,5 раза увеличение влагосодержания сырья: ила стоков и органических отходов от 60% до 10%.
Существенным конкурентным признаком плазмоэлектролизного генератора является способность реализации следующих конверторных технологий без выброса в окружающую среду:
1 - производство только электроэнергии;
2 - производство электроэнергии и воды;
3 - производство электроэнергии и удобрений;
4 - производство электроэнергии, удобрений и воды.
Технология 1 реализуется за счет рециркуляции CO2 и H2O. Технология 2 реализуется с добавлением в генератор рабочего газа 9 стоков без ила и выпуском из него чистой воды потребителю. Технология 3 реализуется с добавлением в генератор рабочего газа ила стоков и выпуском из него удобрений потребителю. Технология 4 реализуется с добавлением в генератор рабочего газа 9 влажного ила стоков и выпуском из него удобрений и чистой воды потребителю.
Энергия извне берется только на пусковые режимы. Ее расход не превышает расход на запуск соответствующего по мощности автомобильного двигателя.
Объединенные СВЧ плазмотрон 4, 5, 6 и индукционный плазмотрон 1, 2, 3 предлагаемой конструкции позволяют более эффективно использовать неравновесные реакции и реакции холодного ядерного синтеза в электролизере 7 и в топливном элементе 8, чем аналоги [24], и полностью исключить в них режимы возникновения цепных реакций.
Плазмоэлектролизный генератор электроэнергии в технологии 1 может эффективно использоваться на транспорте, на тракторах и бульдозерах, в сельском хозяйстве на пахотных, посевных и уборочных работах, в горнодобывающей промышленности по следующим причинам.
1. Упразднение расхода углеводородного топлива, в том числе баллонного водорода.
2. Соблюдение высокого уровня экологических требований.
3. Снижение материалоемкости и трудоемкости обслуживания указанной транспортно-силовой и технологической техники при переводе ее на электропривод в процессе модернизации.
4. Значительное увеличение количества выполняемых операций многоцелевой интегральной техники сельского хозяйства, пищевой промышленности и других отраслей экономики.
5. Главное! Навсегда пройдет неизлечимая боль современного труженика. Не будут возникать следующие вопросы: Где и по какой цене взять топливо? Чем пахать и сеять, чем убирать урожай? Как не сгноить урожай? Какие будут закупочные цены на сельскохозяйственную продукцию?
Производство удобрений и технической воды для полива, в зависимости от требований заказчика, осуществляется как в режиме ионизации органики и воды, практически без затрат энергии, так и в режиме полной минерализации с 15% затратами вырабатываемой электрической энергии.
Электролизер с СВЧ плазмотроном 4, 5, 6 и индукционным плазмотроном 1, 2, 3 имеет рекордно низкий уровень потребления электроэнергии на производство водорода qн2=0,57÷0,425 кВт·ч на м3 водорода.
Для сравнения, достигнутый уровень потребления электроэнергии в плазмоэлектролизных генераторах водорода и кислорода [24] составляет 4 кВт·ч на 1 м3 водорода, а без рефрижераторных и складских энергозатрат этот показатель составляет q=0,85 кВт·ч на 1 м3 [14].
Предлагаемый плазмоэлектролизный генератор электроэнергии позволяет получить коэффициент полезного действия выше, чем на уровне 0,6÷0,75=ηэ+тэ, при ηэ=0,45-0,9. Для сравнения отметим, что кпд известных энергоблоков электролизер + баллон + топливный элемент не превышает 0,4 [14]. Генераторы "Bloom Energy", USA, на базе углеводородных твердооксидных топливных элементов имеют кпд ηтэ=0,5 [21].
Для плазмоэлектролизных электростанций, работающих на самообепечении водородом и кислородом, важным показателем конструктивного совершенства является коэффициент электроконверторной эффективности ξн, равный отношению энергии, поданной потребителю Eп=rн2·ηэ+тэ, к энергии, затраченной на производство водорода Eн2=qн2/ηэ, где rн2=3,5421 кВт·ч/м3 н2. В отличие от холодильных коэффициентов в тепловых насосах xн≤3 коэффициент электроконверторной эффективности имеет значение ξн2>>3, более того из-за отсутствия барьеров Карно и Кулона он может достигать значений ξн2>10 в предлагаемой конструкции плазмоэлектролизной электростанции. Предельные значения коэффициента электроконверторной эффективности ξн2 будут определены после испытаний макетов в текущем году.
Основные технико-экономические показатели плазмоэлектролизного генератора электроэнергии, удобрений и воды из стоков и органических отходов имени И.В.Курчатова, С.П.Королева и Г.К.Жукова
В таблице приведены сравнительные показатели технического уровня известных топливных элементов и предлагаемого плазмоэлектролизного генератора электроэнергии.
№№ п/п | Наименование технико-экономических параметров | Единицы измерений | General Electric USA [21] | Bloom Energy USA [21] | Плазмоэлектролизный генератор электроэнергии [24], [25], [31] |
1 | 2 | 3 | 4 | 5 | 6 |
1 | Кпд электростанции, ηэ+эт | Относит. единицы | 0,5 | 0,5 | >0,6÷0,75 |
2 | Коэффициент электроконверторной эффективности, ξн | Относит. единицы | 0 | 0 | >3-10 |
3 | Капиталовложения на кВт установленной мощности, Ki | $/кВт | 254 15 кВт на литр |
7000÷8000 (в 2015 г. - 600) |
609÷1015 |
4. | Единичные установленные мощности электростанций, Ni | кВт | - | 0,025÷800 | 1÷1100 |
5 | Гарантийный срок службы до текущего ремонта электродов | лет | 10 | 10 | >10 |
6 | Тарифы на электроэнергию | $/кВт·ч | 0,08÷0,14 | 0,08÷0,14 | 0,08÷0,14 |
7 | Тарифы на минеральные удобрения | $/кг | - | - | 0,1÷0,2 |
8 | Тарифы на воду | $/кг | - | - | 0,1÷0,15 |
1 | 2 | 3 | 4 | 5 | 6 |
9. | Удельный объем производства электроэнергии, gэ | $/ч | 0,08÷0,14 | 0,08÷0,14 | 0,08÷0,14 |
10. | Удельный объем производства удобрений, gу | $/ч | 0 | 0 | 0,01÷0,03 |
11. | Удельный объем производства воды, gв | $/ч | 0 | 0 | 0,005÷0,001 |
12. | Удельный расход природного газа, Гi | $/ч | 0,044 | 0,044 | 0 |
13. | Срок окупаемости капиталовложений, Ток | год | 0,9÷0,55 | 2,9÷5,0 | 0,38÷0,65 |
Срок окупаемости капиталовложений определяется по удельным технико-экономическим показателям из следующего выражения:
Ток=√(Ki+А·Ki)/[365·24·(gэ-Гi+gу+gв+Ээ+Uэ)]
В приведенных технико-экономических показателях не учитываются амортизационные отчисления A·Ki, экологический эффект Ээ и снижение ущерба от повреждения электросетей - Uэ. Принято Ээ=0, Uэ=0, A·Ki=0, поскольку коэффициент амортизации А не определен. Эти показатели будут определены проектами для каждого заказчика.
Нетрудно заметить из представленных сведений, что предлагаемое изобретение «Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов» имеет существенные преимущества перед электролизными электростанциями "General-Electric" и "Bloom Energy", USA.
При проектировании машиностроительных цехов будут учтены экономические показатели других областей применения этих электростанций, такие как мобильная техника для сельскохозяйственных, дорожно-строительных и горнодобывающих технологий, для предупреждения лесных пожаров, для строительства и эксплуатации глубинных скважин в пустынях и полупустынях.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Оборудование для утилизации и переработки навоза, отходов животноводства, помета с получением газа, топлива, электроэнергии. Реакторы БиоРЕКС.www.biorex.ru
2. Способ термической переработки бытовых отходов и устройство для его осуществления. Патент RU 2293918.
3. Плазменные технологии утилизации ТБО. Современное состояние и перспективы. Земский С.И. www.ecoprogressenergy.com
4. В Институте электрофизики и электроэнергетики создан плазменный мусоросжигатель. К.Куцылло. Журнал «Коммерсантъ. Наука», №4, 25.07.2011.
5. Технология и аппаратура высокотемпературного пиролиза промышленных и коммунальных отходов с использованием магнитных воздействий, www.waste.org.ua
6. Плазменно-пиролитическая переработка медицинских и биологических отходов. С.А.Дмитриев и др. ГУП МосНПО «Радон», Москва. Разработка защищена патентом 96114826 «Устройство для переработки токсичных отходов».
7. Электромобиль. Сташевский И.И. Патент RU 2361754 C1.
8. Жилищно-производственная вертикальная ферма. Жуков В.П. и др. Патент RU 2436917 C1.
9. Преобразователь тепловой энергии непосредственно в электрическую. Гришин В.К. и др. Патент RU 2074460.
10. Способ прямого преобразования тепловой энергии в электрическую и термоэмиссионный генератор для его осуществления. Смирнов Л.Н. Патент RU 2144241.
11. Предложение по использованию открытия эффекта динамической сверхпроводимости (гипотеза В. Гинзбурга о жаропрочной сверхпроводимости). М.Л.Попович и др. www.vdesyatku.biz
12. Аппарат для выработки энергии на новых физических принципах - конвертер. И.Г.Богданов. Патент RU 2203518.
13. Генераторы энергии на базе ядерного реактора А.И.Колдамасова. Андреев А.П. Патент RU 2152083.
14. Водородная энергетика и топливные элементы. Г.А.Месяц, М.Д.Прохоров. www.neuch.ru
15. Безмембранная топливная ячейка для прямого получения электрической энергии как постоянного, так и переменного тока, в том числе и из биоэлектрических процессов. www.ukrainemade.com
16. Учеными из Гарвардского университета, США, сконструирован относительно крупный тонкопленочный твердооксидный топливный элемент на базе оксидов циркония и иттрия. Сафин Д. www.science.compulenta.ru
17. Создание опытной батареи низкотемпературных наноразмерных твердооксидных топливных элементов с высокой энергетической плотностью на базе YSZ. Университет Хьюстона, США. www.parasat.com.kz
18. «Потрясающее усовершенствование» топливных элементов. Журнал Technology Review. www.energyland.info
19. Водородно-воздушный твердооксидный топливный элемент ТОТЭ с высоким КПД. Демин А.К., Зайнов Ю.П. Институт высокотемпературной электрохимии УрО РАН.
20. Способ осуществления ядерных реакций синтеза в твердом теле. Ромоданов В.А. и др. Патент RU 2022373 C1. Плазма в качестве электролита электрохимических источников тока. Чурилов Т.Н. Заявка на проведение исследований на 2012-2020 годы. РАН.
21. Электростанция на подоконнике: экологически чистый электрогенератор фирмы "Bloom Energy", USA. www.chaskor.ru
22. Водородно-кислородный топливный элемент на основе иммобилизованных ферментов. Патент RU 2229515.
23. Изобретен топливный элемент без мембраны профессором Paul Kenis. www.news.Iuc.edu
24. Реактор для получения водорода и кислорода плазмохимическим и электролизным методами. Фатеев В.В. Патент RU 2246035.
25. Атомно-водородная энергетика и технология. Сб. статей. Вып.8. Стр.100-115. В.А.Легасов и др. «Плазмохимические методы получения энергоносителей».
26. Yoshiaki A., Yue-Chanc Z. Achievement of an intense cold fusion reaction. - Fusion Technology, 1990, v.18, N1, pp.95-102.
27. Ионный двигатель Кошкина. Патент RU 2246035.
28. Исследование характеристик мембранных пароотделителей при разделении парогазовых смесей. Лагунцов Н.И. и др. Всероссийская научная конференция «Мембраны-2001».www.chem.msu.su
29. Bill & Melinda Gates Foundation. www.Gatesfoundation.org
30. Изобретено устройство для получения энергии из морской и речной воды. www.cert-energy.ru
31. Высокочастотный индукционный плазмотрон. Шамин В.И. Патент RU 2142679.
Claims (5)
1. Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов, содержащий СВЧ генератор или индукционный генератор рабочего газа и плазмы, электролизер с плазменным электролитом и углекислотным катализатором воды, водородный топливный элемент с устройствами интенсификации электролизной электрогенерации, отличающийся тем, что, с целью существенного повышения экономической и экологической эффективности автономного электроснабжения крестьянских хозяйств, воинских частей, населенных пунктов и предприятий сельскохозяйственного и промышленного производства, плазмоэлектролизный генератор электроэнергии, удобрений и воды состоит из магнитопроводного корпуса низкого давления с замкнутыми на него верхним и нижним кольцевыми магнитами, генератора сверхвысокочастотного излучения, открытого низкодобротного резонатора и реактора плазмы, с размещенными в нем электролизером, топливным элементом и генератором рабочего газа, с возможностью интенсификации процессов электрогенерации за счет рециркуляции плазмы, обогащенной в генераторе рабочего газа, через электролизер и топливный элемент направленными ускоренными пучками ионов при эжектировании ионов из зон плазмообразования, межэлектродных пространств электролизера и топливного элемента и генератора рабочего газа объемными статическими зарядами положительного знака, образованными в результате ухода электронов из указанных зон по силовым линиям магнитного поля и поглощения их топливными элементами, с возможностью автоматизации режимов предотвращения цепных реакций и уменьшения влияний реакций холодного ядерного синтеза на надежность конструкции, а генератор рабочего газа оснащен молекулярными ситами, автоматизированными патрубками подачи стоков и удаления компонентов удобрений и воды с возможностью агрегатирования с генераторами органоводных эмульсий.
2. Плазмоэлектролизный генератор электроэнергии, удобрений и воды по п.1, отличающийся тем, что резонатор выполнен в виде усеченного конуса, автоматически согласующего импеданс плазмы нагрузки и СВЧ генератора, формирующего и направляющего рабочую моду в область плазмообразования, в электролизер, топливный элемент и генератор рабочего газа.
3. Плазмоэлектролизный генератор электроэнергии, удобрений и воды по п.1, отличающийся тем, что устройство, создающее магнитное поле, содержит магнитную систему, полюса которой разной полярности замкнуты магнитопроводом с наружной стороны реактора плазмы, контуры силовых линий внутри которого, а также в электролизере и в топливном элементе формируются за счет незамкнутых полюсов магнитной системы и нижней составляющей магнитного поля, образованного верхним кольцевым магнитом, причем магнитное поле, образованное нижним кольцевым магнитом, используется в генераторе рабочего газа и для направления плазмы, обогащенной в генераторе рабочего газа, на рециркуляцию к плазмогенератору.
4. Плазмоэлектролизный генератор электроэнергии, удобрений и воды по п.1, отличающийся тем, что разнополярные перфорированные электроды с катализатором как электролизера, так и топливного элемента, установлены в потоке СВЧ излучения на расстоянии устойчивости стоячих волн с возможностью разделения в них плазмы на ионы и электроны магнитной системой.
5. Плазмоэлектролизный генератор электроэнергии, удобрений и воды по п.1, отличающийся тем, что автоматическое устройство стабилизации режимов предотвращения цепных реакций и уменьшения влияния реакций холодного ядерного синтеза на надежность электродов и исключения нарушения технологических норм эксплуатации имеет стартеры и устройства изменения нагрузки на клеммах топливного элемента и теплоутилизационных электростанций, а также устройства изменения подачи стоков и органических отходов и удаления углекислоты и других компонентов удобрений и воды из генератора рабочего газа.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012105427/03A RU2488042C1 (ru) | 2012-02-16 | 2012-02-16 | Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012105427/03A RU2488042C1 (ru) | 2012-02-16 | 2012-02-16 | Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2488042C1 true RU2488042C1 (ru) | 2013-07-20 |
Family
ID=48791231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012105427/03A RU2488042C1 (ru) | 2012-02-16 | 2012-02-16 | Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2488042C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2246035C1 (ru) * | 2003-05-30 | 2005-02-10 | Кошкин Валерий Викторович | Ионный двигатель кошкина |
RU2291228C2 (ru) * | 2005-03-17 | 2007-01-10 | Евгений Федорович Широков-Брюхов | Реактор для получения водорода и кислорода плазмохимическим и электролизным методами |
RU2293918C1 (ru) * | 2005-03-28 | 2007-02-20 | Анатолий Тимофеевич Неклеса | Способ термической переработки бытовых отходов и устройство для его осуществления |
EP2003395A2 (fr) * | 2007-06-15 | 2008-12-17 | Centre international de traitements et de recyclage des ordures nocives (CITRON) | Procédé de gazéification de déchets dans un four à sole tournante et four de gazéification de déchets |
RU2441720C1 (ru) * | 2010-08-02 | 2012-02-10 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" | Способ комплексной переработки органических отходов |
-
2012
- 2012-02-16 RU RU2012105427/03A patent/RU2488042C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2246035C1 (ru) * | 2003-05-30 | 2005-02-10 | Кошкин Валерий Викторович | Ионный двигатель кошкина |
RU2291228C2 (ru) * | 2005-03-17 | 2007-01-10 | Евгений Федорович Широков-Брюхов | Реактор для получения водорода и кислорода плазмохимическим и электролизным методами |
RU2293918C1 (ru) * | 2005-03-28 | 2007-02-20 | Анатолий Тимофеевич Неклеса | Способ термической переработки бытовых отходов и устройство для его осуществления |
EP2003395A2 (fr) * | 2007-06-15 | 2008-12-17 | Centre international de traitements et de recyclage des ordures nocives (CITRON) | Procédé de gazéification de déchets dans un four à sole tournante et four de gazéification de déchets |
RU2441720C1 (ru) * | 2010-08-02 | 2012-02-10 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" | Способ комплексной переработки органических отходов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xin et al. | Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion | |
Dincer et al. | Sustainable hydrogen production options and the role of IAHE | |
Stambouli | Algerian renewable energy assessment: The challenge of sustainability | |
Mikulčić et al. | Environmental problems arising from the sustainable development of energy, water and environment system | |
Kyriakopoulos | Low carbon energy technologies in sustainable energy systems | |
US20170321656A1 (en) | Renewable energy-driven carbon cycle economic and ecological operating systems | |
US20100270170A1 (en) | System and process for converting non-fresh water to fresh water | |
CN105617842A (zh) | 用于二氧化碳分离和提纯的装置 | |
Samberger | The role of water circularity in the food-water-energy nexus and climate change mitigation | |
Lup et al. | Sustainable energy technologies for the Global South: challenges and solutions toward achieving SDG 7 | |
Mikulčić et al. | Green development challenges within the environmental management framework | |
Wang et al. | Renewable energy driving microbial electrochemistry toward carbon neutral | |
Sukhani et al. | Plasma activated water as a source of nitrogen for algae growth | |
RU2488042C1 (ru) | Плазмоэлектролизный генератор электроэнергии, удобрений и воды из стоков и органических отходов | |
Hossain | Sustainable development for mass urbanization | |
Strebkov | Biofuel and food security | |
CN219429725U (zh) | 一种生活垃圾焚烧发电厂与氢氨醇制备的耦合系统 | |
US20170166503A1 (en) | Ecological and economic method and apparatus for providing hydrogen-based methanol | |
Ganesh et al. | Automated power generation using biogas and thermo-electric generator by AI technology | |
Eastlund et al. | The fusion torch: closing the cycle from use to reuse | |
Babyna | Assessment of the effectiveness of the development of innovationinvestment activity in the production of alternative energy sources | |
Amouroux et al. | Carbon dioxide: a raw material and a future chemical fuel for a sustainable energy industry | |
Ganesh | Practicable artificial photosynthesis: Its relevance, fundamental challenges and opportunities | |
CN206418106U (zh) | 沼气发电系统 | |
Brusiło | Transition towards energy generation from renewable sources in the People’s Republic of China |