RU2254319C1 - Способ очистки бензола - Google Patents

Способ очистки бензола Download PDF

Info

Publication number
RU2254319C1
RU2254319C1 RU2004100950/04A RU2004100950A RU2254319C1 RU 2254319 C1 RU2254319 C1 RU 2254319C1 RU 2004100950/04 A RU2004100950/04 A RU 2004100950/04A RU 2004100950 A RU2004100950 A RU 2004100950A RU 2254319 C1 RU2254319 C1 RU 2254319C1
Authority
RU
Russia
Prior art keywords
benzene
sulfuric acid
aqueous
thiophene
reactor
Prior art date
Application number
RU2004100950/04A
Other languages
English (en)
Inventor
Ф.А. Казыханов (RU)
Ф.А. Казыханов
Ю.А. Крекнин (RU)
Ю.А. Крекнин
Н.Б. Мисевич (RU)
Н.Б. Мисевич
А.В. Ерхов (RU)
А.В. Ерхов
В.А. Ли (RU)
В.А. Ли
В.М. Никитин (RU)
В.М. Никитин
И.А. Магсумов (RU)
И.А. Магсумов
С.Н. Седова (RU)
С.Н. Седова
Original Assignee
Открытое акционерное общество "Уралоргсинтез"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Уралоргсинтез" filed Critical Открытое акционерное общество "Уралоргсинтез"
Priority to RU2004100950/04A priority Critical patent/RU2254319C1/ru
Application granted granted Critical
Publication of RU2254319C1 publication Critical patent/RU2254319C1/ru

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Использование: химия ароматических соединений. Сущность: проводят очистку бензола от тиофена в присутствии диеновых соединений, воды и уротропина путем обработки его при 20-40°С раствором серной кислоты в каскаде аппаратов смешения с дробной (рассредоточенной) подачей раствора серной кислоты в аппараты смешения. Технический результат: упрощение процесса и увеличение выхода бензола. 2 з.п. ф-лы, 3 табл., 6 ил.

Description

Изобретение относится к нефтехимической промышленности, к получению высокочистого бензола, используемого в нефтехимических синтезах.
Промышленность органического синтеза предъявляет высокие требования к качеству бензола, особенно по содержанию тиофена, так как тиофен является каталитическим ядом в большинстве процессов переработки бензола, например в процессах нитрования, каталитического гидрирования.
Содержание тиофена в коксохимическом бензоле, используемом в синтезах на полиметаллических катализаторах, содержащих платину, палладий, никель, не должно превышать 0,00005 мас.%.
Наиболее эффективным промышленным способом очистки бензола от тиофена является способ каталитической гидроочистки с сульфидированным перед использованием катализатором, содержащим 8-20 мас.% триоксида молибдена, 2-6 мас.% оксида кобальта и/или никеля, оксид алюминия - остальное. Процесс осуществляют при температуре 230-280°С, давлении 2,0-5,0 МПа, объемной скорости подачи сырья 1-3 час-1, соотношении водород: сырье, равном 100-150 нм33 [RU 2198910, приоритет 11.16.2001].
Однако данный способ, как и все другие известные способы каталитической очистки ввиду больших капитальных затрат на их организацию и большой энергоемкости могут быть эффективно использованы лишь в крупных промышленных производствах бензола. В то же время, для установок малой и средней мощности они нерентабельны.
Известен способ очистки бензола от тиофена серной кислотой [Ю.А.Пустовит. Кокс и химия. 1960 г., N10, с.44]. Удаление тиофена в этом случае основано на различии скоростей сульфирования бензола и тиофена. Однако, при этом, данный способ требует использования высококонцентрированной серной кислоты или олеума и при очистке бензола до содержания тиофена, не превышающего требования ГОСТ 8448-78 на бензол марки "для синтеза", ее расход составляет 120-150 кг на тонну бензола. Кроме того, за счет использования высококонцентрированной серной кислоты или олеума способ характеризуется значительными потерями бензола за счет его сульфирования и уноса с "кислой смолкой".
Известен способ очистки бензола от тиофена путем обработки его серной кислотой в присутствии непредельных углеводородов [Л.Я.Коляндр. Получение чистого бензола для синтеза. М.: Металлургия, 1966, с.79-80]. Для очистки используют 93-94%-ную серную кислоту в количестве 10,0-11,3 мас.% в расчете на очищаемый бензол.
В качестве непредельных углеводородов используют смесь олефиновых и диеновых углеводородов, содержащихся во фракции пиролизной смолы, имеющей начало кипения 82-86°С, температуру при 95% отгона 142-156°С, конец кипения 180-186°С, а именно смесь стирола, циклогексена, дициклопентадиена, винилтолуола, индена, метилциклогексена, метилгександиенов и диметилгексенов.
Наиболее близким аналогом заявляемого способа является способ очистки бензола от тиофена путем обработки высококонцентрированной серной кислотой или олеумом в присутствии непредельных углеводородов, 0,002-0,005 мас.% воды, 0,002 мас.% и катализатора межфазного переноса - уротропина (гексаметилентетраамина) [RU 2174504, 22.06.2000].
При использовании уротропина процесс осуществляют при мольном соотношении непредельные углеводороды : тиофен, равном 0,80-1,10:1,00, при содержании воды 0,002 мас.% и температуре 6°С. Выход бензола составляет 99,5 мас.%.
Основными недостатками способа является необходимость тщательной осушки потока бензола, подаваемого на очистку, специальный ввод в него добавок непредельных соединений, использование олеума, а также сложность процесса, заключающаяся в необходимости использования специальных теплоагентов (рассолов и т.п.) для поддержания температуры ниже температуры окружающей среды.
Предлагаемый способ позволяет упростить процесс и увеличить выход бензола.
Такой результат достигается проведением процесса очистки бензола от тиофена путем обработки серной кислотой в присутствии уротропина, диеновых углеводородов и воды, в котором обработку осуществляют при 20-40°С в каскаде аппаратов смешения с дробной (рассредоточенной) подачей растворов серной кислоты по аппаратам каскада.
Данный способ может быть использован для очистки потоков бензола, содержащего более 0,005 мас.% воды, 0,1-0,2 мас.% С56 диеновых углеводородов и 0,002-0,015% мас.% тиофена, в частности потоков, полученных при их выделении известными методами (ректификация, экстрактивная ректификация) из «бензола сырого каменноугольного» (ТУ 1104-241-419-395-167-2001), и не требует специальных добавок диеновых углеводородов и воды в поток бензола, направляемого на очистку.
Процесс обработки очищаемого бензола серной кислотой осуществляют в реакторных узлах, изображенных на Фиг.1-5, представляющих собой каскад последовательно соединенных реакторов смешения (на Фиг.1-5 обозначены как P1-P4) неравного объема с рассредоточенной (дробной) подачей раствора серной кислоты. После каждого реактора каскада установлены сепараторы типа «жидкость-жидкость» (на фиг.1-5 обозначены как C1-C4) для разделения органической и водно-органической фаз. Реакторный узел может включать неограниченное количество реакторов, однако, оптимальное их количество, зависящее от состава исходного потока и требуемого качества, предъявляемого к конечному продукту, обычно не превышает 4. В качестве реакторов используют аппараты с мешалкой и числом оборотов 800-3000 об/мин. Температуру в реакторах каскада поддерживают в интервале от 20-40°С в том числе и за счет тепла смешения растворов серной кислоты с потоками бензола и энергии перемешивания.
Обычно в аппараты смешения уротропин подают в виде раствора в бензоле, по составу, идентичному по составу бензола, который подают на очистку. При этом раствор уротропина может быть подан как в один, так и в несколько реакторов смешения. Серная кислота в реакторы смешения может быть подана в виде 90-94 маc.% водного раствора или водно-органического раствора с концентрацией кислоты 75-85 маc.%. В качестве водно-органических растворов серной кислоты используют водно-органические потоки, сформированные в сепараторах C1-C4 при разделении продуктов обработки потока бензола водным и водно-органическими растворами серной кислоты.
Следующие примеры иллюстрируют способ:
«Бензол сырой каменноугольный» (ТУ 1104-241419-395-167-2001) подвергают ректификации в системе ректификационных колонн с выделением бензольной фракции состава, мас.%: бензол - 99,0-99,4; тиофен - 0,3-0,7; легкие углеводороды - 0,18-0,22; сероуглерод - 0,0001-0,0002; циклопентадиен (ЦПД) - 0,01-0,03; гептан - 0,04-0,06; метилциклогексан - 0,08-0,10; вода - 0,04-0,07.
Для более глубокого удаления тиофена данную фракцию направляют на экстрактивную ректификацию с диметилформамидом (ДМФА) с получением фракции состава, мас.%: бензол - 99,4-99,6; тиофен - 0,001-0,015; легкие углеводороды - 0,21-0,25; сероуглерод - 0,0001-0,0002; циклопентадиен (ЦПД) - 0,01-0,03; гептан - 0,04-0,06; метилциклогексан - 0,08-0,10; ДМФА - 0,025-0,055; вода - 0,04-0,07, которую в свою очередь направляют на осушку в ректификационную колонну, из куба которой отводят поток состава, мас.%: бензол - 99,45-99,70; тиофен - 0,002-0,015; легкие углеводороды - 0,22-0,50; циклопентадиен (ЦПД) - 0,001-0,03; гептан - 0,03-0,06; метилциклогексан - 0,08-0,11; ДМФА - 0,02-0,06; вода - 0,004-0,012. Для получения бензола высшего качества полученный поток направляют на обработку раствором серной кислоты.
В таблице 1 приведен конкретный состав бензола, используемого для иллюстрации данного способа очистки.
Таблица 1.
Состав потоков, подаваемых на обработку серной кислотой.
Вещество Состав, мас.%
1 2 3 4
1 Легкая часть С46 0,221 0,500 0,410 0,290
в т.ч. С6 - диеновые 0,100 0,200 0,120 0,150
2 Дициклопентадиен 0,013 0,001 0,009 0,030
3 Бензол 99,561 99,342 99,370 99,474
4 Тиофен 0,002 0,015 0,008 0,010
5 Гептан 0,055 0,030 0,035 0,040
6 Метилциклогексан 0,106 0,080 0,130 0,096
7 ДМФА 0,036 0,020 0,030 0,050
8 Вода 0,006 0,012 0,008 0,010
Итого: 100,000 100,000 100,000 100,000
Пример 1.
Процесс очистки осуществляют в реакторном узле, схема которого приведена на Фиг.1. Поток бензола (GB) состава 1 (таблица 1) насосом со скоростью 3700 кг/час подают в первый реактор P1 каскада. Одновременно, насосами в реактор P1 непрерывно дозируют водный (90 мас.%) раствор серной кислоты (GK1) и предварительно приготовленный раствор (0,3 мас.%) уротропина в бензоле (состава 1, табл.1) со скоростью (GK1) 20 кг/час и (Gу1) 100 кг/час, соответственно. Температуру в реакторе поддерживают на уровне 22±2°С. Выходящий из реактора P1 поток реакционной массы направляют в сепаратор C1, где разделяют на органический (верхний слой), содержащий главным образом бензол (более 99 мас.%) и водно-органический (нижний слой) - GS1, содержащий, главным образом, серную кислоту (80,5 мас.%), воду (11,5 мас.%) и органические вещества (продукты алкилирования тиофена диенами, полимеры диенов бензол и др.) - остальное. Водно-органический слой собирают в емкость, а весь органический поток из сепаратора C1 направляют во второй реактор каскада Р2, куда дозируют дополнительное количество раствора уротропина в бензоле (Gу2=100 кг/час) и водный раствор серной кислоты (GK2=20 кг/час). Температуру в реакторе Р2 поддерживают в на уровне 28±2°С. После второго реактора Р2 смесь направляют в сепаратор С2, где разделяют на органический и водно-органические слои (GS2). Органический слой из сепаратора С2 непрерывно направляют в третий реактор каскада Р3, где он взаимодействует с очередными порциями раствора уротропина (Gу3=100 кг/час) и водным раствором серной кислоты (GK3=25 кг/час). Температуру в реакторе Р3 поддерживают в на уровне 35±2°С. Смесь из реактора Р3 направляют в сепаратор С3, где разделяют на органический слой направляют в четвертый реактор каскада P4, где он взаимодействует с последними порциями уротропина (Gу4=100 кг/час) и серной кислоты (GK4=25 кг/час). Температуру в реакторе P4 поддерживают в на уровне 38±2°С. Смесь из реактора P4 разделяют в сепараторе С4, при этом водно-органические слои сепараторов C1-C4 (ΣGS) собирают в емкость и направляют на регенерацию серной кислоты. Органический слой, не содержащий тиофена, из сепаратора С4 (GB,0), направляют на отмывку водной щелочью и на ректификацию. После ректификации получают 4084,9 кг/час бензола (G*) высшей категории качества (ГОСТ 8448-78 Е с изм. 1,2,3). Выход бензола в расчете на бензол, поданный на очистку (в т.ч. в виде раствора уротропина) - 99,66%. Условия и результаты процесса серно-кислотной очистки приведены в сводных таблицах 2 и 3.
Пример 2.
Процесс осуществляют в реакторном узле, схема которого приведена на Фиг.2, узле, включающем четыре реактора смешения, подавая при этом на очистку бензол состава 2 (таблица 1). В отличие от примера 1, потоки уротропина и водного раствора серной кислоты подают только во второй и четвертый реакторы каскада. Образующийся в сепараторе С2 водно-органический поток серной кислоты, содержащий 83 мас.% Н2SO4, полностью направляют в реактор P1 на смешение с потоком исходного бензола (GB). Аналогично, образующийся в сепараторе С4 водно-органический поток серной кислоты, содержащий 85 мас.% Н2SO4, полностью направляют в реактор Р3 на смешение с потоком органического слоя, поступающего из сепаратора С2. Водно-органические слои сепараторов C1 и С3 (ΣGS) собирают в емкость и направляют на регенерацию серной кислоты. Органический слой (GB,0), не содержащий тиофена, направляют на отмывку водной щелочью и на ректификацию. После ректификации получают 4086,7 кг/час бензола (G*) высшей категории качества (ГОСТ 8448-78 Е с изм. 1,2,3), не содержащего тиофена. Выход бензола - 99,71%. Условия и результаты приведены в сводных таблицах 2 и 3.
Пример 3.
Процесс осуществляют в реакторном узле, схема которого приведена на Фиг.3, включающем три реактора смешения, подавая при этом на очистку бензол состава 3 (таблица 1).
Водный раствор серной кислоты и раствор уротропина в бензоле подают в реакторы Р2 и Р3. Водно-органический раствор серной кислоты из сепаратора С3, содержащий 76 мас.% Н2SO4, полностью направляют в реактор P1 на смешение с потоком исходного бензола (GB). Водно-органические слои сепараторов C1 и С2 (ΣGS) собирают в емкость и направляют на регенерацию серной кислоты. Органический слой (GB,0), не содержащий тиофена, направляют на отмывку водной щелочью и на ректификацию. После ректификации получают 4088,1 кг/час бензола высшей категории качества (ГОСТ 8448-78 Е с изм. 1,2,3), не содержащего тиофена. Выход бензола - 99,74%. Условия и результаты приведены в сводных таблицах 2 и 3.
Пример 4.
Процесс осуществляют в реакторном узле, схема которого приведена на Фиг.4, включающем два реактора смешения, подавая при этом на очистку бензол состава 4 (таблица 1).
Водный раствор серной кислоты и раствор уротропина в бензоле подают в реактор P2. Водно-органический раствор серной кислоты из сепаратора С2, содержащий 80,5 мас.% Н2SO4, полностью направляют в реактор P1 на смешение с потоком исходного бензола (GB). Водно-органический слой сепаратора C1 собирают в емкость и направляют на регенерацию серной кислоты. Органический слой (GB,0), не содержащий тиофена, из сепаратора С2 направляют на отмывку водной щелочью и на ректификацию. После ректификации получают 4091,4 кг/час бензола высшей категории качества (ГОСТ 8448-78 Е с изм. 1, 2, 3), не содержащего тиофена. Выход бензола - 99,83%. Условия и результаты приведены в сводных таблицах 2 и 3.
Пример 5.
Процесс осуществляют в реакторном узле, схема которого приведена на Фиг.5, включающем три реактора смешения, подавая при этом на очистку бензол состава 2 (таблица 1).
Водный раствор серной кислоты и раствор уротропина в бензоле подают в реактора Р2 и Р3. Водно-органический растворы серной кислоты из сепаратора С2, содержащий 78 мас.% H2SO4 и из сепаратора С3, содержащий 80 мас.% H2SO4, полностью направляют в реактор P1 на смешение с потоком исходного бензола (GB). Водно-органический слой сепаратора C1 собирают в емкость и направляют на регенерацию серной кислоты. Органический слой сепаратора С3 (поток GB,0), не содержащий тиофена, направляют на отмывку водной щелочью и на ректификацию. После ректификации получают 4090,8 кг/час бензола высшей категории качества (ГОСТ 8448-78 Е с изм. 1,2,3), не содержащего тиофена. Выход бензола - 99,79%. Условия и результаты приведены в сводных таблицах 2 и 3.
Пример 6.
Процесс осуществляют аналогично примеру 4, подавая на очистку бензол состава 2 и подавая в реактор P2 90%-ный водный раствор серной кислоты со скоростью 52 кг/час и раствор уротропина с концентрацией 0,35 мас.%.
Водно-органический раствор серной кислоты из сепаратора С2, содержащий 78,5 маc.% H2SO4, полностью направляют в реактор P1 на смешение с потоком исходного бензола (GB). Водно-органический слой сепаратора C1 собирают в емкость и направляют на регенерацию серной кислоты. Органический слой (GB,0), не содержащий тиофена, из сепаратора С2 направляют на отмывку водной щелочью и на ректификацию. После ректификации получают 4090,8 кг/час бензола высшей категории качества (ГОСТ 8448-78 Е с изм. 1, 2, 3), не содержащего тиофена. Выход бензола - 99,81%. Условия и результаты приведены в сводных таблицах 2 и 3.
Пример 7 (сравнительный)
Процесс очистки осуществляют в реакторном узле (Фиг.6), включающем один реактор P1 и сепаратор C1. В реактор непрерывно подают очищаемый бензол, водный раствор серной кислоты (92 мас.%) и раствор уротропина в бензоле (0,4 мас.%). Продукты обработки направляют в сепаратор C1, где разделяют на два слоя. Водно-органический слой сепаратора C1 собирают в емкость и направляют на регенерацию серной кислоты. Органический слой (GB,0), не содержащий тиофена, из сепаратора C1 направляют на отмывку водной щелочью и на ректификацию. После ректификации получают 4070,5 кг/час бензола высшей категории качества (ГОСТ 8448-78 Е с изм. 1, 2, 3), не содержащего тиофена. Выход бензола - 99,32%. Условия и результаты приведены в сводных таблицах 2 и 3.
Таким образом, данный способ позволяет существенно упростить процесс, так как не требует:
- использования специальных хладоагентов для поддержания температуры ниже температуры окружающей среды (6°С);
- использования специальных добавок диеновых углеводородов в бензол, подаваемый на очистку;
- не требует специальной осушки очищаемого бензола до содержания воды в узком интервале 0,002-0,005 мас.%;
- не требует использования высококонцентрированных растворов серной кислоты, в частности олеума.
Кроме того, данный способ позволяет увеличить выход бензола на стадии очистки с 99,50% до 99,66-99,83%.
Figure 00000002
Figure 00000003

Claims (3)

1. Способ очистки бензола от тиофена путем обработки его серной кислотой в аппарате смешения в присутствии диеновых соединений, воды и уротропина, разделения продуктов на две жидкие фазы, промывкой фазы, содержащей, главным образом, бензол, водным раствором щелочи и ректификацией, отличающийся тем, что обработку осуществляют при 20-40°С в каскаде аппаратов смешения раствором серной кислоты с его дробной (рассредоточенной) подачей в аппараты смешения.
2. Способ по п.1, отличающийся тем, что в качестве раствора серной кислоты используют ее водные и водно-органические растворы.
3. Способ по п.2, отличающийся тем, что в качестве водно-органических растворов серной кислоты используют водно-органические потоки, образующиеся на стадии разделения продуктов обработки бензола водными растворами серной кислоты.
RU2004100950/04A 2004-01-16 2004-01-16 Способ очистки бензола RU2254319C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004100950/04A RU2254319C1 (ru) 2004-01-16 2004-01-16 Способ очистки бензола

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004100950/04A RU2254319C1 (ru) 2004-01-16 2004-01-16 Способ очистки бензола

Publications (1)

Publication Number Publication Date
RU2254319C1 true RU2254319C1 (ru) 2005-06-20

Family

ID=35835764

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004100950/04A RU2254319C1 (ru) 2004-01-16 2004-01-16 Способ очистки бензола

Country Status (1)

Country Link
RU (1) RU2254319C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1911879B (zh) * 2005-08-08 2010-11-10 浙江鸿盛化工有限公司 由焦化苯分离提纯精制苯的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1911879B (zh) * 2005-08-08 2010-11-10 浙江鸿盛化工有限公司 由焦化苯分离提纯精制苯的方法

Similar Documents

Publication Publication Date Title
JP5463281B2 (ja) パラキシレン製造プロセス及び装置
KR101599491B1 (ko) p-자일렌의 제조를 위한 통합공정
KR100869156B1 (ko) 석유 열분해 공정에서 얻은 c5 커트의 분리 방법
CN105272805B (zh) 一种生产对二甲苯的方法
WO2016053466A1 (en) Process for making cyclohexanone
RU2014154143A (ru) Удаление стирола в процессе выделения параксилола
JP7025443B2 (ja) 石炭液化油からキシレン類及びフェノールを製造する方法
JP2006291182A5 (ru)
CN101544892B (zh) 一种合成二芳基乙炔类单体液晶的方法
RU2615160C2 (ru) Способ производства олефинов и ароматических углеводородов
WO2011015000A1 (zh) 多级氧化甲苯制备苯甲醛、苯甲醇的工艺及设备
US6489527B1 (en) Process for improving purity of para-xylene product
KR20150135488A (ko) 산화적 탈수소화 공정으로부터의 1,3-부타디엔의 정제 방법
CN102746091B (zh) 重芳烃生产btx芳烃和三甲苯的方法
RU2254319C1 (ru) Способ очистки бензола
US2680757A (en) Catalyst recovery process
CN110204418A (zh) 一种高效加氢脱氯提纯三氯苯的方法
ES2564003T3 (es) Purificación de una fracción aromática que contiene acetilenos por hidrogenación selectiva de los acetilenos
CN101993333B (zh) 芳烃生产中增产对二甲苯的组合方法
US2458777A (en) Purification of hydrocarbons
RU2773400C1 (ru) Способ глубокой очистки бензола от тиофена
RU2174504C1 (ru) Способ очистки бензола от тиофена
CN107793284B (zh) 含氧化合物制芳烃反应产物的急冷方法
CN102329185A (zh) 采用n-甲基吡咯烷酮萃取高纯度1,3-丁二烯的方法
CN102040461B (zh) 用于芳烃生产中增产对二甲苯的组合方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170117