RU2185448C1 - Способ обработки стали в ковше - Google Patents

Способ обработки стали в ковше Download PDF

Info

Publication number
RU2185448C1
RU2185448C1 RU2001117605/02A RU2001117605A RU2185448C1 RU 2185448 C1 RU2185448 C1 RU 2185448C1 RU 2001117605/02 A RU2001117605/02 A RU 2001117605/02A RU 2001117605 A RU2001117605 A RU 2001117605A RU 2185448 C1 RU2185448 C1 RU 2185448C1
Authority
RU
Russia
Prior art keywords
steel
slag
ladle
mixture
forming material
Prior art date
Application number
RU2001117605/02A
Other languages
English (en)
Inventor
В.С. Лисин
В.Н. Скороходов
В.П. Настич
А.А. Соколов
В.И. Синюц
И.Н. Анисимов
Г.А. Аглямова
В.А. Мамышев
В.М. Кукарцев
В.Г. Мизин
Ю.Ф. Суханов
В.Н. Хребин
Ю.М. Балабанов
Д.В. Захаров
Original Assignee
Открытое акционерное общество "Новолипецкий металлургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Новолипецкий металлургический комбинат" filed Critical Открытое акционерное общество "Новолипецкий металлургический комбинат"
Priority to RU2001117605/02A priority Critical patent/RU2185448C1/ru
Application granted granted Critical
Publication of RU2185448C1 publication Critical patent/RU2185448C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Изобретение относится к металлургии, конкретнее - к внепечной обработке стали в ковше. Технический результат - обеспечение регламентированного раскисления шлака в ковше, снижение угара алюминия и марганецсодержащих материалов при внепечной обработке. Способ обработки стали в ковше включает выпуск стали из сталеплавильного агрегата в ковш. После выпуска стали через 0,01-1,0 мин в ковш подают смесь раскислителя и шлакообразующего материала, содержащего оксиды кальция и магния, расход которой устанавливают по зависимости: P = K•τ•T/F•M, где Р - расход смеси раскислителя и шлакообразующего материала, кг/т стали; τ - время выпуска стали, мин; Т - температура стали на выпуске, oС; F - площадь зеркала металла в ковше, м2; М - масса стали в ковше, т; К - эмпирический коэффициент, равный 0,15-2,3, кг•м2/мин•oC. Содержание раскислителя в смеси устанавливают в пределах 5-35 мас.%, а содержание шлакообразующего материала - 65-95 мас.% с фракцией 5-60 мм. В процессе внепечной обработки сталь в ковше продувают аргоном через погружную фурму с расходом 0,001-0,007 м3/мин•т стали и легируют алюминием в виде катанки с расходом 0,1-3,0 кг/т стали и марганецсодержащим материалом с расходом 0,1-5,0 кг/т стали. Желательно раскислять шлак в ковше до содержания в нем 5-15 мас. % общего железа. Содержание в шлакообразующем материале оксидов магния составляет 1-50 мас.%, остальное - оксиды кальция. В качестве раскислителя могут использовать гранулы алюминия с фракцией 5-30 мм. Возможно использование в качестве раскислителя кремнийсодержащего материала с фракцией 5-50 мм. Возможно использование в качестве раскислителя смеси гранул алюминия и кремнийсодержащего материала в соотношении 1:(1-10). 5 з.п.ф-лы, 1 табл.

Description

Изобретение относится к металлургии, конкретнее к процессам обработки стали в ковше после ее выпуска из сталеплавильного агрегата.
Известен способ обработки стали в ковше, включающий выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска шлакообразующих материалов и раскислителей, подачу в ковш алюминиевой проволоки в виде раскпслителя. Сталь в ковше продувают нейтральные газон сверху через погружную фурму. В качестве шлакообразующих материалов используют известково-глиназемистый шлак.
(См. Технология производства стали в современных, конвертерных цехах. С. В. Колпаков и др. М.: Машиностроение. 1991, с.212).
Недостатком известного способа является перерасход раскислителей.
Наиболее близким по технической сущности является способ обработки стали в ковше, включающий выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш смеси раскислителя и содержащего оксиды кальция шлакообразующего материала, наведение шлака, продувку стали аргоном через погружную фурму и ее легирование алюминием и марганецсодержащим материалом.
(См. патент СССР 1768649, МПК С 21С 7/06. Бюлл. изобр. 38, 1992).
Недостатком известного способа является перерасход раскислителей. Это объясняется тем, что в процессе выпуска стали из сталеплавильного агрегата происходит значительный неконтролируемый угар раскислителей за счет интенсивного восстановления в. шлаке железа до 1,0-1,5 мас.% и их взаимодействия с атмосферой.
Технический эффект при использовании изобретения заключается в регламентированном раскислении шлака в ковше, смесью раскислителя и марганецсодержащего материала, в снижении угара алюминия и марганецсодержащих материалов при внепечной обработке стали в ковше.
Указанный технический эффект достигают тем, что способ обработки стали в ковше включает выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш смеси раскислителя и содержащего оксиды кальция шлакообразующсго материала, наведение шлака, продувку стали аргоном через погружную фурму и ее легирование алюминием и марганецсодержащим материалом.
Смесь раскислителя и шлакообразующего материала подают в ковш через 0,01-0,1 мин после выпуска стали, при этом расход смеси устанавливают по следующей зависимости:
P = K•τ•F•M,
где Р - расход смеси раскислителя и шлакообразупцей смеси кг/т стали;
τ - время выпуска стали, мин;
Т - температура стали на выпуске, oC;
F - площадь зеркала металла в ковше, м2;
М - масса стали в ковше, т;
К - эмпирический коэффициент, характеризующий физико-химические закономерности раскисления шлака, образующегося в ковше в процессе обработки стали, равный 0,15-2,3, кг•м2/мин•oC.
Содержание раскислителя в смеси устанавливают равным 5-35 мас. %, содержание шлакообразующего материала фракцией 5-60 мм - 65-95 мас.%, расход аргона, подаваемого через погружную фурму, поддерживают в пределах 0,001-0,007 м/мин•т стали. Сталь легируют алюминием в виде катанки с расходом 0,1-3,0 кг/т стали и с расходом марганецсодержащего материала 0,1-5,0 кг/т стали.
Шлак в ковше раскисляют до содержания в нем 5-15 мас.% общего железа. Используют шлакообразующий материал, содержащий, мас.%, оксиды магния 1-50, остальное - оксиды кальция. В качестве раскислителя в смеси используют гранулы алюминия фраккцией 5-30 мм. В качестве раскислителя в смеси используют кремнийсодержащий материал фракцией 5-50 мм. В качестве раскислителя в смеси используют смесь гранул алюминия и кремнийсодержащего материала в соотношении 1:(1-10).
Снижение расхода алюминиевой катанки и марганецсодержащего материала будет происходить вследствие обеспечения гарантированного необходимого содержания окислов железа в наведенном покровном шлаке в ковше. При контакте наведенного шлака с металлом, насыщенного раскислителем, достигается уменьшение угара алюминиевой катанки и марганецсодержащего материала. Этому способствует низкое содержание окислов железа в шлаке и регламентация их содержания в шлаке до необходимого оптимального значения.
Введение в ковш раскислителя в виде гранул алюминия и кусков кремнийсодержащего материала способствует восстановлению железа из шлака и снижению его окисленности. Введение в ковш шлакообразующего материала в виде оксидов магния и кальция способствует разбавлению образующегося шлака и снижению содержания общего железа в шлаке и его окисленности.
При содержании Feобщ. в шлаке в пределах 50-15 мас.% происходит снижение угара /окисления/ алюминиевой катанки и марганецсодержащего материала в шлаке, а также повышается эффективность процесса раскисления стали при одновременном сокращении расходов алюминиевой катанки и марганецсодержащих материалов в процессе внепечной обработки стали.
Диапазон значений эмпирического коэффициента К в пределах 0,15-2,3 объясняется физико-химическими закономерностями процесса раскисления образующегося шлака в ковше в процессе обработки стали. При меньших значениях не будет происходить необходимого раскисления шлака. При больших значениях будет происходить перерасход смеси.
Указанный диапазон устанавливают в зависимости от массы стали в ковше.
Диапазон значений содержания в смеси раскислителя в пределах 5-35 мас.% объясняется физико-химическими закономерностями процесса раскисления образующегося шлака в процессе обработки стали. При меньших значениях не будет обеспечиваться необходимая степень раскисления шлака. При больших значениях будет происходить перерасход раскислителя.
Указанный диапазон устанавливают в зависимости от расхода смеси.
Диапазон значений содержания шлакообразующего материала в смеси в пределах 65-95 мас.% объясняется физико-химическими закономерностями шлакообразования в процессе обработки стали в ковше. При меньших значениях будет повышаться концентрация железа в шлаке вследствие снижения количества образующегося шлака. При больших значениях будет происходить переохлаждение стали в ковше при одновременном перерасходе шлакообразующего материала.
Указанный диапазон устанавливают в зависимости от расхода смеси.
Диапазон содержания общего железа в раскисленном шлаке в пределах 5-15 мас. % объясняется физико-химическими закономерностями процесса раскисления шлака, образующегося в ковше при обработке стали. При меньших значениях будет происходить перерасход смеси. При больших значениях будет происходить недостаточное раскисление шлака для дальнейшего передела стали.
Указанный диапазон устанавливают в зависимости от массы стали в ковше.
Диапазон значений времени в пределах 0,01-1,0 мин, по истечении которого в ковш подают смесь, объясняется физическими закономерностями всплывания частиц шлака из стали и теплофизическими закономерностями его затвердевания. При меньших значениях не будут успевать всплывать все частички шлака. При больших значениях шлак будет затвердевать и превращаться в корку.
Указанный диапазон устанавливают в зависимости от емкости ковша.
Диапазон значений фракций гранул алюминия в пределах 5-30 мм и кусков кремнийсодержащего материала в пределах 5-60 мм объясняется физико-химическими закономерностями взаимодействия раскислителя с окислами железа в шлаке. При меньших значениях раскислитель будет сгорать в атмосфере. При больших значениях будет увеличиваться длительность взаимодействия раскислителя со шлаком сверх допустимых значений.
Указанный диапазон устанавливают в зависимости от емкости ковша.
Диапазон значений соотношения содержания гранул алюминия и кремнийсодержащего материала в смеси в пределах 1:/1-10/ объясняется физико-химическими закономерностями плавления раскислителя и его взаимодействия со шлаком. При меньших значениях будет происходить недостаточное раскисление шлака. При больших значениях будет происходить повышенный угар алюминия.
Указанный диапазон устанавливают в зависимости от емкости ковша.
Диапазон значений содержания в шлакообразующем материале оксидов магния в пределах 1-50 мас.% объясняется физико-химическими свойствами образующегося шлака. При меньших значениях образующийся шлак будет слишком жидкоподвижным, что приведет к повышенному угару алюминиевой катанки и оксидов магния. При больших значениях шлак будет обладать большой вязкостью, что также приведет к угару раскислителя.
Указанный диапазон устанавливают в зависимости от температуры стали на выпуске из сталеплавильного агрегата.
Диапазон значений фракции шлакообразующего материала, содержащего оксиды кальция и/или магния, в пределах 5-60 мм объясняется физико-химическими закономерностями растворения шлакообразующих материалов. При меньших значениях будет происходить повышенный вынос шлакообразующего материала из ковша в процессе его подачи. При больших значениях будет увеличиваться время растворения шлакообразующего материала сверх допустимых значений.
Указанный диапазон устанавливают в зависимости от емкости ковша.
Диапазон расхода алюминиевой катанки в пределах 0,1-3,0 кг/т стали объясняется физико-химическими закономерностями раскисления стали. При меньших значениях раскисленность расплава будет недостаточной. При больших значениях будет происходить перерасход алюминиевой катанки.
Указанный диапазон устанавливают в зависимости от расхода смеси.
Диапазон расхода аргона в пределах 0,001-0,007 м3/мин•т стали объясняется закономерностями перемешивания стали в ковше. При меньших значения интенсивность перемешивания стали в ковше будет недостаточной. При больших значениях будет происходить перерасход аргона.
Указанный диапазон устанавливают в зависимости от массы стали в ковше.
Диапазон расхода марганецсодержащего материала в пределах 0,1-5,0 кг/т стали объясняется физико-химическими закономерностями легирования стали. При меньших значениях легирование стали будет недостаточным. При больших значениях будет происходить перерасход марганецсодержащего материала.
Указанный диапазон устанавливают в зависимости от массы стали в ковше.
Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".
Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.
Способ обработки стали в ковше осуществляют следующим образом.
Пример. После выплавки в конвертере стали марки 08Ю с химическим составом мас. %: С=0,03-0,09; Мn=0,15-0,35;Si≤0,03; Al=0,02-0,07; S=0,015-0,025; Р≤0,020 выпускают в сталеразливочный ковш соответствующей емкости.
Далее сталь в ковше подвергают внепечной обработке.
После выпуска стали из конвертера через 0,01-1,0 мин в ковш подают смесь раскислителя и шлакообразующего материала, содержащего оксиды кальция в виде извести и магния в виде доломита. Расход смеси устанавливают по зависимости:
P = K•τ•F•M,
где Р - расход смеси раскислителя и шлакообразующего материала, кг/т стали;
τ - время выпуска стали, мин;
Т - температура стали на выпуске, oC;
Р - площадь зеркала металла в ковше, м2;
М - масса стали в ковше, т;
К - эмпирический коэффициент, характеризующий физико-химические закономерности раскисления шлака, образующегося в ковше в процессе обработки стали, равный 0,15-2,3, кг•м2/мин•oC.
Содержание раскислителя в смеси устанавливают в пределах 5-35 мас.%, а шлакообразующего материала с фракцией 5-60 мм - в пределах 65-95 мас.%.
В процессе обработки стали в ковше производят раскисление образующегося шлака до содержания в нем 5-15 мас.% общего железа. Содержание в шлакообразующем материале оксидов магния устанавливают в пределах 1-50 мас.%. остальное - оксиды кальция.
В качестве раскислителя используют гранулы алюминия с фракцией 5-30 мм. Возможно в качестве раскислителя применение кремнийсодержащего материала, например ферросилиция с фракцией 5-50 мм или смеси гранул алюминия и кремнийсодержащего материала в соотношении 1:/1-10/.
В процессе обработки стали в ковше обеспечивается гарантированное необходимое содержание окислов железа в наводимом покровном шлаке в ковше. При контакте наведенного шлака со сталью, насыщенного раскислителем, достигается уменьшение угара раскислителя. Этому способствует низкое содержание окислов железа в шлаке и регламентации их содержания в шлаке до необходимого оптимального значения в пределах 5-15 мас.%.
При дальнейшей внепечной обработке сталь в ковше продувают аргоном через погружную фурму с расходом 0,001-0,007 м3/ мин•т стали и легируют алюминием в виде катанки диаметром 8-12 мм с расходом 0,1-3,0 кг/т стали и марганецсодержащим материалом в виде кусков, например ферромарганца, с расходом 0,1-5,0 кг/т стали.
В таблице приведены примеры осуществления способа с различными технологическими параметрами.
В первом и пятом примерах вследствие несоответствия технологических параметров необходимым значениям не обеспечивается снижение расхода алюминиевой катанки марганецсодержащего материала при внепечной обработке стали после ее предыдущей обработки в ковше после выпуска из конвертера. Кроме того, не обеспечивается необходимое оптимальное содержание общего железа в наведенном шлаке перед внепечной обработкой стали.
В оптимальных примерах 2-4 вследствие соответствия технологических параметров оптимальным значением обеспечивается сокращение расходов алюминиевой катанки и марганецсодержащего материала при внепечной обработке стали после ее предыдущей обработки в ковше. Кроме того, обеспечивается необходимое оптимальное содержание общего железа в наведенном шлаке в ковше перед внепечной обработкой стали.

Claims (6)

1. Способ обработки стали в ковше, включающий выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш смеси раскислителя и содержащего оксиды кальция шлакообразующего материала, наведение шлака, продувку стали аргоном через погружную фурму и ее легирование алюминием и марганецсодержащим материалом, отличающийся тем, что смесь раскислителя и шлакообразующего материала подают в ковш через 0,01-1,0 мин после выпуска стали, при этом расход смеси устанавливают по следующей зависимости:
P = K•τ•T/F•M,
где P - расход смеси раскислителя и шлакообразующего материала, кг/т стали;
τ - время выпуска стали, мин;
T - температура стали на выпуске, oС;
F - площадь зеркала металла в ковше, м2;
М - масса стали в ковше, т;
K - эмпирический коэффициент, характеризующий физико-химические закономерности раскисления шлака, образующегося в ковше в процессе обработки стали, равный 0,15-2,3, кг•м2/мин•oС,
при этом содержание раскислителя в смеси устанавливают равным 5-35 мас. %, содержание шлакообразующего материала c фракцией 5-60 мм - равным 65-95 мас. %, а расход аргона, подаваемого через погружную фурму, поддерживают в пределах 0,001-0,007 м3/мин•т стали, причем сталь легируют алюминием в виде катанки с расходом 0,1-3,0 кг/т стали и с расходом марганецсодержащего материала 0,1-5,0 кг/т стали.
2. Способ по п. 1, отличающийся тем, что шлак в ковше раскисляют до содержания в нем 5-15 мас. % общего железа.
3. Способ по п. 1, отличающийся тем, что используют шлакообразующий материал, содержащий, мас. %: оксиды магния - 1-50 мас. %, остальное - оксиды кальция.
4. Способ по любому из пп. 1-3, отличающийся тем, что в качестве раскислителя в смеси используют гранулы алюминия с фракцией 5-30 мм.
5. Способ по любому из пп. 1-3, отличающийся тем, что в качестве раскислителя в смеси используют кремнийсодержащий материал с фракцией 5-50 мм.
6. Способ по любому из пп. 1-3, отличающийся тем, что в качестве раскислителя в смеси используют смесь гранул алюминия и кремнийсодержащего материала в соотношении 1: (1-10) соответственно.
RU2001117605/02A 2001-06-28 2001-06-28 Способ обработки стали в ковше RU2185448C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001117605/02A RU2185448C1 (ru) 2001-06-28 2001-06-28 Способ обработки стали в ковше

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001117605/02A RU2185448C1 (ru) 2001-06-28 2001-06-28 Способ обработки стали в ковше

Publications (1)

Publication Number Publication Date
RU2185448C1 true RU2185448C1 (ru) 2002-07-20

Family

ID=20251136

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001117605/02A RU2185448C1 (ru) 2001-06-28 2001-06-28 Способ обработки стали в ковше

Country Status (1)

Country Link
RU (1) RU2185448C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838990A1 (fr) * 2002-04-29 2003-10-31 Mannesmann Roehren Werke Ag Procede pour fabriquer un acier calme a l'aluminium
RU2465341C2 (ru) * 2011-01-20 2012-10-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ обработки низкоуглеродистой стали в ковше
CN113981302A (zh) * 2020-12-24 2022-01-28 天津荣程联合钢铁集团有限公司 一种含铝低碳钢及制备工艺

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838990A1 (fr) * 2002-04-29 2003-10-31 Mannesmann Roehren Werke Ag Procede pour fabriquer un acier calme a l'aluminium
GB2388847A (en) * 2002-04-29 2003-11-26 Mannesmann Roehren Werke Ag A method of making ultra-low-carbon aluminium killed steel
GB2388847B (en) * 2002-04-29 2005-03-09 Mannesmann Roehren Werke Ag Method for producing an Al-killed steel
RU2465341C2 (ru) * 2011-01-20 2012-10-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ обработки низкоуглеродистой стали в ковше
CN113981302A (zh) * 2020-12-24 2022-01-28 天津荣程联合钢铁集团有限公司 一种含铝低碳钢及制备工艺

Similar Documents

Publication Publication Date Title
CN104498661A (zh) 一种高碳钢氧含量的控制方法
RU2185448C1 (ru) Способ обработки стали в ковше
RU2219249C1 (ru) Способ внепечной обработки стали в ковше
RU2206625C1 (ru) Способ обработки стали в ковше
RU2138563C1 (ru) Способ обработки стали в ковше
RU2101367C1 (ru) Способ производства трубной стали
RU2202628C2 (ru) Способ раскисления и легирования стали
RU2465341C2 (ru) Способ обработки низкоуглеродистой стали в ковше
RU2166550C2 (ru) Способ производства низкокремнистой стали
RU2252265C1 (ru) Экзотермическая смесь для раскисления, рафинирования, модифицирования и легирования стали
RU2104311C1 (ru) Способ легирования стали марганцем
RU2386704C2 (ru) Способ обработки стали в ковше
RU2096491C1 (ru) Способ производства стали
RU2201458C1 (ru) Способ модифицирования стали
RU2608010C1 (ru) Способ выплавки стали в электросталеплавильной печи
SU1285016A1 (ru) Шлакообразующа смесь дл рафинировани жидкого металла
RU2031131C1 (ru) Способ выплавки стали в конвертере
RU2212452C1 (ru) Способ легирования стали марганцем
KR850008186A (ko) 용강의 탈산방법
SU1167212A1 (ru) Рафинировочна смесь
RU2084543C1 (ru) Способ обработки в ковше металла, выпускаемого из сталеплавильного агрегата
RU1772173C (ru) Способ раскислени и легировани низкоуглеродистой стали
RU2049115C1 (ru) Способ десульфурации чугуна перед конвертерной плавкой
RU2051179C1 (ru) Способ выплавки стали в конвертере
RU2147615C1 (ru) Шлаковая смесь для обработки стали в ковше