RU2215793C2 - Способ выплавки стали в конвертере - Google Patents
Способ выплавки стали в конвертере Download PDFInfo
- Publication number
- RU2215793C2 RU2215793C2 RU2002101595A RU2002101595A RU2215793C2 RU 2215793 C2 RU2215793 C2 RU 2215793C2 RU 2002101595 A RU2002101595 A RU 2002101595A RU 2002101595 A RU2002101595 A RU 2002101595A RU 2215793 C2 RU2215793 C2 RU 2215793C2
- Authority
- RU
- Russia
- Prior art keywords
- steel
- slag
- converter
- consumption
- total
- Prior art date
Links
Images
Landscapes
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Изобретение относится к черной металлургии, конкретнее - к выплавке стали в конвертере с особо низким содержанием фосфора. Технический результат снижение угара металлошихты и потерь металла со шлаком при получении стали с особо низким содержанием фосфора. Способ выплавки стали в конвертере включает заливку в конвертер жидкого чугуна, подачу твердой металлошихты и шлакообразующих материалов, продувку расплава кислородом сверху в два периода с промежуточным скачиванием шлака, изменение высоты положения фурмы в процессе продувки над уровнем расплава в спокойном состоянии, выпуск стали из конвертера. Общий расход кислорода в первый период продувки устанавливают по зависимости Q1= K•(Pч-Рс)•(l•Si + m + n)/Pч•Т, где Q1 - общий удельный расход кислорода в 1-й период продувки, м3/т выплавляемой стали; Рч - содержание фосфора в жидком чугуне, мас.%; Рс - необходимое содержание фосфора в выпускаемой из конвертера стали, мас.%; l - удельный расход жидкого чугуна, кг/т выплавляемой стали; m - удельный расход твердой металлошихты, кг/т выплавляемой стали; n - удельный общий расход шлакообразующих материалов, кг/т выплавляемой стали; Si - содержание кремния в жидком чугуне, доля; Т - температура жидкого чугуна, oC; К - эмпирический коэффициент, равный 12,7-65,3; м3•oС/кг. Продолжительность 1-го периода продувки устанавливают в пределах 0,1-0,8 общей продолжительности продувки. К концу 1-го и 2-го периодов продувки фурму опускают из начального верхнего положения в нижнее конечное положение на расстояние, равное 0,2-0,6 начального расстояния фурмы до уровня ванны расплава в спокойном состоянии. После промежуточного скачивания шлака во 2-м периоде продувку производят с общим расходом Q2 кислорода в пределах 10-50 м3/т выплавляемой стали. В качестве шлакообразующих материалов можно использовать известь и магнийсодержащие материалы с удельным расходом в пределах соответственно 55-80 и 10-40 кг/т выплавляемой стали. В 1-й период продувки желательно в конвертер подавать 0,4-0,8 шлакообразующих материалов от общего их удельного расхода. 2 з.п. ф-лы, 1 табл.
Description
Изобретение относится к черной металлургии, конкретнее к выплавке стали в конвертере с особо низким содержанием фосфора.
Наиболее близким по технической сущности является способ выплавки стали в конвертере, включающий заливку в конвертер жидкого чугуна, подачу в конвертер твердой металлошихты и шлакообразущих материалов, продувку расплава в два периода с промежуточным скачиванием шлака, изменение высоты положения фурмы в процессе продувки над уровнем расплава в спокойном состоянии, а также выпуск стали из конвертера.
/См. Справочник конверторщика. Якушев А.М. - Челябинск: Металлургия, Челябинское отделение. 1990, с.260-262/.
Недостатком известного способа является большой угар металлошихты, значительные потери металла со шлаком, высокое содержание фосфора в выплавляемой стали. Это объясняется большим количеством образующегося шлака неоптимального состава, режимом продувки в конвертере расплава, большой длительностью продувки расплава незаглубленной струей кислорода, что приводит к значительному выносу металла и уменьшению стойкости футеровки. Большое количество образующегося шлака приводит к увеличению потерь металла со шлаком. При этом к моменту промежуточного скачивания шлак имеет малую жидкоподвижность, что приводит к увеличению потерь металла при скачивании и снижению степени дефосфорации расплава.
Технический эффект при использовании изобретения заключается в снижении угара металлошихты и потерь металла со шлаком при получении стали с особо низким содержанием фосфора.
Указанный технический эффект достигают тем, что способ выплавки стали в конвертере включает заливку в конвертер жидкого чугуна, подачу твердой металлошихты и шлакообразующих материалов, продувку расплава кислородом сверху в два периода с промежуточным скачиванием шлака, изменение высоты положения фурмы в процессе продувки над уровнем расплава в спокойном состоянии, выпуск стали из конвертера.
Общий расход кислорода в первый период продувки устанавливают по зависимости:
Q1=K•(PЧ-РС)•(l•si+m+n)/PЧ•T;
где Q1 - общий удельный расход кислорода в 1-й период продувки, м3/т выплавляемой стали;
Рч - содержание фосфора в жидком чугуне, мас.%;
Рс - необходимое содержание фосфора в выпускаемой из конвертера стали, мас.%;
l - удельный расход жидкого чугуна, кг/т выплавляемой стали;
m - удельный расход твердой металлошихты, кг/т выплавляемой стали;
n - удельный общий расход шлакообразущих материалов, кг/т выплавляемой стали;
Si - содержание кремния в жидком чугуне, доля;
Т - температура жидкого чугуна,oС;
К - эмпирический коэффициент, характеризующий физико-химические закономерности обезуглероживания и дефосфорации стали в 1-й период продувки, равный 12.7-65,3; м3•oС/кг.
Q1=K•(PЧ-РС)•(l•si+m+n)/PЧ•T;
где Q1 - общий удельный расход кислорода в 1-й период продувки, м3/т выплавляемой стали;
Рч - содержание фосфора в жидком чугуне, мас.%;
Рс - необходимое содержание фосфора в выпускаемой из конвертера стали, мас.%;
l - удельный расход жидкого чугуна, кг/т выплавляемой стали;
m - удельный расход твердой металлошихты, кг/т выплавляемой стали;
n - удельный общий расход шлакообразущих материалов, кг/т выплавляемой стали;
Si - содержание кремния в жидком чугуне, доля;
Т - температура жидкого чугуна,oС;
К - эмпирический коэффициент, характеризующий физико-химические закономерности обезуглероживания и дефосфорации стали в 1-й период продувки, равный 12.7-65,3; м3•oС/кг.
Продолжительность 1-го периода продувки устанавливают в пределах 0,1-0,8 общей продожительности продувки. К концу 1-го и 2-го периодов продувки фурму опускают из начального верхнего положения Н1 в нижнее конечное положение Н2 на расстояние, равное 0,2-0,6 начального расстояния фурмы до уровня ванны расплава в спокойном состоянии. После промежуточного скачивания шлака во 2-м периоде продувку производят с общим расходом Q2 кислорода в пределах 10-50 м3/т выплавляемой стали.
В качестве шлакообразущих материалов используют известь и магнийсодержащие материалы с удельным расходом в пределах соответственно, 55-80 и 10-40 кг/т выплавляемой стали. В 1-й период продувки в конвертер подают 0,4-0,8 шлакообразующих материалов от общего их удельного расхода.
Снижение угара металлошихты и потерь металла со шлаком при получении стали с особонизким содержанием фосфора будет происходить вследствие оптимизации количества образующегося шлака и режима продувки расплава кислородом в конвертере, уменьшения длительности продувки незаглубленной струей кислорода и исключения условий создания избыточного количества шлака. При этом происходит образование гомогенного жидкоподвижного шлака к моменту промежуточного скачивания, что исключает повышенные потери металла при скачивании. Максимальная степень дефосфорации достигается за счет того, что с первых минут продувки создается шлак оптимального состава с высоким содержанием окислов кальция и железа. Скачивание шлака производится в момент наибольшего удаления фосфора из расплава в шлак.
Диапазон значений продолжительности 1-го периода продувки в пределах 0,1-0,8 общей продолжительности продувки объясняется физико-химическими закономерностями процесса дефосфорации расплава. При меньших значениях степень удаления фосфора из расплава будет недостаточной. При больших значениях будет происходить восстановление фосфора из-за повышенной температуры расплава.
Диапазон значений расстояния опускания фурмы в пределах 0,2-0,6 от начального расстояния фурмы до уровня ванны расплава в спокойном состоянии объясняется физико-химическими закономерностями наведения шлака и взаимодействия струи кислорода с расплавом. При меньших значениях количество наведенного шлака будет недостаточным. При больших значениях будет происходить вынос металла из конвертера.
Диапазон значений общего расхода кислорода во 2-м периоде продувки в пределах 10-50 м3/т выплавляемой стали объясняется физико-химическими закономерностями наведения нового шлака после его скачивания. При меньших значениях не будет наводиться новый шлак. При больших значениях будет происходить перерасход кислорода и увеличиваются потери металла.
Диапазон расходов извести и магнийсодержащих материалов в пределах 55-80 и 10-40 кг/т выплавляемой стали соответственно объясняется физико-химическими закономерностями дефосфорации расплава. При меньших значениях снижается эффективность дефосфорации. При больших значениях будет происходить перерасход материалов и повышаются потери металла со шлаком.
Диапазон значений количества шлакообразующих материалов, подаваемых в 1-й период продувки, в пределах 0,4-0,8 общего их количества объясняется физико-химическими закономерностями процесса наведения шлака. При меньших значениях количество наводимого шлака будет недостаточным. При больших значениях будет происходить перерасход шлакообразущих материалов.
Диапазон значений эмпирического коэффициента "К" в пределах 12,7-65,3 объясняется физико-химическими закономерностями обезуглероживания и дефосфорации расплава в 1-й период продувки. При больших значениях будет происходить перерасход кислорода. При меньших значениях не будет происходить необходимая дефосфорация расплава.
Анализ научно-технической и патентной литературы показывает отсуствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".
Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.
Способ выплавки стали в конвертере осуществляют следующим образом.
Пример. В процессе выплавки стали марки 09ГСФ в конвертер заливают жидкий чугун, подают твердую металлошихту и шлакообразующие материалы, продувают расплав кислородом сверху через погружную фурму в два периода с промежуточным скачиванием шлака. В процессе продувки изменяют высоту положения фурмы над уровнем расплава в спокойном состоянии. После выплавки сталь выпускают в сталеразливочный ковш.
Общий расход кислорода в 1-й период продувки устанавливают по зависимости:
Q1=K•(Pч-Рc)•(l•Si+m+n)/Pч•T
где Q1 - общий удельный расход кислорода в 1-й период продувки м3/т выплавляемой стали;
Pч - содержание фосфора в жидком чугуне, мас.%;
Рс - необходимое содержание фосфора в выпускаемой из конвертера стали, маc.%;
l - удельный расход жидкого чугуна, кг/т выплавляемой стали;
m - удельный расход твердой металлошихты, кг/т выплавляемой стали;
n - удельный общий расход шлакообразующих материалов, кг/т выплавляемой стали;
Si - содержание кремния в жидком чугуне, доля;
Т - температура жидкого чугуна,oС;
К - эмпирический коэффициент, характеризующий физико-химические закономерности обезуглероживания и дефосфорации стали в 1-й период продувки, равный м3•oС/кг.
Q1=K•(Pч-Рc)•(l•Si+m+n)/Pч•T
где Q1 - общий удельный расход кислорода в 1-й период продувки м3/т выплавляемой стали;
Pч - содержание фосфора в жидком чугуне, мас.%;
Рс - необходимое содержание фосфора в выпускаемой из конвертера стали, маc.%;
l - удельный расход жидкого чугуна, кг/т выплавляемой стали;
m - удельный расход твердой металлошихты, кг/т выплавляемой стали;
n - удельный общий расход шлакообразующих материалов, кг/т выплавляемой стали;
Si - содержание кремния в жидком чугуне, доля;
Т - температура жидкого чугуна,oС;
К - эмпирический коэффициент, характеризующий физико-химические закономерности обезуглероживания и дефосфорации стали в 1-й период продувки, равный м3•oС/кг.
Продолжительность 1-го периода продувки устанавливают в пределах 0,1-0,8 общей продолжительности продувки. К концу 1-го и 2-го периодов продувки фурму опускают из начального верхнего положения Н1 в нижнее конечное положение Н2 на расстояние, равное 0,2-0,6 начального расстояния фурмы до уровня ванны расплава в спокойном состоянии. После промежуточного скачивания шлака во 2-м периоде продувку производят с общим расходом Q2 кислорода в пределах 10-50 м3/т выплавляемой стали.
В качестве шлакообразующих материалов используют известь и магнийсодержащие материалы с удельным расходом в пределах соответственно 55-80 и 10-40 кг/т выплавляемой стали. В 1-й период продувки в конвертер подают 0,4-0,8 шлакообразующих материалов от общего их удельного расхода.
При такой организации процесса выплавки стали происходит наведение необходимого и достаточного количества шлака в 1-й период продувки, имеющего оптимальный состав и жидкоподвижность, позволяющего произвести максимально возможное удаление фосфора из расплава в шлак. При этом количество и физикохимическое состояние шлака таково, что потери металла при скачивании шлака минимальны. Расходы кислорода и шлакообразующих материалов во 2-м периоде продувки устанавливаются таким образом, что позволяют минимизировать расход шлакообразующих материалов и потери металла при продувке расплава во второй период.
В таблице приведены примеры осуществления способа с различными технологическими параметрами.
В первом и пятом примерах вследствие несоблюдения технологических параметров не обеспечивается необходимая дефосфорация готовой стали, снижение угара металлошихты, снижение потерь металла со шлаком,
В оптимальных примерах 2-4 вследствие соблюдения технологических параметров необходимым значениям обеспечивается снижение содержания в выплавляемой стали фосфора, уменьшаются угар металлошихты и потери металла со шлаком при промежуточном скачивании.
В оптимальных примерах 2-4 вследствие соблюдения технологических параметров необходимым значениям обеспечивается снижение содержания в выплавляемой стали фосфора, уменьшаются угар металлошихты и потери металла со шлаком при промежуточном скачивании.
Claims (3)
1. Способ выплавки стали в конвертере, включающий заливку в конвертер жидкого чугуна, подачу твердой металлошихты и шлако-образующих материалов, продувку расплава кислородом сверху в два периода с промежуточным скачиванием шлака, изменение высоты положения фурмы в процессе продувки над уровнем расплава в спокойном состоянии, выпуск стали из конвертера, отличающийся тем, что общий расход кислорода в первый период продувки устанавливают по зависимости
Q1= K•(Pч-Рс)•(l•Si + m + n)/Pч•Т;
где Q1 - общий удельный расход кислорода в 1-й период продувки, м3/т выплавляемой стали;
Рч - содержание фосфора в жидком чугуне, мас. %;
Рс - необходимое содержание фосфора в выпускаемой из конвертера стали, мас. %;
l - удельный расход жидкого чугуна, кг/т выплавляемой стали;
m - удельный расход твердой металлошихты, кг/т выплавляемой стали;
n - удельный общий расход шлакообразующих материалов, кг/т выплавляемой стали;
Si - содержание кремния в жидком чугуне, доля;
Т - температура жидкого чугуна, oC;
К - эмпирический коэффициент, характеризующий физико-химические закономерности обезуглероживания и дефосфорации стали в 1-й период продувки, равный 12,7-65,3; м3 • oС/кг,
продолжительность 1-го периода продувки устанавливают в пределах 0,1-0,8 общей продолжительности продувки, при этом к концу 1-го и 2-го периодов продувки фурму опускают из начального верхнего положения в нижнее конечное положение на расстояние, равное 0,2-0,6 начального расстояния фурмы до уровня ванны расплава в спокойном состоянии, а после промежуточного скачивания шлака во 2-м периоде продувку производят с общим расходом O2 кислорода в пределах 10-50 м3/т выплавляемой стали.
Q1= K•(Pч-Рс)•(l•Si + m + n)/Pч•Т;
где Q1 - общий удельный расход кислорода в 1-й период продувки, м3/т выплавляемой стали;
Рч - содержание фосфора в жидком чугуне, мас. %;
Рс - необходимое содержание фосфора в выпускаемой из конвертера стали, мас. %;
l - удельный расход жидкого чугуна, кг/т выплавляемой стали;
m - удельный расход твердой металлошихты, кг/т выплавляемой стали;
n - удельный общий расход шлакообразующих материалов, кг/т выплавляемой стали;
Si - содержание кремния в жидком чугуне, доля;
Т - температура жидкого чугуна, oC;
К - эмпирический коэффициент, характеризующий физико-химические закономерности обезуглероживания и дефосфорации стали в 1-й период продувки, равный 12,7-65,3; м3 • oС/кг,
продолжительность 1-го периода продувки устанавливают в пределах 0,1-0,8 общей продолжительности продувки, при этом к концу 1-го и 2-го периодов продувки фурму опускают из начального верхнего положения в нижнее конечное положение на расстояние, равное 0,2-0,6 начального расстояния фурмы до уровня ванны расплава в спокойном состоянии, а после промежуточного скачивания шлака во 2-м периоде продувку производят с общим расходом O2 кислорода в пределах 10-50 м3/т выплавляемой стали.
2. Способ по п. 1, отличающийся тем, что в качестве шлакообразующих материалов используют известь и магнийсодержащие материалы с удельным расходом соответственно 55-80 и 10-40 кг/т выплавляемой стали.
3. Способ по п. 1, отличающийся тем, что в 1-й период продувки в конвертер подают 0,4-0,8 шлакообразующих материалов от общего их удельного расхода.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002101595A RU2215793C2 (ru) | 2002-01-15 | 2002-01-15 | Способ выплавки стали в конвертере |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002101595A RU2215793C2 (ru) | 2002-01-15 | 2002-01-15 | Способ выплавки стали в конвертере |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2002101595A RU2002101595A (ru) | 2003-08-27 |
RU2215793C2 true RU2215793C2 (ru) | 2003-11-10 |
Family
ID=32027297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2002101595A RU2215793C2 (ru) | 2002-01-15 | 2002-01-15 | Способ выплавки стали в конвертере |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2215793C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2493262C2 (ru) * | 2008-12-17 | 2013-09-20 | Смс Симаг Акциенгезельшафт | Способ выплавки стали в кислородном конвертере |
-
2002
- 2002-01-15 RU RU2002101595A patent/RU2215793C2/ru active
Non-Patent Citations (1)
Title |
---|
ЯКУШЕВ А.М. Справочник конвертерщика. - Челябинск: Металлургия, 1990, с. 260-262. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2493262C2 (ru) * | 2008-12-17 | 2013-09-20 | Смс Симаг Акциенгезельшафт | Способ выплавки стали в кислородном конвертере |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102373316B (zh) | 钢包精炼炉的渣系的控制方法 | |
RU2215793C2 (ru) | Способ выплавки стали в конвертере | |
RU2527508C2 (ru) | Способ выплавки и внепечной обработки высококачественной стали для железнодорожных рельсов | |
CN102344993A (zh) | 一种改变钢水夹杂物性质的方法 | |
RU2465337C1 (ru) | Способ выплавки стали в кислородном конвертере | |
RU2112045C1 (ru) | Способ выплавки стали в конвертере | |
RU2185448C1 (ru) | Способ обработки стали в ковше | |
RU2202628C2 (ru) | Способ раскисления и легирования стали | |
RU2031131C1 (ru) | Способ выплавки стали в конвертере | |
RU2404261C1 (ru) | Способ совмещенного процесса нанесения шлакового гарнисажа и выплавки стали в конвертере | |
RU2218419C2 (ru) | Способ выплавки стали в конвертере | |
RU2002101595A (ru) | Способ выплавки стали в конвертере | |
RU2133279C1 (ru) | Способ выплавки стали в конвертере | |
RU2051179C1 (ru) | Способ выплавки стали в конвертере | |
RU2159289C1 (ru) | Способ выплавки стали в конвертере | |
RU2154679C1 (ru) | Способ выплавки электротехнической стали в конвертере | |
RU2228368C1 (ru) | Способ производства стали | |
SU1585340A1 (ru) | Способ выплавки стали в кислородном конвертере | |
RU2179586C1 (ru) | Способ производства стали в кислородном конвертере | |
JPS6027726B2 (ja) | 取鍋による溶鋼の精錬方法 | |
RU2205231C1 (ru) | Способ передела чугуна в конвертере | |
SU1261961A1 (ru) | Способ выплавки стали в конвертере из фосфористого чугуна | |
RU2150515C1 (ru) | Способ рафинирования высокоуглеродистого расплава металла | |
SU1617002A1 (ru) | Способ выплавки стали в конвертере | |
SU1310433A1 (ru) | Способ нейтрализации конечного шлака |