RU2266916C1 - Способ концентрирования водной дисперсии фторполимера - Google Patents
Способ концентрирования водной дисперсии фторполимера Download PDFInfo
- Publication number
- RU2266916C1 RU2266916C1 RU2004111039/04A RU2004111039A RU2266916C1 RU 2266916 C1 RU2266916 C1 RU 2266916C1 RU 2004111039/04 A RU2004111039/04 A RU 2004111039/04A RU 2004111039 A RU2004111039 A RU 2004111039A RU 2266916 C1 RU2266916 C1 RU 2266916C1
- Authority
- RU
- Russia
- Prior art keywords
- dispersion
- neonol
- fluoropolymer
- concentrated phase
- mixture
- Prior art date
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Изобретение относится к способу концентрирования водной дисперсии фторполимера путем термического отстоя, включающему смешивание исходной дисперсии со стабилизатором - неионогенным ПАВ, выбранным из класса оксиэтилированных алкилфенолов, нагрев смеси, выдержку ее без перемешивания, при необходимости последующее охлаждение еотественньм путем, отделение концентрированной фазы от верхнего слоя, при необходимости введение дополнительного стабилизатора в концентрированную фазу и, при необходимости, разбавление концентрированной фазы до содержания фторполимера 50-55 мас.%. В качестве фторполимера используют политетрафторэтилен; политетрафторэтилен, модифицированный гексафторпропиленом, перфторпропилвиниловым эфиром или 2-перфторпропоксипропилвиниловым эфиром; поливинилиденфторид; поливинилиденфторид, модифицированный тетрафторэтиленом; сополимер тетрафторэтилена с перфторпропилвиниловым эфиром или с перфторэтилвиниловым эфиром; сополимер тетрафторэтилена с этиленом. В качестве неионогенного ПАВ используют неонол АФ-9-n, представляющий собой смесь полиэтиленгликолевых эфиров моноалкилфенолов формулы R-С6Н4О-(СН2СН2О)nН, где R - алкильный радикал изононил -C9H19, присоединенный к фенолу в пара-положении по отношению к гидроксильной группе, a n - усредненное число молей окиси этилена, присоединенное к одному молю алкилфенолов, равное 9-10. Указанный неонол вводят в количестве 7-10% от массы воды в исходной дисперсии. Нагрев смеси ведут до температуры 40-65°С, выдержку без перемешивания ведут до полного разделения фаз, охлаждение ведут до температуры не выше 40°С, а отделение концентрированной фазы от верхнего слоя ведут при указанной температуре. Изобретение позволяет сократить время разделения фаз. 5 з. п. ф-лы, 1 табл.
Description
Изобретение относится к способам концентрирования водных дисперсий фторсодержащих полимерных продуктов, а именно политетрафторэтилена; политетрафторэтилена, модифицированного гексафторпропиленом, перфторпропилвиниловым эфиром или 2-перфторпропоксипропилвиниловым эфиром; поливинилиденфторида; поливинилиденфторида, модифицированного тетрафторэтиленом, а также сополимеров: тетрафторэтилена с перфторпропилвиниловым эфиром, тетрафторэтилена с перфторэтилвиниловым эфиром и тетрафторэтилена с этиленом, с помощью средств, способствующих отстаиванию. Концентрированные дисперсии указанных продуктов могут быть использованы в химической промышленности, в машиностроении и в медицине для нанесения на поверхность металлов и других субстратов, таких как стекло, стеклоткань, графит, асбест. Они широко используются для изготовления защитных пленок, а также в качестве основы эмалей для покрытия проводов и металлических поверхностей, антиадгезионных и антипригарных композиций.
Известно, что дисперсии политетрафторэтилена, получаемые в процессе полимеризации, после добавления соответствующих стабилизаторов - неионогенных поверхностно-активных веществ (ПАВ), например оксиэтилированных алкилфенолов марки ОП-7 или ОП-10, концентрируют до содержания полимера 50-60 мас.% любыми известными методами: центрифугированием, электродекантацией, упариванием и фазовым разделением (Паншин Ю.А., Малкевич С.Г., Дунаевская Ц.С. Фторопласты, Л., «Химия», 1978, с.35). При этом предпочтение отдается методу электродекантации, основанному на перемещении отрицательно заряженных частиц полимера к аноду под действием электрического тока, с образованием концентрата и отделением водной фазы. Для придания концентрированной дисперсии устойчивости к механическим воздействиям в качестве стабилизатора в нее добавляют неионогенное ПАВ - ОП-7 (Явзина Н.Е. и др. Об электрофоретическом концентрировании водных суспензий политетрафторэтилена// ЖПХ, 1969, №12, с.2762-2766).
Недостатком указанного способа является низкая скорость концентрирования.
Известен способ концентрирования водной дисперсии политетрафторэтилена путем «сливкоотделения» (пат. США №4145502, кл. 526-255, 1979), в соответствии с которым в исходную дисперсию с содержанием политетрафторэтилена 15 мас.% добавляют неионогенное ПАВ «Тритон Х-100», представляющее собой эфир полиэтиленгликоль-п-октилфенола формулы R-C6H4-(СН2СН2О)nОН, где R - трет-октил, n=9-10, в количестве менее 2% от массы воды в дисперсии и водный раствор аммиака до рН 5, а также для дополнительной стабилизации вводят альгинат аммония в количестве 0,1% от массы воды в дисперсии. Латекс выдерживают 16 ч при температуре 22°С и отделяют верхний водный слой. Получают дисперсию политетрафторэтилена с концентрацией 75 мас.%, которую используют, в основном, для получения покрытий. Недостатки описанного способа: низкая скорость концентрирования, высокая концентрация получаемой дисперсии, которая не всегда удобна для последующего использования; неустойчивость при хранении таких дисперсий; возможность их структурирования и способность водных растворов альгинатов гидролизоваться при хранении.
Известен способ термического концентрирования водных дисперсий фторполимеров (пат. РФ №2092500, МПК С 08 J 3/03, С 08 F 14/26, 1997). Указаны фторполимеры: политетрафторэтилен, сополимер тетрафторэтилена с перфторпропилвиниловым эфиром и сополимер тетрафторэтилена с гексафторпропиленом. К исходной дисперсии добавляют гидроксид аммония до установления рН 6 и более, затем вводят полиакриловый концентрирующий агент, в качестве которого используют полиакриловую кислоту или ее соль со средней молекулярной массой от 50000 до 500000, до концентрации его в полученной смеси 0,01-0,50 мас.% в расчете на воду, содержащуюся в смеси. Полученную смесь нагревают и выдерживают при температуре 40-65°С в течение 3 ч до завершения процесса концентрирования и разделения ее на верхнюю и нижнюю фазы, проводят охлаждение и разделяют эти фазы. Для снижения чувствительности к силам сдвига перед концентрированием в дисперсию вводят стабилизаторы дисперсии - неионогенные ПАВ, выбранные из класса этоксилированных алкилфенолов, или ионогенные ПАВ, выбранные из класса алкилсульфатов или полиспиртов в количестве 0,05-0,12 мас.% (в расчете на массу полимера). Для дальнейшего повышения стабильности и с целью улучшения смачиваемости субстрата, такого как стеклоткань, в концентрированную дисперсию может быть добавлено 1-12 мас.% неионогенного ПАВ. Этот способ, позволяющий снизить количество неионогенного ПАВ в маточнике, имеет ряд недостатков. Используемые в качестве концентрирующего агента специальные синтетические акриловые полимеры не выпускаются промышленностью, и авторы известного способа предлагают предварительно синтезировать их при температуре 80°С в течение нескольких часов. В условиях промышленного производства это будет дополнительной стадией, требующей наличия специального оборудования и затрат теплоносителя. Кроме того, при синтезе акриловых эмульсий свойства конечного продукта нестабильны, поэтому необходим расчет дозировки для каждой конкретной партии полимера.
Наиболее близким по совокупности существенных признаков к предлагаемому является известный способ концентрирования водной дисперсии фторсодержащей смолы, в частности политетрафторэтилена, путем термического отстоя, предложенный для получения лакокрасочных композиций для металлов (пат. Японии №57-31589, кл. С 09 D 3/78, В 05 D 7/14, 1982, реф. в РЖХим, 1984, 9Т2116П). Концентрированные дисперсии содержат 3-10% неионогенного ПАВ с температурой помутнения 25-55°С, выбранного из класса оксиэтилированных алкилфенолов общей формулы:
где R - октил или нонил, n=4-20,
где R1 - лаурил, олеил, цетил, n=5-20
где R2 - лаурил, олеил, стеарил, n=5-20.
Например, в 32%-ную дисперсию политетрафторэтилена добавляют 20%-ный водный раствор неионогенного ПАВ формулы 1 с температурой помутнения 65°С в таком количестве, чтобы массовое отношение ПАВ к полимеру составило 0,1. Смесь нагревают до температуры 75°С и выдерживают при ней без перемешивания в течение 3 ч. После охлаждения естественным путем удаляют верхнюю фракцию, при этом получают концентрированную 65%-ную водную дисперсию полимера. В эту дисперсию дополнительно вводят 0,03% ПАВ формулы 1, где R=C8H17, n=4, 5, и 0,002% ПАВ формулы 1, где R=C6H17, а n=10. Устанавливают температуру концентрата 39°С и разбавляют его водой до концентрации 50-55 мас.%. Дисперсию наносят наливом на алюминиевую пластину, протравленную 10%-ным раствором соляной кислоты, и сушат по 10 мин при 85°С и при 380°С. Свойства пленок и покрытий в реферате не указаны. Известный способ позволяет снизить в сливаемом маточнике долю неионогенного ПАВ, что, с точки зрения охраны окружающей среды, упрощает утилизацию или очистку маточника.
Однако в известном способе имеется ряд недостатков, в частности высокая температура концентрирования (75°С), которую без перемешивания сложно поддерживать постоянной, особенно в промышленных условиях. Кроме того, требуется довольно длительное время для разделения фаз и охлаждения, так как охлаждение ведется без перемешивания естественным путем, что значительно снижает общую производительность способа. Наличие добавочной стадии, включающей нагрев концентрата до 39°С и его охлаждение после введения добавки неионогенных ПАВ для стабилизации, требует дополнительных энергозатрат и специального оборудования, что приводит к повышению стоимости конечного продукта.
Технический результат, достижение которого обеспечивает настоящее изобретение, заключается в сокращении времени разделения фаз.
Указанный технический результат достигается тем, что в способе концентрирования водной дисперсии фторполимера путем термического отстоя, включающем смешивание исходной дисперсии со стабилизатором - неионогенным ПАВ, выбранным из класса оксиэтилированных алкилфенолов, нагрев смеси, выдержку ее без перемешивания, при необходимости, последующее охлаждение естественным путем, отделение концентрированной фазы от верхнего слоя, при необходимости введение дополнительного стабилизатора в концентрированную фазу и, при необходимости, разбавление концентрированной фазы до содержания фторполимера 50-55 мас.%, согласно изобретению, в качестве фторполимера используют политетрафторэтилен; политетрафторэтилен, модифицированный гексафторпропиленом, перфторпропилвиниловым эфиром или 2-перфторпропоксипропилвиниловым эфиром; поливинилиденфторид; поливинилиденфторид, модифицированный тетрафторэтиленом; сополимер тетрафторэтилена с перфторпропилвиниловым эфиром или с перфторэтилвиниловым эфиром; сополимер тетрафторэтилена с этиленом; в качестве неионогенного ПАВ используют неонол АФ-9-n, представляющий собой смесь полиэтиленгликолевых эфиров моноалкилфенолов формулы R-C6Н4O-(СН2СН2СО)nН, где R - алкильный радикал изононил -C9H19, присоединенный к фенолу в пара-положении по отношению к гидроксильной группе, a n - усредненное число молей окиси этилена, присоединенное к одному молю алкилфенолов, равное 9-10, указанный неонол вводят в количестве 7-10% от массы воды в исходной дисперсии, нагрев смеси ведут до температуры 40-65°С, выдержку без перемешивания ведут до полного разделения фаз, охлаждение ведут до температуры не выше 40°С, а отделение концентрированной фазы от верхнего слоя ведут при указанной температуре.
Разделение фаз предпочтительнее проводить при рН 2,5-3,5.
В смесь исходной дисперсии с неонолом перед осуществлением нагрева и выдержки можно дополнительно вводить водный раствор аммиака до рН 4,0-10,5.
Дополнительный стабилизатор неонол АФ-9-n вводят в концентрированную фазу после ее отделения от верхнего слоя до концентрации 6-12 мас.% по отношению к фторполимеру.
Для концентрирования предпочтительнее использовать исходную дисперсию с содержанием фторполимера 10-35 мас.%.
Для разбавления концентрированной фазы можно использовать исходную дисперсию.
Нижеприведенные примеры иллюстрируют сущность изобретения.
Пример 1. В стеклянную колонку вместимостью 2 л, снабженную мешалкой, термостатирующей рубашкой, термометром, воронкой для подачи компонентов и нижним краном для слива жидкости, помещают 1500 г исходной дисперсии политетрафторэтилена (ПТФЭ), содержащей 19 мас.% полимера, добавляют 94,5 г неонола марки АФ-9-9 и мягко перемешивают в течение 30 мин. При перемешивании смесь нагревают до температуры 55°С - начала разделения фаз, отключают мешалку и выдерживают систему при этой температуре до полного разделения фаз, рН 3,2. Далее систему охлаждают естественным путем до температуры 40°С и сливают нижний, концентрированный слой, содержащий 55,7 мас.% полимера. Сконцентрированную дисперсию разбавляют исходной дисперсией до концентрации полимера 50-52 мас.%. Из полученной концентрированной дисперсии наливом приготавливают покрытия и пленки, сушат 10 мин при температуре 120°С, оплавляют при температуре 380°С и определяют их свойства по ТУ.
Условия концентрирования и свойства дисперсии, полученной по примеру 1, а также по всем последующим примерам, приведены в таблице. Там же приведены свойства покрытий и пленок, определенные по соответствующим ТУ:
- для дисперсий, содержащих политетрафторэтилен и политетрафторэтилен, модифицированный перфторпропилвиниловым эфиром или 2-перфтор-пропокси-пропилвиниловым эфиром, - по ТУ 6-05-1246-81;
- для дисперсий, содержащих поливинилиденфторид и поливинилиденфторид, модифицированный тетрафторэтиленом, - по ТУ 6-05-041-645-77,
- для дисперсий сополимеров тетрафторэтилена с перфторпропилвиниловым эфиром, тетрафторэтилена с перфторэтилвиниловым эфиром - по ТУ 6-05-1246-81;
- для сополимера тетрафторэтилена с этиленом - по ТУ 6-05-1246-76.
Условия концентрирования и свойства концентрированных дисперсий фторполимеров, свойства полученных из них покрытий и пленок | |||||||||||
№примера | Используемый фторполимер | Неонол, добавленный в исходную дисперсию |
рН дисперсии | Температура разделения фаз, °С | Время разделения фаз, ч |
Общее время концентрирования, ч | Концентрация дисперсии, мас.% |
Свойства покрытий и пленок | |||
Название | Содержание в исходной дисперсии, мас.% | Марка | Количество по отношению к воде, мас.% | Разрушающее напряжение при разрыве, Н/мм2 | Удлинение при разрыве, % |
||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
1 | ПТФЭ | 19 | АФ-9-9 | 8 | 3,2 | 55 | 1,0 | 4,0 | 57,7 | 28.5 | 300 |
2 | То же | То же | АФ-9-10 | То же | 3,3 | 65 | 1.5 | 4,5 | 57,2 | 31,5 | 310 |
3 | -«- | -«- | АФ-9-9 | -«- | 2,5 | 55 | То же | 4,5 | 60,0 | 25,5 | То же |
4 | -«- | 10 | То же | 6 | 3,5 | 40 | 2,0 | 2,5 | 60,1 | 25,9 | 300 |
5 | -«- | 35 | -«- | 10 | 3,3 | 50 | 1,5 | 3/5 | 53,1 | 28,5 | То же |
6 | -«- | 19 | -«- | 8 | 4,0 | 45 | То же | То же | 57,0 | 28,0 | -«- |
7 | -«- | То же | -«- | То же | 5,0 | То же | -«- | 3,5 | 60,0 | 26,9 | -«- |
8 | -«- | -«- | -«- | -«- | 9,5 | -«- | 1,0 | 2,0 | 55,2 | 31,4 | 310 |
9 | -«- | -«- | АФ-9-10 | -«- | 5,0 | 67 | То же | 5,0 | 62,0 | 24,6 | 300 |
10 | -«- | -«- | То же | -«- | 10,5 | То же | -«- | 4,5 | 52,0 | 32,0 | 310 |
См. продолжение таблицы |
Продолжение таблицы | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
11А | ПТФЭ | 19 | АФ-9-9 | 8 | 3,2 | 55 | 1,5 | 4,5 | 60,6 | 24,8 | 300 |
11Б | То же | То же | То же | То же | То же | То же | -«- | То же | То же | 32,6 | 320 |
11В | -«- | -«- | -«- | -«- | -«- | -«- | -«- | -«- | 60,8 | 31,9 | То же |
12 | ПТФЭ мод (ГФП) | -«- | -«- | -«- | -«- | -«- | -«- | -«- | 61,4 | 25,5 | 330 |
13 | ПТФЭ мод (ПФПВЭ) | -«- | -«- | -«- | 3,3 | -«- | 1,0 | 4,0 | 55,7 | 27,5 | То же |
14 | ПТФЭ мод (ПФППВЭ) | -«- | -«- | -«- | 3,2 | -«- | То же | То же | 56,4 | 26,5 | -«- |
15 | ПВДФ | -«- | -«- | -«- | 3,5 | -«- | 1,5 | 4,5 | 50,5 | 24,5 | -«- |
16 | ПВДФ мод (ТФЭ) | -«- | -«- | -«- | 3,2 | -«- | То же | То же | 52,4 | 25,5 | -«- |
17 | ТФЭ с ПФПВЭ | -«- | -«- | -«- | То же | -«- | 1,0 | 4,0 | 62,5 | 27,5 | -«- |
18 | ТФЭ с ПФЭВЭ | -«- | -«- | -«- | -«- | -«- | То же | То же | 58,0 | 26,5 | -«- |
19 | ТФЭ с Э | -«- | -«- | -«- | -«- | -«- | 1,5 | 4,5 | 65,4 | 25,5 | -«- |
20 | ТФЭ с Э мод(ГФП) | -«- | -«- | -«- | -«- | -«- | То же | То же | 62,5 | 26,9 | -«- |
21к | ПТФЭ | -«- | -«- | 5 | -«- | -«- | 5 | 8 | 38,2* | - | - |
22к | То же | -«- | -«- | 11 | -«- | 55 | То же | То же | 42,0* | - | - |
23к | -«- | -«- | АФ-9-8 | 8 | 3,2 | 30 | 1 | 4,0 | 59, 0* | 14,7 | 170 |
См. продолжение таблицы |
Продолжение таблицы | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | 13 |
24к | -«- | -«- | То же | То же | 9,9 | То же | То же | 4,5 | 56,0** | 20,0 | 210 |
25к | ПТФЭ | 19 | АФ-9-12 | 8 | 3,2 | 65 | 6 | 11,5 | 32,8* | - | - |
26к | То же | То же | То же | То же | 9,9 | То же | То же | То же | 38,5* | - | - |
27к | -«- | -«- | АФ-9-8 | 5 | 3,2 | 75 | 3 | 8 | 59.0** | - | - |
28к | -«- | -«- | АФ-9-9 | То же | То же | То же | То же | То же | 52,2 | 20,5 | 200 |
29к | -«- | -«- | АФ-9-10 | -«- | -«- | -«- | -«- | -«- | 38.0* | - | - |
30к | -«- | -«- | АФ-9-12 | -«- | -«- | -«- | -«- | -«- | 30,5* | - | - |
* - Концентрация ниже нормы, покрытия не делают. ** - Дисперсия структурируется, образуя гель. Покрытие неровное с пузырями и подтеками, при выпечке растрескивается. |
Пример 2. Процесс проводят аналогично описанному в примере 1, но в качестве неионогенного ПАВ используют неонол АФ-9-10, отличающийся от неонола АФ-9-9 более длинной оксиэтильной цепью. Температура нагрева смеси составляет 65°С.
Пример 3. Процесс проводят аналогично описанному в примере 1, но берут исходную дисперсию с рН 2,5.
Пример 4. Процесс проводят аналогично описанному в примере 1, но берут исходную дисперсию, содержащую 10 мас.% фторполимера. Нагрев ведут до температуры 40°С, рН 3,5.
Пример 5. Процесс проводят аналогично описанному в примере 1, но берут исходную дисперсию, содержащую 35 мас.% полимера. Нагрев ведут до температуры 50°С, рН 3,3.
Примеры 6-8. Процесс проводят аналогично описанному в примере 1, но в смесь исходной дисперсии с неонолом добавляют водный раствор аммиака, количество которого варьируют до установления рН в интервале от 4,0 до 9,5. Нагрев ведут до температуры 45°С.
Примеры 9-10. Процесс концентрирования проводят аналогично описанному в примере 2, но в смесь исходной дисперсии с неонолом добавляют водный раствор аммиака, количество которого варьируют до установления рН 5,0 и 10,5 соответственно. Нагрев ведут до температуры 65°С.
Пример 11А. Процесс проводят аналогично примеру 1. После полного разделения фаз сливают нижний концентрированный слой, содержащий 55,7 мас.% ПТФЭ, с концентрацией неонола 5,1 мас.% по отношению к фторполимеру. Полученную дисперсию делят на три части. Из первой части дисперсии приготавливают покрытие и определяют его свойства.
Пример 11Б. Берут вторую часть дисперсии, полученной в примере 11А, и добавляют в нее дополнительно неонол АФ-9-9 до концентрации 6,0 мас.% по отношению к фторполимеру. После перемешивания и выстаивания дисперсии из нее готовят покрытие и определяют его свойства.
Пример 11В. Берут третью часть дисперсии, полученной в примере 11А, и добавляют в нее дополнительно неонол АФ-9-9 до концентрации 12,0 мас.% по отношению к фторполимеру. После перемешивания и выстаивания дисперсии из нее готовят покрытие и определяют его свойства.
Пример 12. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию ПТФЭ, содержащего 3,5 мол.% гексафторпропилена (ГФП).
Пример 13. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию ПТФЭ, содержащего 0,9 мол.% перфторпропилвинилового эфира (ПФПВЭ).
Пример 14. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию ПТФЭ, содержащего 0,7 мол.% 2-перфторпропоксипропилвинилового эфира (ПФППВЭ).
Пример 15. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию поливинилиденфторида (ПВДФ).
Пример 16. Процесс концентрирования проводят аналогично описанному в примере 15, но для концентрирования используют дисперсию ПВДФ, содержащего 3,0 мол.% ТФЭ.
Пример 17. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию сополимера ТФЭ с 3,0 мол.% ПФПВЭ. Покрытия из полученной концентрированной дисперсии приготавливают наливом на алюминиевую пластину, протравленную 10%-ным раствором соляной кислоты, сушат 10 мин при 120°С, спекают при 290°С, затем оплавляют при 380°С. Определяют свойства покрытий.
Пример 18. Процесс концентрирования проводят аналогично описанному в примере 17, но для концентрирования используют дисперсию сополимера ТФЭ с 3,5 мол.% перфторэтилвинилового эфира (ПФЭВЭ).
Пример 19. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию сополимера ТФЭ с этиленом (Э). Покрытия из полученной концентрированной дисперсии приготавливают наливом на алюминиевую пластину, протравленную 10%-ным раствором соляной кислоты, сушат 10 мин при 120°С и оплавляют при 280°С.
Пример 20. Процесс концентрирования проводят аналогично описанному в примере 19, но для концентрирования используют дисперсию сополимера ТФЭ с Э, содержащего 1,0 мол.% ГФП.
Примеры 21-22 (контрольные). Процесс концентрирования проводят аналогично описанному в примере 1, но варьируют количество неонола АФ-9-9 (за пределами заявляемого по отношению к воде).
Пример 23 (контрольный). Процесс концентрирования проводят аналогично описанному в примере 1, но используют неонол марки АФ-9-8, отличающийся длиной оксиэтильной цепи, которая короче, чем в заявляемом способе. Нагрев ведут до температуры 30°С.
Пример 24 (контрольный). Процесс концентрирования проводят аналогично описанному в примере 23, но в смесь исходной дисперсии с неонолом добавляют водный раствор аммиака до установления рН 9,9.
Пример 25 (контрольный). Процесс концентрирования проводят аналогично описанному в примере 1, но используют неонол марки АФ-9-12, отличающийся более длинной оксиэтильной цепью, чем в заявляемом способе. Нагрев ведут до температуры 65°С.
Пример 26 (контрольный). Процесс концентрирования проводят аналогично описанному в примере 25, но в смесь исходной дисперсии с неонолом добавляют водный раствор аммиака до установления рН 9,9.
Пример 27 (контрольный, в условиях, приближенных к прототипу). Процесс концентрирования проводят аналогично описанному в примере 1, но добавляют 59 г неонола марки АФ-9-8. При перемешивании смесь нагревают до температуры 75°С. Выдерживают систему при этой температуре после отключения мешалки в течение 3 ч. Охлаждение системы естественным путем ведут до температуры 30-35°С.
Примеры 28-30 (контрольные, в условиях, приближенных к прототипу). Процесс концентрирования проводят аналогично описанному в примере 27, но используют другие марки неонолов.
Из представленных данных видно, что предлагаемый способ обеспечивает получение дисперсий фторполимеров с требуемой концентрацией, при этом позволяет, в отличие от прототипа, сократить время разделения фаз. Снижение температуры, при которой система разделяется на фазы (40-65°С), позволяет сократить время охлаждения дисперсии, что дает возможность повысить производительность процесса.
Добавление водного раствора аммиака до предлагаемого интервала рН позволяет предотвратить бактериологическое скисание дисперсии при хранении и транспортировке, что улучшает товарный вид продукта.
Из опытов (примеры 1-20) видно, что из дисперсий, сконцентрированных по предлагаемому способу, получаются покрытия, свойства которых соответствуют предъявляемым к ним требованиям.
Контрольные опыты (примеры 21-22) показывают, что при изменении количества вводимого неонола (за пределами заявляемого) получаются дисперсии с низкой концентрацией, непригодные для приготовления покрытий, что ограничивает область использования продукта.
Контрольные опыты (примеры 23-24) показывают, что при использовании неонола марки АФ-9-8 с более короткой оксиэтильной цепью, чем в заявляемом способе, получаются дисперсии с хорошей концентрацией, однако они структурируются с образованием геля, непригодного для получения покрытий, т.к. последние получаются неровными, с многочисленными пузырями и подтеками. Кроме того, они растрескиваются при выпечке.
Контрольные опыты (примеры 25-26) показывают, что при использовании неонола марки АФ-9-12 с более длинной оксиэтильной цепью, чем в заявляемом способе, для разделения фаз тратится большее время, при этом получается дисперсия с концентрацией ниже нормы, которая не образует качественного покрытия.
Контрольный опыт (пример 28) показывает, что при использовании неонола АФ-9-9 в условиях, приближенных к прототипу, получается достаточно концентрированная дисперсия, но покрытие из нее имеет низкие физико-механические свойства, в отличие от предлагаемого способа, кроме того, для разделения фаз тратится большее время. Использование в прототипе более высокой температуры (75°С), в отличие от предлагаемого способа, приводит к существенному повышению времени охлаждения дисперсии и тем самым к снижению общей производительности процесса. При использовании неонола марки АФ-9-8 (пример 27) получается дисперсия с хорошей концентрацией, но структурирующаяся с образованием геля, непригодного для получения покрытий, которые получаются неровными, с пузырями и подтеками, кроме этого, они растрескиваются при выпечке. А при использовании неонолов марок АФ-9-10 и АФ-9-12 (примеры 29 и 30) получаются дисперсии с низкой концентрацией, непригодные для приготовления покрытий, что ограничивает области использования продукта.
Дополнительным преимуществом предлагаемых заявляемым способом неонолов является то, что они жидкие, имеют низкую вязкость и не требуют разогрева при использовании, что значительно упрощает способ их подачи в концентратор. Они нетоксичны, не имеют цвета и запаха, биоразлагаемы на 96%.
Claims (6)
1. Способ концентрирования водной дисперсии фторполимера путем термического отстоя, включающий смешивание исходной дисперсии со стабилизатором - неионогенным ПАВ, выбранным из класса оксиэтилированных алкилфенолов, нагрев смеси, выдержку ее без перемешивания, при необходимости последующее охлаждение естественньм путем, отделение концентрированной фазы от верхнего слоя, при необходимости введение дополнительного стабилизатора в концентрированную фазу и при необходимости разбавление концентрированной фазы до содержания фторполимера 50-55 мас.%, отличающийся тем, что в качестве фторполимера используют политетрафторэтилен; политетрафторэтилен, модифицированный гексафторпропиленом, перфторпропилвиниловым эфиром или 2-перфторпропоксипропилвиниловым эфиром; поливинилиденфторид; поливинилиденфторид, модифицированный тетрафторэтиленом; сополимер тетрафторэтилена с перфторпропилвиниловым эфиром или с перфторэтилвиниловым эфиром; сополимер тетрафторэтилена с этиленом; в качестве неионогенного ПАВ используют неонол АФ-9-n, представляющий собой смесь полиэтиленгликолевых эфиров моноалкилфенолов формулы R-С6Н4О-(СН2СН2О)nН, где R - алкильный радикал изононил -C9H19, присоединенный к фенолу в пара-положении по отношению к гидроксильной группе, a n - усредненное число молей окиси этилена, присоединенное к одному молю алкилфенолов, равное 9-10, указанный неонол вводят в количестве 7-10% от массы воды в исходной дисперсии, нагрев смеси ведут до температуры 40-65°С, выдержку без перемешивания ведут до полного разделения фаз, охлаждение ведут до температуры не выше 40°С, а отделение концентрированной фазы от верхнего слоя ведут при указанной температуре.
2. Способ по п.1, отличающийся тем, что разделение фаз ведут при рН 2,5-3,5.
3. Способ по п.1, отличающийся тем, что в смесь исходной дисперсии с неонолом перед осуществлением нагрева и выдержки дополнительно вводят водный раствор аммиака до рН 4,0-10,5.
4. Способ п.1, отличающийся тем, что дополнительный стабилизатор неонол АФ-9-n вводят в концентрированную фазу после ее отделения от верхнего слоя до концентрации 6-12 мас.% по отношению к фторполимеру.
5. Способ п.1, отличающийся тем, что для концентрирования используют исходную дисперсию с содержанием фторполимера 10-35 мас.%.
6. Способ по п.1, отличающийся тем, что для разбавления концентрированной фазы используют исходную дисперсию.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004111039/04A RU2266916C1 (ru) | 2004-04-12 | 2004-04-12 | Способ концентрирования водной дисперсии фторполимера |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004111039/04A RU2266916C1 (ru) | 2004-04-12 | 2004-04-12 | Способ концентрирования водной дисперсии фторполимера |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2004111039A RU2004111039A (ru) | 2005-10-10 |
RU2266916C1 true RU2266916C1 (ru) | 2005-12-27 |
Family
ID=35850841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2004111039/04A RU2266916C1 (ru) | 2004-04-12 | 2004-04-12 | Способ концентрирования водной дисперсии фторполимера |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2266916C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018102187A1 (en) * | 2016-12-01 | 2018-06-07 | 3M Innovative Properties Company | Ethylene-tetrafluoroethylene copolymer dispersions and coated articles thereof |
RU2693724C1 (ru) * | 2018-11-16 | 2019-07-04 | Общество с ограниченной ответственностью "ПРОММЕТЭКС" | Добавка для лакокрасочных материалов (варианты) |
-
2004
- 2004-04-12 RU RU2004111039/04A patent/RU2266916C1/ru active
Non-Patent Citations (1)
Title |
---|
РЖХ, том 19, №9, ч.3, с.21, реферат № 9 Т2116 П, Йосимура Тацудзиро и др., Лакокрасочные композиции на основе фторсодержащих смол, * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018102187A1 (en) * | 2016-12-01 | 2018-06-07 | 3M Innovative Properties Company | Ethylene-tetrafluoroethylene copolymer dispersions and coated articles thereof |
RU2693724C1 (ru) * | 2018-11-16 | 2019-07-04 | Общество с ограниченной ответственностью "ПРОММЕТЭКС" | Добавка для лакокрасочных материалов (варианты) |
Also Published As
Publication number | Publication date |
---|---|
RU2004111039A (ru) | 2005-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101223231B (zh) | 聚四氟乙烯水性分散液及其制造方法 | |
EP3539995B1 (en) | Fluoropolymer disperson obtained with an aqueous polymerisation of fluoromonomer using hydrocarbon surfactant | |
CN1803892B (zh) | 制备含氟聚合物分散体的方法 | |
US7514484B2 (en) | Aqueous dispersion of polytetrafluoroethylene and process for its production | |
CN101291987B (zh) | 聚四氟乙烯水性分散液及其制品 | |
US7534825B2 (en) | TFE copolymers | |
EP1472307B1 (en) | Concentrated fluoropolymer dispersions | |
CN100558753C (zh) | 聚四氟乙烯水性乳化液、由其制得的聚四氟乙烯细粉和多孔体 | |
CN1827655B (zh) | 制备含氟聚合物分散体的方法 | |
US20080033063A1 (en) | Fluororesin aqueous dispersion | |
EP0327321B1 (en) | High polymer content silicone emulsions | |
US20060183842A1 (en) | Fluoropolymer dispersions with reduced fluorosurfactant content and high shear stability | |
US6013712A (en) | Perfluoropolymer dispersions | |
RU2266916C1 (ru) | Способ концентрирования водной дисперсии фторполимера | |
JPS61271353A (ja) | シリコ−ンコ−キング材 | |
WO2007142881A2 (en) | Staged addition of non-fluorinated anionic surfactant to reduced fluorosurfactant fluoropolymer dispersion | |
RU2260603C1 (ru) | Способ концентрирования водной дисперсии сополимера тетрафторэтилена с гексафторпропиленом | |
US3886108A (en) | Preparation of fluoroelastomer latex with mixture of mono- and di-esters of phosphoric acid | |
JP4788139B2 (ja) | ポリテトラフルオロエチレン水性分散液 | |
JP2002220403A (ja) | フッ化ビニリデン重合体及びその製造方法 | |
US4225482A (en) | Concentrated aqueous latex of ethylene/C2 -C3 -perfluorocarbon copolymer or terpolymer | |
RU2235733C1 (ru) | Способ концентрирования водной дисперсии сополимера тетрафторэтилена с гексафторпропиленом | |
EP3177684B1 (en) | Powder composition | |
TW202348750A (zh) | 塗料組成物、皮膜、積層皮膜、及塗裝物品 | |
SU1008221A1 (ru) | Состав дл снижени пенообразовани |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner |