RU2233445C1 - Поликапиллярная хроматографическая колонка и способ ее изготовления - Google Patents

Поликапиллярная хроматографическая колонка и способ ее изготовления Download PDF

Info

Publication number
RU2233445C1
RU2233445C1 RU2003112601/28A RU2003112601A RU2233445C1 RU 2233445 C1 RU2233445 C1 RU 2233445C1 RU 2003112601/28 A RU2003112601/28 A RU 2003112601/28A RU 2003112601 A RU2003112601 A RU 2003112601A RU 2233445 C1 RU2233445 C1 RU 2233445C1
Authority
RU
Russia
Prior art keywords
channels
modules
stage
blanks
package
Prior art date
Application number
RU2003112601/28A
Other languages
English (en)
Other versions
RU2003112601A (ru
Inventor
М.А. Кумахов (RU)
М.А. Кумахов
В.Б. Желтов (RU)
В.Б. Желтов
Б.А. Руденко (RU)
Б.А. Руденко
Р.Х. Хамизов (RU)
Р.Х. Хамизов
Н.П. Шоромов (RU)
Н.П. Шоромов
О.О. Найда (RU)
О.О. Найда
Original Assignee
Общество с ограниченной ответственностью "Институт рентгеновской оптики"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Институт рентгеновской оптики" filed Critical Общество с ограниченной ответственностью "Институт рентгеновской оптики"
Priority to RU2003112601/28A priority Critical patent/RU2233445C1/ru
Priority to US10/788,291 priority patent/US7118671B2/en
Priority to EP04007678A priority patent/EP1477799A1/en
Application granted granted Critical
Publication of RU2233445C1 publication Critical patent/RU2233445C1/ru
Publication of RU2003112601A publication Critical patent/RU2003112601A/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6034Construction of the column joining multiple columns
    • G01N30/6043Construction of the column joining multiple columns in parallel

Abstract

Использование: в технологии изготовления элементов аппаратуры для хроматографии. Сущность: поликапиллярная хроматографическая колонка содержит множество изолированных друг от друга параллельных каналов, стенки которых с внутренней стороны покрыты сорбентом, а наружными сторонами сплавлены со стенками соседних каналов. Особенностью колонки является то, что она выполнена в виде совокупности модулей различного уровня, при этом модуль самого низкого уровня представляет собой гексагонально упакованную и имеющую в поперечном сечении вид правильного шестиугольника совокупность каналов, являющуюся результатом совместного вытягивания пучка монокапилляров в размягченном состоянии. Модуль каждого более высокого уровня представляет собой гексагонально упакованную и имеющую в поперечном сечении вид правильного шестиугольника совокупность модулей предыдущего уровня, являющуюся результатом их совместного вытягивания в размягченном состоянии. Все модули самого высокого уровня (на чертеже заключены в оболочки 1), содержащие модули 2 предыдущего уровня, скомпонованы в единую гексагонально упакованную структуру (на чертеже окружена внешней защитной оболочкой 3), являющуюся результатом их совместного вытягивания в размягченном состоянии. Способ изготовления колонок заключается в осуществлении нескольких стадий вытягивания пакетов заготовок, каждая из которых является результатом вытягивания на предыдущей стадии и разрезания получаемого при вытягивании изделия на части определенной длины - заготовки. Технический результат - достигаются микронный и субмикронный размер каналов при количестве их порядка 1 млн. с малым разбросом диаметра каналов и повышение эффективности разделения. 2 н. и 7 з.п. ф-лы, 5 ил.

Description

Предлагаемые изобретения относятся к области аналитической химии, а именно к хроматографии и к технологии изготовления элементов аппаратуры для хроматографии, более конкретно - к хроматографической колонке и способу ее изготовления.
Одной из современных тенденций аналитической химии является миниатюризация хроматографической аппаратуры, включая использование в хроматографии капиллярных колонок (Тесаржик К., Комарек К. Капиллярные колонки в газовой хроматографии: Пер. с чешек. - М.: Мир, 1987. - 222 с. [1]). Применение капиллярных колонок с сорбентом, расположенным на внутренних стенках, позволило увеличить удельную и общую эффективность достижимого разделения, существенно уменьшить количество используемых сорбентов, повысить чувствительность хроматографической аналитической системы и улучшить такие характеристики процесса, как радиальный градиент температуры при программировании, упростить реализацию гибридного метода анализа газовой хроматографии в сочетании с масс-спектрометрией.
Разделение пробы вещества на составляющие компоненты в хроматографии определяется двумя характеристиками хроматографической колонки - ее селективностью и эффективностью. Мерой селективности является относительное удерживание разделяемых компонентов, а мера эффективности характеризуется числом так называемых теоретических тарелок (т.т.). Основное преимущество хроматографических капиллярных колонок состоит в том, что по абсолютной и относительной эффективности эти колонки существенно превосходят традиционно применяемые хроматографические наполненные колонки, имеющие диаметр более 2 мм. Общая эффективность капиллярных колонок составляет 30000-100000 т.т. и более (Руденко Б.А. Капиллярная хроматография. - М.: Наука, 1978. - 215 с. [2]), что намного превосходит эффективность наполненных колонок.
Наряду с таким преимуществом, как высокая эффективность разделения компонентов пробы, хроматографические капиллярные колонки имеют недостаток, заключающийся в значительном ограничении количества анализируемой пробы. Это снижает величину сигнала при анализе и резко увеличивает предельно определяемые концентрации.
Этот недостаток уменьшен в поликапиллярных (многоканальных) хроматографических колонках, представляющих собой пакет из параллельно расположенных 1000-2000 капилляров диаметром от 30 до 100 мкм (авторское свидетельство СССР №968181, опубл. 15.08.91 [3]; авторское свидетельство СССР №1635128, опубл. 15.03.91 [4], патент Российской Федерации №1651200, опубл. 23.05.91 [5]).
Однако при ограниченном числе капилляров в колонке даже незначительные различия в количестве нанесенной подвижной фазы в них приводят к возникновению значительной дисперсии времен удерживания веществ, что существенно снижает достигаемую с помощью таких колонок эффективность разделения. В результате эффективность таких колонок перестает увеличиваться, когда их длина превосходит 1,0-1,5 м.
В авторском свидетельстве СССР №1635128 (опубл. 15.03.91 [6]) предложен способ изготовления поликапиллярных хроматографических колонок, направленный на повышение однородности их проходных сечений. Этот способ предусматривает изготовление колонки путем размягчения и вытягивания пучка заготовок, который формируют из одинаковых по размерам цилиндрических стрежней. Стержни, образующие центральную часть заготовки каждого отдельного канала, выполняют из технологического материала, впоследствии удаляемого, а окружающие центральную часть стержни - из основного материала. Эти стержни после удаления технологического материала центральной части образуют стенку канала. Пакет заготовок формируют таким образом, чтобы группы стержней, составляющие заготовки отдельных каналов, образовали гексагональную или квадратную упаковку.
Известный способ по авторскому свидетельству СССР №1635129 (опубл. 15.03.91 [7]) по сравнению с предыдущим усложнен тем, что некоторые из стержней, окружающих стержни центральной части заготовки отдельного канала, тоже выполняют из технологического материала. Впоследствии, после удаления технологического материала, это приводит к образованию продольных пазов в стенках каналов, соединяющих соседние каналы друг с другом.
Таким образом, поликапиллярные хроматографические колонки, изготавливаемые по способам, известным из [6] и [7], содержат множество параллельных каналов, сплавленных с соседними каналами наружными сторонами их стенок. При этом в колонке, изготавливаемой по способу, известному из [6], каналы изолированы друг от друга, а в колонке, известной из [7], соседние каналы сообщаются друг с другом посредством продольных пазов в их стенках.
Поликапиллярные хроматографические колонки, изготавливаемые в соответствии с указанными способами, ввиду большой трудоемкости этих способов, обусловленной необходимостью вручную формировать заготовку каждого канала, не удается получить с количеством каналов, превышающим достигнутое в колонках, известных из [3-5]. Это препятствует дальнейшему повышению показателей поликапиллярных хроматографических колонок и не позволяет реализовать преимущества способов изготовления, известных из [6, 7].
К предлагаемым поликапиллярной хроматографической колонке и способу ее изготовления наиболее близки колонка и способ, известные из авторского свидетельства СССР №1635128 [6].
Технический результат, на достижение которого направлены предлагаемые изобретения, заключается в получении хроматографической колонки с субмикронными поперечными размерами каналов при доведении их количества до сотен тысяч и более с соответствующим значительным повышением эффективности. Технология изготовления поликапиллярной хроматографической колонки по предлагаемому способу одновременно обеспечивает уменьшение разброса размеров поперечных сечений каналов.
Предлагаемая поликапиллярная хроматографическая колонка, как и наиболее близкая к ней, известная из [6], содержит множество изолированных друг от друга параллельных каналов, стенки которых с внутренней стороны покрыты сорбентом, а наружными сторонами сплавлены с соседними каналами.
Для достижения указанного технического результата предлагаемая поликапиллярная хроматографическая колонка, в отличие от наиболее близкой к ней известной колонки, выполнена в виде совокупности модулей различного уровня. При этом модуль самого низкого уровня представляет собой гексагонально упакованную и имеющую в поперечном сечении вид правильного шестиугольника совокупность каналов, являющуюся результатом совместного вытягивания пучка монокапилляров в размягченном состоянии. Модуль каждого более высокого уровня представляет собой гексагонально упакованную и имеющую в поперечном сечении вид правильного шестиугольника совокупность модулей предыдущего уровня, являющуюся результатом их совместного вытягивания в размягченном состоянии. Все модули самого высокого уровня скомпонованы в единую гексагонально упакованную структуру, являющуюся результатом их совместного вытягивания в размягченном состоянии.
Для повышения механической прочности колонки модули каждого из уровней могут иметь оболочку, выполненную из того же материала, что и стенки каналов, или близкого к нему по температурному коэффициенту линейного расширения.
Все модули самого высокого уровня могут быть заключены в общую оболочку, являющуюся внешней защитной оболочкой поликапиллярной хроматографической колонки.
Стенки каналов, внешняя защитная оболочка и оболочки модулей всех уровней могут быть выполнены из стекла, керамики или металла.
Предлагаемый способ изготовления поликапиллярных хроматографических колонок, как и наиболее близкий к нему известный способ по авторскому свидетельству [6], включает вытягивание гексагонально уложенного пакета заготовок, нагретого в печи до температуры размягчения их материала.
Для достижения указанного выше технического результата предлагаемый способ, в отличие от наиболее близкого к нему известного, осуществляют в несколько стадий, на каждой из которых формируют пакет из ранее изготовленных заготовок. На первой стадии в качестве заготовок используют монокапилляры, а на каждой из последующих стадий - заготовки, полученные в результате осуществления предыдущей стадии. В процессе вытягивания подготовленного пакета поддерживают скорость подачи его в печь более низкой, чем скорость выхода изделия из печи, при постоянном соотношении между этими скоростями. Разрезая выходящее из печи изделие по длине, получают заготовки, являющиеся результатом данной стадии, а после нанесения сорбента на внутреннюю поверхность каналов заготовок, полученных на последней стадии, получают готовые поликапиллярные хроматографические колонки.
В предлагаемом способе в процессе формирования пакета заготовки укладывают параллельными рядами таким образом, чтобы разность количества заготовок в любых двух соседних рядах была нечетной. На всех стадиях, кроме последней, при укладке пакета используют оправки в виде правильной шестигранной призмы. На последней стадии призма не обязательно должна быть шестигранной и правильной, либо может производиться укладка заготовок в трубчатую обойму желаемой формы. В последнем случае для образования плоской грани, на которую укладывается первый ряд заготовок, в указанную обойму помещается вкладыш, с одной стороны конгруэнтный с обоймой, а с другой - плоский.
Для увеличения механической прочности изготавливаемых поликапиллярных колонок заготовки, получаемые на каждой стадии и подлежащие укладке в пакет на следующей стадии, выполняют с оболочками.
Для этого при формировании пакета заготовок по его периферии укладывают одинаковые с заготовками по форме и геометрическим размерам сплошные стержни из того же или близкого по температурному коэффициенту линейного расширения материала.
Выполнение такой операции при формировании пакета, подлежащего вытягиванию на последней стадии осуществления способа, приводит к получению поликапиллярных хроматографических колонок, заключенных в внешнюю защитную оболочку. Если формирование пакета, подлежащего вытягиванию на последней стадии осуществления способа, производится путем укладки заготовок в трубчатую обойму, внешняя защитная оболочка образуется в результате вытягивания трубчатой обоймы вместе с находящимся в ней пакетом заготовок.
В качестве материала монокапилляров, используемых на первой стадии, и сплошных стержней, используемых в качестве заготовок для получения оболочек модулей разного уровня и внешних защитных оболочек готовых поликапиллярных хроматографических колонок, могут быть применены стекло, керамика или металл.
Предлагаемые изобретения иллюстрируются чертежами, на которых показаны:
- на фиг.1 - схематический вид поперечного сечения поликапиллярной хроматографической колонки;
- на фиг.2 - процесс вытягивания;
- на фиг.3 - процесс формирования пакета заготовок для первой стадии способа;
- на фиг.4 - форма поперечного сечения заготовки, полученной в результате выполнения первой стадии способа;
- на фиг.5 - использование вкладыша при укладке пакета заготовок на заключительной стадии способа в трубчатую обойму.
На фиг.1 изображены модули высшего уровня с оболочками 1. Каждый из этих модулей образован группой модулей 2 предыдущего уровня. На фиг.1 каждый модуль высшего уровня условно показан состоящим из семи модулей предыдущего уровня (в действительности их гораздо больше; масштаб чертежа не позволяет также показать их внутреннюю структуру с модулями более низких уровней). Все модули высшего уровня, скомпонованные в единую гексагональную структуру и заключенные в общую защитную оболочку 3, образуют хроматографическую колонку.
Следует обратить внимание на то, что конструкция предлагаемой поликапиллярной хроматографической колонки не представляет собой простого результата сборки в прямой последовательности сначала каналов-монокапилляров в модули первого уровня, затем группирование последних в модули второго уровня и т.д. Эта конструкция неразрывно связана с предлагаемым способом изготовления поликапиллярных хроматографических колонок. Модули того или иного уровня и поликапиллярная хроматографическая колонка появляются только в результате осуществления способа в целом, после нескольких стадий вытягивания. Изготовленную поликапиллярную хроматографическую колонку уже нельзя разобрать на модули разного уровня и отдельные каналы.
Для изготовления описанных поликапиллярных хроматографических колонок по предлагаемому способу пакет 4 заготовок (фиг.2), например стеклянных, полученных на предыдущей стадии способа, подают вертикально в печь 5 с помощью верхнего привода 6 и осуществляют вытягивание его из печи со скоростью, превышающей скорость подачи, с помощью нижнего привода 7. В результате вытягивания получают изделие 8 существенно меньшего поперечного размера, чем размер пакета 4 на входе в печь. Температура в печи должна быть достаточна для размягчения материала и сплавления соседних заготовок, образующих пакет 4. На первой стадии в качестве заготовок, из которых формируют пакет, используют монокапилляры, в частности стеклянные. Сами стеклянные монокапилляры могут быть получены по аналогичной технологии путем вытягивания стеклянных трубок с последующим разрезанием их на отрезки требуемой длины.
При вытягивании в печи создают осесимметричное температурное поле с показанным на фиг.2 распределением температуры Т по высоте L печи, имеющим узкий максимум 9. Область перехода 10 первоначального поперечного размера пакета 4 заготовок в меньший диаметр изделия 8 находится в зоне узкого пика 9 распределения температуры по высоте печи.
Чтобы предотвратить сплющивание (“схлопывание”) капилляров в процессе вытягивания, сопровождающегося сжатием заготовок, давление в пространстве между ними поддерживают более низким, чем внутри каналов заготовок (важно поддержание более высокого, чем в указанном пространстве, давления в каналах капилляров модулей самого нижнего уровня). Для этого верхние концы каналов заготовок перед формированием из них пакета закрывают (например, оплавляют верхние концы заготовок), а в процессе вытягивания осуществляют вакуумирование пакета (отсос газов) через верхний торец пакета заготовок (вакуумирование схематически показано позицией 11 на фиг.2). Герметизации нижних концов каналов заготовок не требуется, так как близкий к герметизации результат достигается благодаря существенному уменьшению поперечного размера выходящего из печи изделия по сравнению с поперечным размером пакета заготовок, подаваемого в печь сверху.
Полученное в результате вытягивания изделие после охлаждения разрезают, получая заготовки для следующей стадии. Из них вновь формируют пакет и осуществляют вытягивание аналогично предыдущей стадии.
Процесс формирования пакета заготовок-капилляров для проведения первой стадии предлагаемого способа показан на фиг.3 для частного случая, когда модули первого уровня должны иметь оболочку. На фиг.3 позицией 12 показаны разъемные оправки, имеющие отверстия в виде правильных шестигранных призм; 13 и 14 - заготовки (в данном случае - соответственно круглые монокапилляры 13 и сплошные стержни 14 того же диаметра). Сплошные стержни 14 (на чертеже зачернены), расположенные по периферии пакета, предназначены для формирования оболочки модуля (в данном случае - модуля первого уровня). Заготовки уложены горизонтальными слоями, параллельными нижним горизонтальным граням отверстий оправок 12. Количество заготовок в любых двух соседних слоях отличается на нечетное число.
В результате вытягивания по схеме, показанной на фиг.2, круглые капилляры превращаются в каналы 15 (фиг.4), имеющие форму, близкую к гексагональной. На этом же чертеже видна оболочка 16 заготовки, являющейся результатом первой стадии способа и предназначенной для использования при формировании пакета второй стадии. В процессе вытягивания по схеме фиг.2 разъемные оправки (на фиг.2 не показаны) снимаются с пакета 4 по мере введения его в печь 5.
На последующих стадиях способа пакеты формируются аналогично показанному на фиг.3, с той разницей, что при этом используются заготовки, имеющие форму, близкую к гексагональной. Формирование пакета для заключительной стадии способа может отличаться по форме отверстий используемых оправок. Они не обязательно должны иметь форму правильной шестигранной призмы и могут представлять собой в поперечном сечении произвольный выпуклый многоугольник, одна из сторон которого в начале процесса формирования пакета должна быть расположена горизонтально. На этой стадии пакет может формироваться также путем гексагональной укладки заготовок в трубчатую обойму 17 (фиг.5) с любой требуемой формой поперечного сечения. Отсутствие плоской грани у трубчатой обоймы может компенсироваться путем помещения в обойму вкладыша 18, с одной стороны конгруэнтного с обоймой, а с другой стороны - плоского. Первый ряд заготовок (в данном случае - модулей высшего уровня с оболочками 1, образованных группами модулей 2 предыдущего уровня) укладывают на плоскую поверхность вкладыша 18.
Гексагональная укладка круглых заготовок на первой стадии обеспечивает наибольшую проницаемость модулей первого уровня, а использование заготовок гексагональной формы и их гексагональная укладка на последующих стадиях обеспечивают наиболее плотную упаковку каналов и, следовательно, наиболее высокую проницаемость изготавливаемых колонок в целом, в том числе и при многоугольной форме поперечного сечения готовой колонки, отличающейся от правильного шестиугольника, или при укладке пакета для последней стадии способа в трубчатую обойму. Особенности описанной технологии обеспечивают малый разброс размеров поперечного сечения каналов-капилляров.
Для колонки, предназначенной для использования в газовой хроматографии, нанесение сорбента на стенки каналов-капилляров осуществляют путем продавливания через каналы его 3-10%-ного раствора в органическом растворителе и последующего высушивания растворителя продувкой инертным газом.
Для колонки, предназначенной для использования в жидкостной хроматографии, осуществляют травление стенок каналов-капилляров подходящим агентом, например 20%-ным раствором NaOH или концентрированным аммиаком при повышенной температуре. Затем травящий агент отмывают чистой водой.
В изготовленных опытных образцах поликапиллярных колонок поперечные размеры каналов имели порядок 1 мкм при количестве каналов порядка 1 миллиона.
При столь большом числе каналов сверхмалого диаметра чувствительность хроматографического анализа существенно возрастает. Экспериментально подтверждено, что обеспечивается равномерное нанесение неподвижной фазы на стенки каналов при продавливании через них растворов. В экспериментах по газовой хроматографии при длине колонок 400 мм достигнута эффективность 2-4 тыс. т.т., или 5-10 т.т. на один метр длины колонки. В жидкостной хроматографии величина эффективности составила около 1500 т.т. при длине колонки 100 мм.
Источники информации
1. Тесаржик К., Комарек К. Капиллярные колонки в газовой хроматографии: Пер. с чешек. - М.: Мир, 1987. - 222 с.
2. Руденко Б.А. Капиллярная хроматография. - М.: Наука, 1978. - 215 с.
3. Авторское свидетельство СССР №968181, опубл. 15.08.1991.
4. Авторское свидетельство СССР №1635128, опубл. 15.03.1991.
5. Патент Российской Федерации №1651200, опубл. 23.05.1991.
6. Авторское свидетельство СССР №1635128, опубл. 15.03.1991.
7. Авторское свидетельство СССР №1635129, опубл. 15.03.1991.

Claims (9)

1. Поликапиллярная хроматографическая колонка, содержащая множество изолированных друг от друга параллельных каналов, стенки которых с внутренней стороны покрыты сорбентом, а наружными сторонами сплавлены со стенками соседних каналов, отличающаяся тем, что она выполнена в виде совокупности модулей различного уровня, при этом модуль самого низкого уровня представляет собой гексагонально упакованную и имеющую в поперечном сечении вид правильного шестиугольника совокупность каналов, являющуюся результатом совместного вытягивания пучка монокапилляров в размягченном состоянии, модуль каждого более высокого уровня представляет собой гексагонально упакованную и имеющую в поперечном сечении вид правильного шестиугольника совокупность модулей предыдущего уровня, являющуюся результатом их совместного вытягивания в размягченном состоянии, все модули самого высокого уровня скомпонованы в единую гексагонально упакованную структуру, являющуюся результатом их совместного вытягивания в размягченном состоянии.
2. Колонка по п.1, отличающаяся тем, что модули всех уровней выполнены с оболочками из того же материала, что и стенки каналов, или близкого к нему по температурному коэффициенту линейного расширения.
3. Колонка по п.1, отличающаяся тем, что все модули самого высокого уровня заключены в общую оболочку, которая является внешней защитной оболочкой поликапиллярной хроматографической колонки.
4. Колонка по любому из пп.1-3, отличающаяся тем, что стенки каналов, внешняя защитная оболочка и оболочки модулей всех уровней выполнены из стекла, керамики или металла.
5. Способ изготовления поликапиллярных хроматографических колонок, включающий вытягивание гексагонально уложенного пакета заготовок, нагретого в печи до температуры размягчения материала заготовок, отличающийся тем, что его осуществляют в несколько стадий, на каждой из которых формируют пакет из ранее изготовленных заготовок, в качестве которых на первой стадии используют монокапилляры, а на каждой из последующих стадий - заготовки, полученные в результате осуществления предыдущей стадии, в процессе вытягивания подготовленного пакета поддерживают скорость подачи его в печь более низкой, чем скорость выхода изделия из печи, при постоянном соотношении между этими скоростями и путем разрезания выходящего из печи изделия по длине на всех стадиях получают заготовки, являющиеся результатом данной стадии, а после нанесения сорбента на внутреннюю поверхность каналов заготовок, полученных на последней стадии, получают готовые поликапиллярные хроматографические колонки.
6. Способ по п.5, отличающийся тем, что на всех стадиях, кроме последней, при укладке пакета используют оправки в виде правильной шестигранной призмы, а на последней стадии - оправки в виде призмы желаемой формы, в процессе формирования пакета заготовки укладывают горизонтальными рядами, параллельными нижней грани используемых оправок, обеспечивая при этом разность количества заготовок в любых двух соседних рядах, равную нечетному числу.
7. Способ по п.5, отличающийся тем, что заготовки, получаемые на каждой стадии, выполняют с оболочками, для чего при формировании пакета заготовок для текущей стадии по его периферии укладывают одинаковые с заготовками по форме и геометрическим размерам сплошные стержни из того же или близкого по температурному коэффициенту линейного расширения материала.
8. Способ по п.5, отличающийся тем, что готовые поликапиллярные хроматографические колонки, получаемые на последней стадии, выполняют с защитными оболочками, для чего при формировании пакета заготовок для этой стадии осуществляют их гексагональную укладку в трубчатую обойму с требуемой формой поперечного сечения, выполненную из материала с таким же, как у заготовок, или близким к нему температурным коэффициентом линейного расширения, используя при этом вкладыш, с одной стороны конгруэнтный с обоймой, а с другой стороны - плоский.
9. Способ по п.7 или 8, отличающийся тем, что монокапилляры, используемые на первой стадии, а также сплошные стержни, используемые в качестве заготовок для получения оболочек модулей разного уровня или защитной оболочки готовой поликапиллярной хроматографической колонки, или трубчатую обойму, используемую для этой же цели, выполняют из стекла, керамики или металла.
RU2003112601/28A 2003-04-30 2003-04-30 Поликапиллярная хроматографическая колонка и способ ее изготовления RU2233445C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2003112601/28A RU2233445C1 (ru) 2003-04-30 2003-04-30 Поликапиллярная хроматографическая колонка и способ ее изготовления
US10/788,291 US7118671B2 (en) 2003-04-30 2004-03-01 Polycapillary chromatographic column and method of its manufacturing
EP04007678A EP1477799A1 (en) 2003-04-30 2004-03-30 Polycapillary chromatographic column and the method of its manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003112601/28A RU2233445C1 (ru) 2003-04-30 2003-04-30 Поликапиллярная хроматографическая колонка и способ ее изготовления

Publications (2)

Publication Number Publication Date
RU2233445C1 true RU2233445C1 (ru) 2004-07-27
RU2003112601A RU2003112601A (ru) 2004-10-27

Family

ID=33029154

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003112601/28A RU2233445C1 (ru) 2003-04-30 2003-04-30 Поликапиллярная хроматографическая колонка и способ ее изготовления

Country Status (3)

Country Link
US (1) US7118671B2 (ru)
EP (1) EP1477799A1 (ru)
RU (1) RU2233445C1 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005032688A1 (en) * 2003-09-30 2005-04-14 Chromba, Inc. Multicapillary column for chromatography and sample preparation
US20070017870A1 (en) * 2003-09-30 2007-01-25 Belov Yuri P Multicapillary device for sample preparation
RU2300024C2 (ru) * 2005-07-07 2007-05-27 Общество с ограниченной ответственностью "Институт рентгеновской оптики" Электрокинетический микронасос
AU2006348443A1 (en) * 2006-09-20 2008-03-27 Chromba, Inc. Multicapillary device for sample preparation
EP2071583A1 (en) * 2007-12-10 2009-06-17 Unisantis FZE Graded lenses
WO2009121034A2 (en) * 2008-03-28 2009-10-01 Pelican Group Holdings, Inc. Multicapillary sample preparation devices and methods for processing analytes
CN101615442B (zh) * 2009-07-16 2011-11-02 北京师范大学 用于会聚发散x射线的光学器件
CN101615444B (zh) * 2009-07-16 2012-01-11 北京师范大学 一种会聚x射线的光学器件
CN101615443B (zh) * 2009-07-16 2011-11-02 北京师范大学 用于会聚平行x射线的光学器件
US10295512B2 (en) 2015-12-08 2019-05-21 Dionex Corporation Multi-lumen mixing device for chromatography
CN106517083B (zh) * 2016-11-11 2017-11-07 中国建筑材料科学研究总院 一种微通道阵列及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276941A (en) * 1963-10-23 1966-10-04 Shell Oil Co Method for butt-welding thermoplastic members and product
US3989778A (en) * 1975-12-17 1976-11-02 W. R. Grace & Co. Method of heat sealing thermoplastic sheets together using a split laser beam
US4390384A (en) * 1977-12-20 1983-06-28 Hardigg Industries, Inc. Method and apparatus for bonding thermoplastic materials
SU986181A1 (ru) 1980-05-21 1991-08-15 Предприятие П/Я А-1342 Хроматографическа колонка
US4507119A (en) * 1982-07-06 1985-03-26 E. I. Du Pont De Nemours And Company Sterile docking process, apparatus and system
SU1651200A1 (ru) 1986-12-04 1991-05-23 Предприятие П/Я А-1882 Поликапилл рна хроматографическа колонка
SU1635128A1 (ru) 1987-09-14 1991-03-15 Предприятие П/Я А-1882 Способ изготовлени поликапилл рной хроматографической колонки
SU1635129A1 (ru) 1987-09-14 1991-03-15 Предприятие П/Я А-1882 Способ изготовлени поликапилл рной хроматографической колонки
US4933036A (en) * 1987-09-22 1990-06-12 Denco, Inc. Techniques for welding thermoplastic tubes
US5241157A (en) * 1990-04-27 1993-08-31 Georg Fischer Ag Arrangement for butt-welding plastic material components
DK0602960T3 (da) * 1992-12-16 1997-10-20 Tdw Delaware Inc Maskine til sammensmeltning af enderne af plastrør
DE4411330C2 (de) * 1994-03-25 2003-08-14 Muradin Abubekirovic Kumachov Verfahren zur Herstellung von polykapillaren oder monokapillaren Elementen sowie Verwendungen der Elemente
JP3422452B2 (ja) * 1995-12-08 2003-06-30 テルモ株式会社 チューブ接続装置
DE10112928C1 (de) * 2001-03-12 2002-08-22 Ifg Inst Fuer Geraetebau Gmbh Kapillaroptisches Element bestehend aus Kanäle bildenden Kapillaren und Verfahren zu dessen Herstellung
RU2190846C1 (ru) * 2001-04-19 2002-10-10 Институт катализа им. Г.К.Борескова СО РАН Хроматографическая поликапиллярная колонка
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action

Also Published As

Publication number Publication date
US7118671B2 (en) 2006-10-10
US20040217043A1 (en) 2004-11-04
EP1477799A1 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
RU2233445C1 (ru) Поликапиллярная хроматографическая колонка и способ ее изготовления
US3075241A (en) Multiple hole spinning nozzle and process of manufacture
WO1993025301A1 (en) Nanochannel filter
JP6910495B2 (ja) スート母材およびガラス光ファイバの作製方法
JPS6356179B2 (ru)
EP2211370A2 (en) Microchannel plate (MCP) having an asymmetric packing pattern for higher open area ratio (OAR)
CN107285618B (zh) 一种实心光微通道阵列面板及其制备方法
RU2003112601A (ru) Поликапиллярная хроматографическая колонка и способ ее изготовления
RU31859U1 (ru) Поликапиллярная хроматографическая колонка
DE4411330C2 (de) Verfahren zur Herstellung von polykapillaren oder monokapillaren Elementen sowie Verwendungen der Elemente
JP6875227B2 (ja) マルチコア光ファイバ母材の製造方法、及び、マルチコア光ファイバの製造方法
JPH11230956A (ja) クロマトグラフィで有用な円形断面多重毛管アセンブリ
RU2096353C1 (ru) Способ изготовления поликапиллярной жесткой волоконно-оптической структуры или элемента и устройство для управления рентгеновским и другими видами излучения
CN111398496B (zh) 一种交错阵列布置的微气相色谱柱
US4563250A (en) Method for producing multichannel plates
RU2323978C1 (ru) Устройство доставки и анализа биологических проб и способ его изготовления
US7126263B2 (en) Perforated mega-boule wafer for fabrication of microchannel plates (MCPs)
JP2002211941A (ja) フォトニッククリスタルファイバの製造方法
US7109644B2 (en) Device and method for fabrication of microchannel plates using a mega-boule wafer
US20050000249A1 (en) Device and method for reducing glass flow during the manufacture of microchannel plates
SU1635128A1 (ru) Способ изготовлени поликапилл рной хроматографической колонки
US20230330674A1 (en) Production of chemical reactors
JP6624611B2 (ja) 内燃エンジンのインジェクタのためのノズルを製造する方法
EP3810412A1 (en) Forming polymer optical devices by mold-constrained relaxation expansion
RU2001110095A (ru) Волноводы, имеющие аксиально изменяющуюся структуру

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20090812

MM4A The patent is invalid due to non-payment of fees

Effective date: 20130501