RU2269566C1 - Способ подготовки сероводородсодержащей нефти - Google Patents

Способ подготовки сероводородсодержащей нефти Download PDF

Info

Publication number
RU2269566C1
RU2269566C1 RU2004119342/04A RU2004119342A RU2269566C1 RU 2269566 C1 RU2269566 C1 RU 2269566C1 RU 2004119342/04 A RU2004119342/04 A RU 2004119342/04A RU 2004119342 A RU2004119342 A RU 2004119342A RU 2269566 C1 RU2269566 C1 RU 2269566C1
Authority
RU
Russia
Prior art keywords
hydrogen sulfide
oil
air
mpa
pressure
Prior art date
Application number
RU2004119342/04A
Other languages
English (en)
Inventor
Ахмет Мазгарович Мазгаров (RU)
Ахмет Мазгарович Мазгаров
Ришат Гусманович Гарифуллин (RU)
Ришат Гусманович Гарифуллин
Азат Фаридович Вильданов (RU)
Азат Фаридович Вильданов
Валерий Николаевич Салин (RU)
Валерий Николаевич Салин
Фоат Гафиевич Шакиров (RU)
Фоат Гафиевич Шакиров
Original Assignee
Государственное унитарное предприятие Республики Татарстан Всероссийский научно-исследовательский институт углеводородного сырья
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное унитарное предприятие Республики Татарстан Всероссийский научно-исследовательский институт углеводородного сырья filed Critical Государственное унитарное предприятие Республики Татарстан Всероссийский научно-исследовательский институт углеводородного сырья
Priority to RU2004119342/04A priority Critical patent/RU2269566C1/ru
Application granted granted Critical
Publication of RU2269566C1 publication Critical patent/RU2269566C1/ru

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к способам первичной переработки нефти для очистки от сероводорода и меркаптанов и может быть использовано в газо-нефтедобывающей промышленности. Способ осуществляют путем двухступенчатой очистки нефти от сероводорода и отдувки углеводородсодержащим газом с последующим окислением оставшейся части сероводорода кислородом воздуха в присутствии водно-щелочных и аммиачных растворов фталоцианиновых катализаторов под давлением до 2,5 МПа с последующей сепарацией отработанного воздуха путем снижения давления до 0,15-0,30 МПа. Отработанный воздух, содержащий 40-75% углеводородов, под этим давлением подают на стадию отдувки и используют в качестве углеводородсодержащего продувочного газа. Способ позволяет снизить потери углеводородов с отработанным воздухом, а также снижается расход воздуха и реагентов на стадии окислительной очистки. 3 з.п. ф-лы, 1 табл., 1 ил.

Description

Изобретение относится к способам первичной обработки углеводородного сырья и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности.
На нефтепромыслах основное количество сероводорода удаляется при многоступенчатой сепарации с углеводородными газами. С целью повышения степени очистки от сероводорода и снижения содержания меркаптанов C1-C2 последние ступени сепарации проводят при 50-60°С [1]. Однако даже после горячей сепарации при 50-55°С в тяжелой высокосернистой нефти может оставаться до 0,06% (600 ppm) сероводорода. В легкой нефти после сепарации одновременно могут присутствовать до 0,04% (400 ppm) сероводорода и столько же низкомолекулярных меркаптанов C1 и С2. Присутствие высокотоксичных сероводорода и меркаптанов создает неприятный запах и экологические проблемы при добыче, хранении и транспортировке нефти. По ГОСТ Р 51858-2002 «Нефть. Общие технические условия» массовая доля сероводорода в нефти вида (сорта) 1 не должна превышать 0,002% (20 ppm), низкомолекулярных меркаптанов C1 и С2 - 40 ppm. В нефти вида 2 массовая доля сероводорода не должна превышать 50 ppm, меркаптанов C1 и C2 - 60 ppm. Присутствие более тяжелых меркаптанов С3+ не лимитируется.
Для удаления из тяжелой нефти сероводорода в некоторых случаях применяют метод продувки инертным или углеводородным газом. Используют пропан-бутановую фракцию или природный газ. Продувочный газ после этаноламинновой очистки от сероводорода используют повторно, многократно. В последние годы для очистки нефти и газоконденсатов предложены различные окислительные и реагентные способы. В окислительных способах сероводород и меркаптаны окисляют при 45-60°С кислородом воздуха, растворенного в сырье под давлением, в присутствии водно-щелочных растворов фталоцианиновых катализаторов до элементной серы и тиосульфата (S2O3--), а меркаптаны - до дисульфидов (RSSR) [2, 3].
По технической сущности и достигаемому результату наиболее близким к предлагаемому изобретению является описанный в патенте РФ 219804 способ подготовки сероводородсодержащей нефти [4]. Способ включает многоступенчатую сепарацию нефти и отдувку углеводородным газом в концевой ступени сепарации или в дополнительной десорбционной колонне при температуре 25-70°С и давлении 0,1-0,6 МПа. Отдувку углеводородным газом проводят до достижения 60-85%-ной степени удаления содержащегося сероводорода, после чего в нефть при перемешивании вводят азотсодержащий основной и/или щелочной реагент и окислитель, взятые из расчета не менее 0,2 моль основного или щелочного реагента и не менее 1,2 моль окислителя на 1 моль остаточного сероводорода, и полученную смесь выдерживают под давлением не менее 0,15 МПа при температуре 15-70°С в течение не менее 10 мин с последующей сепарацией снижением давления до близкого к атмосферному.
В качестве азотсодержащего основного реагента в нефть вводят водорастворимый органический амин и/или аммиак, а в качестве щелочного реагента - 20-40%-ный водный раствор гидроксида натрия или калия, предпочтительно взятый из расчета 0,2-2 моль на 1 моль остаточного сероводорода.
В качестве окислителя в нефть вводят сжатый воздух или 20-50%-ный раствор пероксида водорода, предпочтительно взятый из расчета 1,2-3 моль кислорода воздуха или пероксида водорода на 1моль остаточного сероводорода.
В нефть дополнительно вводят водный или водно-щелочной раствор соли или комплекса металла переменной валентности, предпочтительно взятый из расчета 0,1-1 г-ионов металла на 1 т нефти. В качестве соли металла переменной валентности используют сульфат, хлорид или нитрат двухвалентной меди, никеля, кобальта, марганца или трехвалентного железа или их смеси, а в качестве комплекса металла - комплекс двухвалентной меди, никеля или кобальта с пирофосфатом щелочного металла или с аммиаком.
В качестве углеводородного газа на отдувку подают предварительно очищенный от сероводорода газ сепарации нефти, предпочтительно взятый в количестве 3-9 м3 на 1 м3 нефти. Очистку отдувочного углеводородного газа от сероводорода проводят обработкой раствором этаноламинометанола.
Недостатками известного способа являются:
- использование для продувки нефти углеводородного газа, в качестве которого предложено использовать предварительно очищенный от сероводорода газ сепарации. Это означает, что необходимо иметь отдельную установку очистки продувочного газа сепарации от сероводорода;
- большой расход воздуха, подаваемого на процесс окисления, отсюда большое количество отработанного воздуха и высокие потери углеводородов с этим воздухом, а также необходимость обезвреживания этого нерегенерируемого отработанного воздуха. Ввиду большого расхода воздуха на окислительные процессы расходуется только 50-75% кислорода от общего его количества. При температуре окисления около 50°С отработанный воздух содержит 50-60% углеводородов, 30-40% азота и 2-5% кислорода. Такую смесь нельзя подавать в газопровод для сбора попутного газа, поэтому вынуждены ее сжигать в специальных печах или на факеле.
Предлагаемым изобретением решаются следующие задачи:
1. Снижаются потери углеводородов с отработанным воздухом.
2. Снижается расход воздуха и расход реагентов на стадии окислительной очистки.
3. Исключается операция очистки продувочного газа от сероводорода.
Для получения указанных результатов в предлагаемом способе отработанный воздух со стадии окислительной очистки используют для продувки неочищенной нефти на стадии предварительной очистки сырья от сероводорода. Подачу отработанного воздуха на продувку неочищенного сырья производят или принудительно с помощью газодувки, или сепарацию отработанного воздуха проводят при 0,15-0,30 МПа, и отработанный воздух под этим своим давлением поступает на отдувку.
Процесс окисления проводят, как в известном способе: в поток нефти или газоконденсата вводят при эффективном перемешивании водно-щелочной или водно-аммиачный раствор фталоцианинового катализатора и сжатый воздух под давлением до 0,6-2,5 МПа, достаточным для растворения воздуха. Воздух вводят из расчета 0,5-1,1 моль кислорода на 1 моль сероводорода.
Если сырье содержит много сероводорода и мало меркаптанов, то используют 0,01-0,05%-ные растворы катализатора в 20-30%-ном водном аммиаке. Окисление проводят при 20-60°С. Если сырье содержит мало сероводорода (менее 150 ppm) и много меркаптанов C12 (более 200 ppm), то используют 0,03-0,1%-ные растворы фталоцианинового катализатора в 2-20%-ных растворах NaOH и окисление проводят при 45-60°С.
Отличительными признаками предлагаемого изобретения являются:
- использование в качестве углеводородного продувочного газа отработанного воздуха, содержащего 40-75% углеводородов и 20-58% азота;
- использование отработанного воздуха (углеводородсодержащего газа) без предварительной очистки от сероводорода;
- использование кислорода воздуха в количестве 0,5-1,1 моля на 1 моль сероводорода;
- использование 2-20%-ных растворов NaOH и 20-30%-ных растворов аммиака.
В известном способе в качестве углеводородного продувочного газа используют предварительно очищенный от сероводорода газ сепарации нефти, следовательно, для этого необходимо иметь отдельную установку очистки продувочного газа от сероводорода. В известном способе на стадии окисления на 1 моль H2S берут не менее 1,2 моля (1,2-3,0 моля) кислорода воздуха, то есть расход воздуха в два раза выше. Соответственно унос углеводородов из нефти с отработанным воздухом в известном способе в два раза выше, чем в предлагаемом способе. В известном способе используют 20-40%-ные растворы NaOH.
Сероводород в присутствии фталоцианиновых катализаторов в слабощелочной среде, в том числе в аммиачных растворах, окисляется по реакции:
Figure 00000002
На 1 моль сероводорода требуется не менее 0,5 молей или 16 г кислорода. Теоретически минимальный расход воздуха составляет:
Figure 00000003
или
Figure 00000004
где 0,231 - массовая доля кислорода в воздухе, %;
1,293 - плотность воздуха, кг/м3.
Вводить в нефть кислорода более 1,1 моль или воздуха более 0,12 м3 на 1 моль сероводорода нет необходимости. С увеличением количества введенного в нефть воздуха увеличивается количество отработанного воздуха и количество легких углеводородов, уносимых с отработанным воздухом, то есть увеличиваются потери нефти. Ввод в нефть 0,1-0,2 нм3 воздуха на 1 моль H2S известно из пат. РФ 2109033.
В известном способе применяют сильные щелочи (NaOH) и берут щелочной агент в большом количестве (0,2-2,0 моля на 1 моль сероводорода нефти). 20-40%-ные растворы NaOH имеют плотность 1200-1450 кг/м3. В сильнощелочной среде (рН>12,5) сероводород окисляется до тиосульфата по реакции:
Figure 00000005
Поэтому кислорода в известном способе расходуется в два раза больше, соответственно расход воздуха требуется в 2-3 раза больше.
Необходимое давление 0,6-2,5 МПа установлено с учетом растворимости воздуха в нефти. Для растворения 0,5 нм3 воздуха в тяжелой нефти (d≥880 кг/м3) необходимо давление около 0,6 МПа, для растворения 1 нм3 - около 1,3 МПа. Для окисления 600 ppm или 17,647 моля сероводорода требуется 0,882-1,765 нм3 воздуха, а для растворения в нефти таких количеств воздуха необходимо давление 1,1-2,2 МПа. При низкой концентрации сероводорода в нефти и расходе воздуха менее 0,5 нм3 эффект от продувки нефти малым количеством воздуха незначителен. Поэтому за нижний предел давления взято 0,6 МПа, а за верхний предел взято давление 2,5 МПа. В повышении давления выше 2,5 МПа нет необходимости.
В предлагаемом изобретении используют 20-30%-ные растворы аммиака. Высокосернистые тяжелые нефти имеют плотность 880-900 кг/м3. Концентрированные 20-30% растворы аммиака имеют плотность 900-910 кг/м3. Чем ближе плотности нефти и водных растворов, тем легче создавать однородную эмульсию водно-щелочного раствора катализатора в нефти. Поэтому в предлагаемом способе достигается более эффективное перемешивание. Кроме того, 25-28% растворы аммиака выпускаются Российской промышленностью.
В предлагаемом способе используют 2-20%-ные растворы NaOH с плотностью 1020-1200 кг/м3, которые также эмульгируются в нефти легче, чем 25-40%-ные концентрированные растворы с плотностью 1220-1400 кг/м3.
Необходимый расход катализатора установлен на основании экспериментов. Расход ниже 0,01 г на 1 моль Н2S не обеспечивает необходимой скорости окисления, а в повышении количества дорогостоящего катализатора (цена 1 г 2-3 руб.) выше 0,05 г на 1 моль H2S нет необходимости. Использование 0,01-0,1%-ных растворов фталоцианиновых катализаторов в щелочных и аммиачных растворах известно из пат. РФ 2109033 и 2120464.
При 45-70°С сероводород полностью окисляется за 15-30 мин, и в повышении температуры выше 70°С нет необходимости. При 18-20°С для полноты реакции требуется время около 2 часов. Ограничение нижнего предела температуры 20°С связано с замедлением скорости реакции и повышением вязкости нефти, что затрудняет эмульгирование раствора катализатора в нефти.
Предлагаемый способ очистки нефти прост в осуществлении и может быть реализован непосредственно на нефтепромыслах. Предлагаемый способ поясняется прилагаемой технологической схемой (см. чертеж) и расчетами.
Описание технологической схемы
В емкости Т-1 готовят 0,02-0,04%-ные катализаторные растворы путем растворения натриевой или аммониевой соли сульфофталоцианинов кобальта в 5-10%-ном растворе NaOH или 25±5%-ном растворе аммиака. Использование таких растворов известно из пат. 2189340, 7 В 69 Д 90/30, 90/28; 2000 г.
Нефть, прошедшая предварительную подготовку (сепарацию, обессоливание, обезвоживание) и содержащая 300-600 ppm сероводорода, нагретая до температуры 20-70°С (предпочтительно 45-55°С), поступает в сепаратор С-1. Из С-1 насосом Н-1 нефть под давлением 0,6-2,5 МПа подают в реактор окисления колонного типа Р-1. На всас насоса Н-1 из емкости Т-1 дозировочным насосом НД подают расчетное количество (предпочтительно 0,5-5 кг/т) раствора фталоцианинового катализатора в 5-10%-ном растворе NaOH или в ~25%-ном водном растворе аммиака. В поток нефти после насоса Н-1 компрессором К-1 подают под давлением 0,6-2,5 МПа сжатый воздух, который растворяется в нефти. Далее смесь поступает в реактор Р-1 колонного типа. В реакторе происходит окисление сероводорода кислородом растворенного в нефти воздуха:
Figure 00000006
.
После реактора нефть поступает в сепаратор С-2, где давление снижается до 0,15-0,30 МПа, и основная часть отработанного воздуха сепарируется от нефти. Далее нефть поступает в сепаратор С-3, где давление снижается до атмосферного, и происходит сепарация оставшейся части отработанного воздуха. Отработанный воздух, отделившийся в С-2, под давлением 0,15-0,30 МПа поступает в трубопровод нефти перед сепаратором С-1. В трубопроводе и смесителе М-1 происходит смешение отработанного воздуха в потоке нефти. При этом легкие углеводороды и водяной пар, находящиеся в отработанном воздухе, растворяются и конденсируются в нефти. Смесительный элемент М-1 в простейшем случае представляет собой рулон сетки РВС, помещенный в трубопровод диаметром 500-600 мм и длиной до 2 м. После смешения нефтегазовая смесь поступает в сепаратор С-1, где отработанный воздух, содержащий 45-70% углеводородов и до 7% сероводорода, отделяется от нефти. Двухстадийная сепарация отработанного воздуха путем снижения давления в сепараторе С-2 до 0,15-0,3 МПа и в сепараторе С-3 до 0,1-0,12 МПа дает следующие положительные эффекты:
1. Уменьшаются потери легких углеводородов, уносимых с отработанным воздухом, так как основное количество отработанного воздуха выделяется (сепарируется) в сепараторе С-2 при снижении давления, например, с 2 до 0,30 МПа или с 1 до 0,15 МПа. При сепарации под давлением 0,15-0,30 МПа газовая фаза содержит паров углеводородов значительно меньше, чем в случае сепарации отработанного воздуха при атмосферном давлении.
2. При испарении отработанного воздуха из нефти при снижении давления до 0,15-0,30 МПа выделяется в основном азот, а кислород остается в растворе, так как растворимость кислорода в нефти почти в два раза выше, чем растворимость азота. Оставшийся в нефти в растворенном виде кислород продолжает процессы окисления H2S и в сепараторах. В результате достигается более полная очистка нефти от сероводорода.
В сепараторах С-2 и С-3 часть отработанного водного катализаторного раствора отделяется от очищенной нефти. По технологической схеме предусмотрена возможность возврата этого раствора или эмульсии его с нефтью с С-2 на смешение с неочищенной нефтью. Этот прием описан в пат. РФ №2120464. Возврат катализаторного раствора на повторное использование позволяет экономить расход катализаторного раствора.
Часть отработанного щелочного раствора в случае отстаивания его из нефти в сепараторе С-3 периодически выводится из технологического процесса. Отработанный щелочной раствор может быть утилизирован путем смешения с пластовыми водами с последующей закачкой их в пласт. Объем пластовых вод в 10-1000 раз больше, чем объем отработанных щелочных растворов, поэтому добавка их в пластовые воды не изменяет состава последних. Возможен также вариант совместного обезвреживания смеси отработанной щелочной воды с пластовыми водами.
Результаты компьютерного расчета фазового равновесия, выполненные по программе Соова Редлиха Квонга (SRK), состава газов приведены в таблице. Как видно из таблицы после отдувки отработанным воздухом при 55°С и сепарации содержание сероводорода снижается с 600 до 360 ppm. Для сравнения: при горячей сепарации газов при 55°С в том же сепараторе без отдувки отработанным воздухом содержание сероводорода снижается до 460 ppm. Кроме того, за счет возврата углеводородов, содержащихся в отработанном воздухе (2,07·0,5756=1,17 кг/т), снижается унос углеводородов из нефти.
Список использованной литературы
1. Соркин Я.Г. Особенности переработки сернистых нефтей и охрана окружающей среды. М.: Химия. 1975, с.93-108.
2. Пат. РФ №2120464 от 12.09.1997. «Способ дезодорирующей очистки нефти и газоконденсата от сероводорода и низкомолекулярных меркаптанов и установка для его осуществления» / Шакиров Ф.Г., Мазгаров А.М., Вильданов А.Ф. // Б.И. 1998. №29, с.352
3. Пат. РФ №2109033 от 05.05.1996. «Способ очистки нефти и газоконденсата от сероводорода» / Шакиров Ф.Г., Мазгаров А.М., Вильданов А.Ф. Хрущева И.К. // Б.И. 1998. №11.
4. Пат. РФ 2196804 от 25.07.2001. «Способ подготовки сероводородсодержащей нефти» / Фахриев А.М., Фахриев Р.А. // БИПМ, №12. 2003, с.439.

Результаты расчетов продувки отработанным воздухом при 55°С
Наименование стадий процесса Состав нефти, ppm Кол-во газа, кг/т Состав продувочного газа, %
H2S CH3SH Углеводороды H2S CH3SH N2 O2 NH3 Н2O
До продувки 600 10,0 2,07 57,56 0,34 0,001 36,5 1,7 0,7 3,2
После продувки 360 8,9 4,14 70,37 5,80 0,027 17,0 0,3 0,1 6,4
После окислительной обработки 15 2,0 - - - - - - -
Экономический эффект за счет снижения потерь на 0,68 кг/т составит 0,68·7000=4760 кг, или 4,76 т/сутки, или около 1360 т/год. Фактически эффект может быть в 2 раза ниже, так как в расчетах взято максимально возможное содержание углеводородов в отработанном воздухе 57,56%, когда компоненты отработанного воздуха рассматриваются как идеальные газы.

Claims (4)

1. Способ подготовки сероводородсодержащей нефти путем ступенчатой сепарации и отдувки углеводородсодержащим газом в концевой ступени сепарации с последующим окислением сероводорода и легких меркаптанов кислородом воздуха, растворенным в сырье под давлением до 2,5 МПа, в присутствии водно-щелочных или водно-аммиачных растворов фталоцианиновых катализаторов при температуре 20-70°С и далее сепарацией отработанного воздуха путем понижения давления, отличающийся тем, что в качестве углеводородсодержащего газа для отдувки используют отработанный воздух, содержащий 40-75% легких углеводородов.
2. Способ по п.1, отличающийся тем, что в нефть вводят воздух из расчета 0,5-1,1 моль кислорода на 1 моль сероводорода.
3. Способ по п.1, отличающийся тем, что растворение воздуха в нефти и окисление сероводорода и меркаптанов проводят под давлением 0,6-2,5 МПа, а сепарацию проводят при давлении 0,15-0,3 МПа.
4. Способ по п.1, отличающийся тем, что в качестве катализаторного раствора используют 0,01-0,1%-ные растворы натриевых или аммониевых солей сульфофталоцианинов кобальта в 2-20%-ных водных растворах едкого натра или в 20-30%-ных растворах аммиака.
RU2004119342/04A 2004-06-24 2004-06-24 Способ подготовки сероводородсодержащей нефти RU2269566C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004119342/04A RU2269566C1 (ru) 2004-06-24 2004-06-24 Способ подготовки сероводородсодержащей нефти

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004119342/04A RU2269566C1 (ru) 2004-06-24 2004-06-24 Способ подготовки сероводородсодержащей нефти

Publications (1)

Publication Number Publication Date
RU2269566C1 true RU2269566C1 (ru) 2006-02-10

Family

ID=36049963

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004119342/04A RU2269566C1 (ru) 2004-06-24 2004-06-24 Способ подготовки сероводородсодержащей нефти

Country Status (1)

Country Link
RU (1) RU2269566C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2529677C1 (ru) * 2013-07-18 2014-09-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ подготовки сероводородсодержащей нефти
RU2578499C1 (ru) * 2015-03-23 2016-03-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ подготовки сероводородсодержащей нефти и попутного нефтяного газа
RU2698891C1 (ru) * 2018-07-13 2019-08-30 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ подготовки сероводородсодержащей нефти с высокой концентрацией сероводорода

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2529677C1 (ru) * 2013-07-18 2014-09-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ подготовки сероводородсодержащей нефти
RU2578499C1 (ru) * 2015-03-23 2016-03-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ подготовки сероводородсодержащей нефти и попутного нефтяного газа
RU2698891C1 (ru) * 2018-07-13 2019-08-30 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ подготовки сероводородсодержащей нефти с высокой концентрацией сероводорода

Similar Documents

Publication Publication Date Title
CA2760780C (en) Method of scavenging hydrogen sulfide from hydrocarbon stream
CS383291A3 (en) Process of treating aqueous solutions containing hydrogen monosulfide,hydrogen cyanide and ammonia gas
US20200048567A9 (en) Chemical compositions and methods for remediating hydrogen sulfide and other contaminants in hydrocarbon based liquids and aqueous solutions without the formation of precipitates or scale
US20110070144A1 (en) Process for conversion of waste fluid streams from chemical processing plants to beneficiary agriculture products
CN103769407B (zh) 一种含硫碱渣的再生方法
UA126145C2 (uk) Спосіб одержання калійного продукту
RU2269567C1 (ru) Способ очистки нефти и газоконденсата от сероводорода и меркаптанов поглотительными растворами
JP6586529B2 (ja) 硫化水素スカベンジング添加剤組成物およびその使用方法
CA3070600C (en) Compositions and methods for remediating hydrogen sulfide and other contaminants in hydrocarbon based liquids and aqueous solutions without the formation of precipitates or scale
RU2269566C1 (ru) Способ подготовки сероводородсодержащей нефти
US20220204872A1 (en) Compositions and methods for remediating hydrogen sulfide in hydrocarbon based liquids
CN114989858A (zh) 一种油气田硫化物脱除剂、制备方法及其用途
RU2220756C2 (ru) Способ подготовки сероводородсодержащей нефти
US11512258B2 (en) Chemical compositions and methods of using same for remediating low to moderate amounts of sulfur-containing compositions and other contaminants in liquids
RU2283856C2 (ru) Способ подготовки сероводородсодержащей нефти
RU2196804C1 (ru) Способ подготовки сероводородсодержащей нефти
RU2109033C1 (ru) Способ очистки нефти и газоконденсата от сероводорода
JP3824457B2 (ja) 液状炭化水素中の水銀除去法
RU2124930C1 (ru) Способ подготовки природного газа
RU2262975C1 (ru) Способ подготовки сероводородсодержащей нефти
CN104609590B (zh) 一种炼油碱渣废液的处理方法
JP5011107B2 (ja) 炭化水素ストリーム中の元素状硫黄および全硫黄レベルを低減する方法
RU2120464C1 (ru) Способ дезодорирующей очистки нефти и газоконденсата от сероводорода и низкомолекулярных меркаптанов и установка для его осуществления
PT96370A (pt) Instalacao e processo para eliminacao de arsenio e outros metais em aguas residuais procedentes de exploracoes industriais atraves de acido sulfidrico a pressao
CN101063043B (zh) 一种轻馏分油的氧化脱臭方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20220126

PD4A Correction of name of patent owner
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20220202

Effective date: 20220202