RU2293802C1 - Способ оксидирования поверхности стали - Google Patents

Способ оксидирования поверхности стали Download PDF

Info

Publication number
RU2293802C1
RU2293802C1 RU2005122814/02A RU2005122814A RU2293802C1 RU 2293802 C1 RU2293802 C1 RU 2293802C1 RU 2005122814/02 A RU2005122814/02 A RU 2005122814/02A RU 2005122814 A RU2005122814 A RU 2005122814A RU 2293802 C1 RU2293802 C1 RU 2293802C1
Authority
RU
Russia
Prior art keywords
oxide
steel surface
current
electrolyte
nickel
Prior art date
Application number
RU2005122814/02A
Other languages
English (en)
Inventor
Жанна Ивановна Беспалова (RU)
Жанна Ивановна Беспалова
Людмила Геннадиевна Мирошниченко (RU)
Людмила Геннадиевна Мирошниченко
Юрий Адамович Ловпаче (RU)
Юрий Адамович Ловпаче
терко Ирина Алексеевна П (RU)
Ирина Алексеевна Пятерко
вцев Юрий Дмитриевич Кудр (RU)
Юрий Дмитриевич Кудрявцев
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" (ГОУ ВПО ЮРГТУ) (НПИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" (ГОУ ВПО ЮРГТУ) (НПИ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" (ГОУ ВПО ЮРГТУ) (НПИ)
Priority to RU2005122814/02A priority Critical patent/RU2293802C1/ru
Application granted granted Critical
Publication of RU2293802C1 publication Critical patent/RU2293802C1/ru

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

Изобретение относится к способам создания коррозионно-стойкого самосмазывающегося оксидного покрытия на поверхности стали и может быть использовано для работы в узлах трения, гальванотехнике, радиоэлектронной и лакокрасочной промышленности. Способ включает оксидирование с использованием переменного тока в электролите, при этом осаждение оксида металла осуществляют с использованием переменного асимметричного тока в кислом электролите, содержащем соли меди, или никеля, или кобальта, или кадмия, пассиватор и стабилизатор при отношении катодной и анодной составляющих тока 1,5:1 или 2:1 при напряжении 15 В или 20 В соответственно. Технический результат: повышение коррозионной стойкости и износостойкости поверхности стали, снижение энергозатрат.

Description

Изобретение относится к способам создания коррозионно-стойкого самосмазывающегося оксидного покрытия на поверхности стали и может быть использовано для работы в узлах трения, гальванотехнике, радиоэлектронной и лакокрасочной промышленности.
Известен способ оксидирования поверхности перлитных сталей, заключающийся в химической обработке поверхности сталей раствором азотистой кислоты при концентрации 35-100 г/л при температуре 80-100°С в течение 1-6 часов [Пат. 2181790, С 23 C 11/00, С 23 С 22/00, 2002 г. Гусаров В.Т. (RU), Прохоров В.В. (RU), Лысенко A.A. (RU) и др. Способ оксидирования оборудования из перлитных сталей]. Недостатком этого способа является его многостадийность и длительность, так как азотистую кислоту сначала получают путем пропускания разбавленного раствора соли азотистой кислоты через Н+-катионитовый фильтр или путем введения в разбавленный раствор соли азотистой кислоты сильной кислоты из ряда: азотная, хлорная.
Наиболее близким по технической сущности и достижимому результату к предлагаемому способу является способ нанесения на поверхность стальных изделий оксида алюминия путем микроразрядного оксидирования переменным током в щелочном электролите [Пат. 2241076, 2004 г. Кусков В.Н. (RU), Кусков К.В. (RU). Способ электролитического нанесения покрытия на стальные изделия]. Недостатком этого способа являются высокие затраты электроэнергии, так как микроразрядное оксидирование проводят при напряжении 200-300 В, а также низкая пористость получаемого оксида, что не позволяет в последующем совмещать его с полимерным материалом. Кроме того, получаемое покрытие не является самосмазывающимся и не может быть использовано для работы в узлах трения.
Задачей изобретения является повышение коррозионной стойкости и износостойкости поверхности стали, снижение энергозатрат.
Задача достигается тем, что оксидный слой на поверхности стали формируется путем осаждения оксидов металла (меди, никеля, кобальта и кадмия) из кислого электролита, содержащего соль данного металла, оксид хрома (VI), 1,4-бутандиол, борную кислоту, калия хлорат (бертолетова соль), с помощью переменного асимметричного тока. Способ оксидирования поверхности стали, включающий оксидирование с использованием переменного тока в электролите, которое осуществляют с помощью асимметричного переменного тока в кислом электролите, содержащем соли меди, или никеля, или кобальта, или кадмия, пассиватор и стабилизатор при отношении катодной и анодной составляющих тока 1,5:1 или 2:1 при напряжении 15 или 20 В соответственно.
Использование переменного асимметричного тока позволяет в катодный полупериод осаждать из электролита на поверхность стали ионы металла, входящие в состав соли, содержащейся в растворе, а в анодный - окислять их до оксидов. Наличие в электролите оксида хрома (VI) и бертолетовой соли препятствует восстановлению ионов металла в катодный полупериод. Вследствие процессов циклирования на поверхности стали образуется переходной слой из шпинели, представляющий собой смесь двух оксидов (стали и наносимого из раствора оксида), что обеспечивает высокую адгезию получаемого покрытия.
Новизной в предлагаемом изобретении является не только способ осаждения оксида металла из электролита, но и состав электролита. Ни один из электролитов, используемых в гальванотехнике для нанесения электролитических покрытий, не содержит в своем составе оксид хрома (VI), бертолетову соль и 1,4-бутандиол.
Осаждение оксидов из электролита осуществляли на предварительно подготовленной поверхности плоских образцов из стали марки Ст3 размером 20×30×1 мм, по стандартной в гальванотехнике методике, электрохимической поляризацией переменным асимметричным током треугольной формы, частотой 50 Гц, с равной длительностью анодного и катодного импульсов, при определенном соотношении амплитуды токов анодного и катодного полупериодов, в кислом электролите, содержащем соль данного металла, оксид хрома (V1),бертолетову соль, борную кислоту и 1,4-бутандиол. Источником тока служил потенциостат ПИ-50-1, работающий в режиме гальваностата. Параметры тока задавали программатором.
В качестве катода использовали пластины из свинца в чехлах, размеры которых были в два раза больше размеров обрабатываемых образцов. Электролиз проводили при температуре 20-25°С и перемешивании раствора электромагнитной мешалкой. Длительность формирования оксидной пленки составляла 40-90 мин в зависимости от вида оксида.
Для экспериментальной проверки предлагаемого способа были сформированы оксидные пленки из оксида меди на поверхности стали Ст3.
Пример 1. Качественное покрытие из оксида меди получали из электролита следующего состава (при рН 1,3-1,8), гл-1:
Сульфат меди 160-170
Оксид хрома (VI) 10,0-13,0
Борная кислота 30,0
1,4-бутандиол 20-24
при отношении катодного и анодного составляющих тока 2:1, напряжении 20 В, температуре 20-25°С, времени электролиза 90 мин.
Состав вещества покрытия определяли методами рентгенофазового анализа, высокоразрешающей электронной микроскопии и хронопотенциометрии. Все эти методы подтвердили наличие оксида меди, осажденного из раствора, на поверхности стали. Фазовый состав вещества покрытия, в % (по массе): оксид меди (CuO) - 50; закись меди (Cu2O) - не более 10; CuFe2O4 - не более 10; остальное - медь. Толщина оксидного слоя составляла 7-12 мкм.
Пример 2. Качественное покрытие из оксида никеля получали из электролита следующего состава (при рН 3,5-4,0), гл-1:
Сульфат никеля 100-120
Хлорид никеля 10,0-15,0
Бертолетова соль (калия хлорат) 15,0-20,0
при отношении катодного и анодного составляющих тока 1,5:1, напряжении 15 В, температуре 20-25°С, времени электролиза 60 мин.
Если в качестве противоэлектродов использовали никель, то в электролит вводили NiCl2 (хлорид никеля) для их депассивации. При использовании свинцовых противоэлектродов наличие этой соли в электролите необязательно, достаточно одного сульфата никеля.
Состав вещества покрытия определяли методами рентгенофазового анализа, высокоразрешающей электронной микроскопии и хронопотенциометрии. Все эти методы подтвердили наличие оксидов никеля (NiO и Ni2O3), осажденного на поверхности стали. Фазовый состав вещества, в % (по массе): смесь оксидов никеля - 57; шпинель (NiFe2O4) - не более 14; остальное - высокодисперсный никель.
Пример 3. Качественное покрытие из оксида кадмия получили из электролита следующего состава (при рН 1,5-2,0), г/л-1:
Сульфат кадмия 350-380
Оксид хрома (VI) 15,0-20,0
Борная кислота 20,0
1,4-бутандиол 15,0-20,0
при отношении катодного и анодного составляющих тока 2:1, напряжении 20 В, температуре 20-25°С, времени электролиза 60 мин.
Состав вещества покрытия определяли методом рентгенофазового анализа с помощью рентгеновского дифрактометра общего назначения Дрон-2,0, использовали фильтрованное никелем излучение медного антикатода CuKα. Этот метод подтвердил наличие в покрытии оксида кадмия (CdO); CdFe2O4 и кадмия. Толщина оксидного слоя 8-10 мкм.
Пример 4. Качественное покрытие из оксида кобальта получали из электролита следующего состава (рН 1,5-2,0), г/л:
Сульфат кобальта 300-350
Оксид хрома 15,0-20,0
Борная кислота 30,0
Бутанол 20,0-20,5 мл/л
При отношении катодного и анодного составляющих тока 2:1, при напряжении 20 В, температуре 20-25°С, времени электролиза 40 мин.
Состав вещества покрытия определяли методом импульсной инверсионной хронопотенциометрии. Анализы показали, что фаза высоковалентных оксидов кобальта для вещества покрытия не характерна. В составе покрытия обнаружен оксид кобальта (II) и гидроксооксид.
Для всех оксидных покрытий кобальта характерны высокие потенциалы, при поляризации, что предполагает высокую коррозионную устойчивость этих покрытий.
Коррозионные испытания в 3% (по массе) растворе хлорида натрия показали, что при нанесении оксидов меди, никеля и кобальта на поверхность стали защитные свойства металла по сравнению с незащищенной поверхностью повышаются в 6-8 раз, а в сочетании со фторопластсодержащим материалом или с полиуретановым латексом, после термообработки, в 100 и более раз. Износостойкость поверхности стали повышается в 5-7 раз.
О продолжительности прямого и обратного импульсов в данном случае говорить нельзя, так как был использован ток промышленной частоты. Средняя плотность катодного тока составляла 0,2-0,4 А/дм2.

Claims (1)

  1. Способ оксидирования поверхности стали, включающий оксидирование с использованием переменного тока в электролите, отличающийся тем, что осаждение оксида металла осуществляют с использованием переменного асимметричного тока в кислом электролите, содержащем соли меди, или никеля, или кобальта, или кадмия, пассиватор и стабилизатор при отношении катодной и анодной составляющих тока 1,5:1 или 2:1, при напряжении 15 или 20 В соответственно.
RU2005122814/02A 2005-07-18 2005-07-18 Способ оксидирования поверхности стали RU2293802C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005122814/02A RU2293802C1 (ru) 2005-07-18 2005-07-18 Способ оксидирования поверхности стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005122814/02A RU2293802C1 (ru) 2005-07-18 2005-07-18 Способ оксидирования поверхности стали

Publications (1)

Publication Number Publication Date
RU2293802C1 true RU2293802C1 (ru) 2007-02-20

Family

ID=37863449

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005122814/02A RU2293802C1 (ru) 2005-07-18 2005-07-18 Способ оксидирования поверхности стали

Country Status (1)

Country Link
RU (1) RU2293802C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449061C1 (ru) * 2010-10-18 2012-04-27 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Способ получения покрытия из оксидов металлов на стали
RU2449062C1 (ru) * 2010-10-18 2012-04-27 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Способ получения оксидного покрытия на стали
RU2486295C1 (ru) * 2012-02-28 2013-06-27 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук Способ получения защитных супергидрофобных покрытий на стали
RU2570086C2 (ru) * 2014-04-01 2015-12-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ получения оксида меди (i)
RU2773467C1 (ru) * 2021-06-02 2022-06-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ получения оксидных слоев на поверхности углеволокнистого материала при поляризации переменным асимметричным током

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449061C1 (ru) * 2010-10-18 2012-04-27 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Способ получения покрытия из оксидов металлов на стали
RU2449062C1 (ru) * 2010-10-18 2012-04-27 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Способ получения оксидного покрытия на стали
RU2486295C1 (ru) * 2012-02-28 2013-06-27 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук Способ получения защитных супергидрофобных покрытий на стали
RU2570086C2 (ru) * 2014-04-01 2015-12-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ получения оксида меди (i)
RU2773467C1 (ru) * 2021-06-02 2022-06-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ получения оксидных слоев на поверхности углеволокнистого материала при поляризации переменным асимметричным током

Similar Documents

Publication Publication Date Title
US11905613B2 (en) Electroplating bath containing trivalent chromium and process for depositing chromium
EP3253906B1 (en) Electrolyte for electroplating
EP0267972A1 (en) A method for the electrodeposition of an ordered alloy
TW201536958A (zh) 由三價電解質沉積之微連續鉻的鈍化
RU2293802C1 (ru) Способ оксидирования поверхности стали
Belevskii et al. Electrodeposition of Nanocrystalline Fe—W Coatings from a Citrate Bath
Bellige et al. Electrodeposition of Cu-Ni coatings for marine protection of mild steel
JP6989646B2 (ja) ブラックプレート又はブリキの表面を不動態化するための方法及びその方法を実施するための電解システム
CA1116548A (en) Method of producing a composite coated steel sheet
EP2989236B1 (de) Elektrisch leitende flüssigkeiten auf der basis von metall-diphosphonat-komplexen
JP3977877B2 (ja) 金属表面処理用電解化成処理液及び電解化成処理方法
JPS61143593A (ja) アルミニウム材の電解着色法
JPWO2016125911A1 (ja) Snめっき鋼板及び化成処理鋼板並びにこれらの製造方法
JP2020172700A (ja) 三価クロム化合物を含む電解液を使用するクロムおよび酸化クロムのコーティングで被覆された金属ストリップの製造方法およびこの方法を実施するための電解システム
DE3804303A1 (de) Verfahren zur haftvermittlung zwischen metallwerkstoffen und glavanischen aluminiumschichten und hierbei eingesetzte nichtwaessrige elektrolyte
Bhat et al. Electrodeposition of Cyclic Multilayer Zn-Co Films Using Square Current Pulses and Investigaions on Their Corrosion Behaviors
KR101536563B1 (ko) 알루미늄 도금층 형성방법
RU2516142C2 (ru) Способ модифицирования поверхности титана
RU2409705C1 (ru) Способ изготовления электрода для электрохимических процессов
JP2000282296A (ja) 耐水素脆性及び耐食性が優れた塗装用鋼板及び製造方法
US5965002A (en) Elecrodeposition of manganese and other hard to deposit metals
Šulčius Regeneration of manganese electrolyte during continuous electrolysis of manganese coatings
JPS6244596A (ja) 鉄鋼材料の防食処理法
WO2011036260A2 (de) Verfahren zum galvanisieren und zur passivierung
JPS61204395A (ja) 着色アルミニウム材

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070719

NF4A Reinstatement of patent

Effective date: 20090920

QB4A Licence on use of patent

Effective date: 20091022

MM4A The patent is invalid due to non-payment of fees

Effective date: 20130719