RU2101367C1 - Способ производства трубной стали - Google Patents

Способ производства трубной стали Download PDF

Info

Publication number
RU2101367C1
RU2101367C1 RU95118593/02A RU95118593A RU2101367C1 RU 2101367 C1 RU2101367 C1 RU 2101367C1 RU 95118593/02 A RU95118593/02 A RU 95118593/02A RU 95118593 A RU95118593 A RU 95118593A RU 2101367 C1 RU2101367 C1 RU 2101367C1
Authority
RU
Russia
Prior art keywords
steel
melt
aluminum
mixture
metal
Prior art date
Application number
RU95118593/02A
Other languages
English (en)
Other versions
RU95118593A (ru
Inventor
В.Г. Зимовец
В.Ю. Кузнецов
И.В. Неклюдов
С.Г. Чикалов
А.Я. Харламов
А.А. Сафронов
А.Г. Супонин
ков Н.А. Бел
Н.А. Беляков
В.В. Анишенко
Original Assignee
Акционерное общество открытого типа Волжский трубный завод
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа Волжский трубный завод filed Critical Акционерное общество открытого типа Волжский трубный завод
Priority to RU95118593/02A priority Critical patent/RU2101367C1/ru
Publication of RU95118593A publication Critical patent/RU95118593A/ru
Application granted granted Critical
Publication of RU2101367C1 publication Critical patent/RU2101367C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

Использование: черная металлургия, а именно при производстве трубных сталей, стойких против коррозии в среде сероводорода. Сущность: способ включает выплавку стали в электропечи, выпуск расплава в ковш с отсечкой шлака, рафинирование в процессе выпуска и доводки стали на установке печь-ковш введением в расплав алюминия в виде двух порций силикомарганца, извести, плавикового шпата, при перемешивании расплава продувкой аргоном, последующее модифицирование присадкой в расплав модифицирующей смеси, состоящей из алюминия, феррованадия и силикокальция, взятых в соотношении (1,5-3,0): (27,0-34,5): (15-30,0) в количестве 2,9-4,5 кг/т стали, при этом введение в расплав одной порции алюминия, силикомарганца, извести и плавикового шпата осуществляют в виде рафинировочной смеси в соотношении (1,0-1,5): (15,0-22,5): (1,0-3,0) соответственно, в количестве 18-28 кг/т стали, продувку аргоном осуществляют с интенсивностью 0,05-0,35 м3/т мин на каждый 1 кг/т смеси, другую порцию алюминия непрерывно вводят в расплав со скоростью, обеспечивающей поддержание концентрации алюминия в металле в пределах 0,010-0,030% до получения содержания серы в металле не более 0,005%, после чего осуществляют модифицирование. 3 табл.

Description

Изобретение относится к черной металлургии, а именно к способу производства трубных сталей, стойких против коррозии в среде сероводорода.
Известен способ выплавки стали, предусматривающий заливку синтетического шлака в ковш, присадку легирующих и алюминия в процессе выпуска плавки, продувку металла порошкообразным силикокальцием [1]
Согласно этому способу, за 0,5-3,0 мин до начала продувки присаживают алюминий в количестве 0,1-1,0 кг/т стали на каждую тысячную процента сверх 1•10-3% кислорода, растворенного в металле, и поддерживают в процессе продувки содержание кислорода (2-10)•10-4% присадками раскислителей.
Недостатком этого способа является низкая степень десульфурации (14-42 отн. ) и невозможность получения стали с содержанием серы не более 0,005% несмотря на высокий расход алюминия в процессе продувки металла.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ производства трубной стали, включающий выплавку стали в сталеплавильном агрегате, выпуск расплава в ковш с отсечкой шлака, рафинирование в процессе выпуска и доводки стали на установке печь-ковш введением в расплав алюминия в виде двух порций марганецсодержащего материала, извести, плавикового шпата и продувку расплава аргоном [2]
Согласно известному способу,первую порцию алюминия в количестве 0,4-0,6 кг/т стали подают во время выпуска совместно со шлакообразующей смесью извести и плавикового шпата в соотношении 3:1 с расходом 1,6-3 кг/т стали. По окончании выпуска в струе аргона вводят марганцевый агломерат и вторую порцию алюминия, после чего подают остальное количество смеси извести и плавикового шпата, причем общий расход смеси составляет 4-6 кг/т стали. Подачу всех материалов после окончания выпуска ведут с одновременным электроподогревом.
Недостатком прототипа является значительная окисленность шлака в результате присадки марганцевого агломерата, высокий угар алюминия и как следствие повышенная загрязненность стали неметаллическими включениями, что обуславливает низкую стойкость металла против сероводородного растрескивания.
Настоящее изобретение направлено на повышение хладостойкости стали и сопротивления водородному охрупчиванию в сероводородсодержащих средах.
Для этого с способе производства трубной стали, включающем выплавку стали в сталеплавильном агрегате, выпуск расплава в ковш с отсечкой шлака, рафинирование в процессе выпуска и доводки стали не установке печь-ковш введением в расплав алюминия в виде двух порций, марганецсодержащего материала, извести, плавикового шпата и продувку расплава аргоном, согласно изобретению, осуществляют последующее модифицирование стали присадкой в расплав модифицирующей смеси, состоящей из алюминия, феррованадия и силикокальция, взятых в соотношении (1,5-3,0):(27,0-34,5):(15,0-30,0) соответственно в количестве 2,9-4,5 кг/т стали, выплавку стали осуществляют в электропечи, введение в расплав алюминия в виде двух порций, марганецсодержащего материала, извести, плавикового шпата осуществляют при перемешивании продувкой расплава аргоном, а в качестве марганецсодержащего материала используют силикомарганец, причем одну порцию алюминия, силикомарганца, извести и плавикового шпата вводят в расплав в виде рафинировочной смеси в соотношении (1,0-1,5): (15,0-22,5): (10,0-15,0): (1,0-3,0) соответственно в количестве 18-28 кг/т стали, продувку аргоном осуществляют с интенсивностью 0,05-0,35 м3/т мин на каждый 1 кг/т смеси, а другую порцию алюминия непрерывно вводят в расплав со скоростью, обеспечивающей поддержание концентрации алюминия в металле в пределах 0,010-0,030% до получения содержания серы в металле не более 0,005% после чего осуществляют модифицирование.
Сущность данного способа состоит в том, что металл обрабатывают рафинировочной смесью, состоящей из алюминия, силикомарганца, извести, плавикового шпата в соотношении (1-1,5):(15-22,5):(10-15):(1-3) в количестве 18-28 кг/т стали.
Количество смеси и соотношения материалов были установлены по результатам опытных плавок из расчета, во-первых, обеспечения достаточного уровня раскисления стали и формирования жидкоподвижного основного безжелезистого шлака необходимого условия для последующей эффективной десульфурации, во-вторых, легирования металла марганцем, в-третьих, получения легкоплавких соединений неметаллических включений, которые хорошо укрупняются и всплывают из стали.
Присадка смеси в меньших количествах приводит в росту окисленности металла, повышению угара марганца, снижению десульфурации.
Присадка смеси в больших количествах не обеспечивает получение необходимого содержания марганца в стали.
Меньше чем 1 доля алюминия при присадке в ковш не обеспечивает необходимой степени раскисленности стали для существенного удаления серы из металла, а больше чем 1,5 доля алюминия нецелесообразна из-за его перехода без улучшения технико-экономических показателей.
Количество доли силикомарганца менее 15 недостаточно глубокого раскисляет металл, что ухудшает условия десульфурации стали и не обеспечивает образования легкоплавких соединений неметаллических включений. Увеличение доли силикомарганца более 22,5 не обеспечивает получение точного химического состава стали.
Снижение доли извести в смеси менее 10 не позволяет получить шлак необходимой основности, что ухудшает десульфурацию стали, а увеличение доли извести более 15 приводит к образованию вязких шлаков и требует применения большого количества разжижителей, что неэкономично.
Содержание доли плавикового шпата менее 1 не разжижает образующийся шлак до технологически необходимой жидкоподвижности, а более 3 экономически и технологически неоправдано.
Продувка металла аргоном с интенсивностью 0,05-0,35 м3/т•мин на каждые 1 кг/т смеси способствует более полному и интенсивному протеканию массообменных процессов. Снижение интенсивности продувки менее 0,05 м3/т•мин на каждые 1 кг/т смеси не обеспечивает необходимую интенсивность перемешивания расплава. В связи с этим процессы раскисления и десульфурации металла замедляются и не протекают достаточно полно. Увеличение интенсивности продувки более 0,35 м3т•мин на каждые 1 кг/т смеси приводит к перерасходу аргона без улучшения технологических показателей.
В ходе внепечной обработки поддерживают содержание алюминия в металле в пределах 0,010-0,030% При меньшем содержании алюминия ухудшается десульфурация стали, при большем увеличивается его расход без повышения эффективности десульфурации.
Модифицирование стали производят путем присадки смеси в количестве 2,9-4,5 кг/т при достижении концентрации серы в металле не более 0,005% В состав смеси входят алюминий, феррованадий, силикокальций в отношении (1,5-3): (27-34,5): (15-30). Присадка смеси при большем содержании серы в металле снижает эффективность обработки металла кальцием.
Присадка ванадия обеспечивает упрощение карбонитридными частицами, что повышает сопротивление стали хрупкому разрушению и водородному охрупчиванию. Присадкой силикокальция достигается глобуляризация сульфидных неметаллических включений, что обеспечивает высокое сопротивление стали сероводородному растрескиванию. Путем совместной присадки феррованадия и силикокальция с алюминием достигается высокий уровень усвоения ванадия и кальция.
Присадка смеси в меньших количествах не обеспечивает получение требуемых содержаний ванадия и кальция, что снижает стойкость стали против разрушения в среде сероводорода.
Увеличение количества смеси более 4,5 кг/т приводит к ее перерасходу (в первую очередь к перерасходу феррованадия) и может привести к превышению допустимого содержания ванадия в стали, что ухудшает механические свойства стали.
Присадка меньшего количества алюминия не позволяет качественно раскислить металл, что приводит к повышенному угару кальция и ванадия. Повышение доли алюминия отрицательно сказывается на себестоимости стали вследствие перерасхода алюминия без улучшения технологических показателей.
присадка меньшего количества феррованадия не обеспечивает получение требуемого содержания ванадия, что снижает стойкость стали против водородного охрупчивания. Увеличение доли феррованадия более 34,5 приводит к снижению ударной вязкости стали.
Присадка меньшего количества силикокальция не обеспечивает формирование сульфидов округлой формы, что снижает сопротивление стали сероводородному растрескиванию. Увеличение доли силикокальция более 30 ведет к его перерасходу без улучшения технико-экономических показателей.
Пример. Выплавляли сталь марки 13ГФА. После расплавления шихты, проведения окислительного периода и нагрева металла плавку выпускали в ковш, оборудованный двумя пористыми пробками для продувки аргоном. Металл выпускали в ковш без печного шлака. В ковш на выпуске присаживали смесь, содержащую мас. 3,96 алюминия, 54,88 силикомарганца, 36,9 извести, 4,57 плавикового шпата (соотношение компонентов 1,3: 18:12:1,5). Расход смеси составил 21,87 кг/т стали. Во время рафинирования металла на установке печь-ковш осуществляли продувку аргоном с расходом 30 м3/ч (0,152 м3/т•мин на каждые 1 кг/т смеси). Концентрация алюминия в металле в пределах 0,010-0,030% поддерживали путем введения алюминиевой проволоки с помощью трайбаппарата. По достижении содержания серы в металле 0,003 мас. осуществили присадку смеси, содержащей,мас% 4,35 алюминия, 52,17 феррованадия, 43,48 силикокальция (соотношение компонентов 2,5: 30:25). Расход смеси составил 3,83 кг/т стали. В результате в готовом металле получили,мас. углерод 0,13, кремний 0,21, марганец 1,1, ванадий 0,08, фосфор 0,008, сера 0,003, алюминий 0,035. Полученную стали разливали на УНРС.
В табл. 1-3 приведены отдельные результаты опытных плавок, позволяющие более полно обосновать заявленные технологические режимы обработки стали.
Трубы, изготовленные из непрерывнолитой заготовки стали марки 13ГФА, выплавленной в соответствии с данным способом, обладают высоким сопротивление хрупкому разрушению и стойкостью против сероводородного растрескивания, что способствует увеличению срока нефте- и газотрубопроводов, кроме того, получение стали по данной технологии с указанным содержанием серы позволяет использовать экономно-легированные стали для производства труб ответственного назначения. Ударная вязкость металла в термообработанном состоянии составляет 270-344 Дж/см2.

Claims (1)

  1. Способ производства трубной стали, включающий выплавку стали в сталеплавильном агрегате, выпуск расплава в ковш с отсечкой шлака, рафинирование в процессе выпуска и доводки стали на установке печь-ковш введением в расплав алюминия в виде двух порций, марганецсодержащего материала, извести, плавикового шпата и продувку расплава аргоном, отличающийся тем, что осуществляют последующее модифицирование стали присадкой в расплав модифицирующей смеси, состоящей из алюминия, феррованадия и силикокальция, взятых в соотношении 1,5 3,0 27,0 34,5 15,0 30,0 соответственно, в количестве 2,9 4,5 кг/т стали, выплавку стали осуществляют в электропечи, введение в расплав алюминия в виде двух порций, марганецсодержащего материала, извести, плавикового шпата осуществляют при перемешивании продувкой расплава аргоном, а в качестве марганецсодержащего материала используют силикомарганец, причем одну порцию алюминия, силикомарганца, извести и плавикового шпата вводят в расплав в виде рафинировочной смеси в соотношении 1,0 1,5 15,0 22,5 10,0 15,0 1,0 3,0 соответственно, в количестве 18 28 кг/т стали, продувку аргоном осуществляют с интенсивностью 0,05 0,35 м3/т • мин на каждый 1 кг/т смеси, а другую порцию алюминия непрерывно вводят в расплав со скоростью, обеспечивающей поддержание концентрации алюминия в металле в пределах 0,010 - 0,30% до получения содержания серы в металле не более 0,005% после чего осуществляют модифицирование.
RU95118593/02A 1995-11-02 1995-11-02 Способ производства трубной стали RU2101367C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95118593/02A RU2101367C1 (ru) 1995-11-02 1995-11-02 Способ производства трубной стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95118593/02A RU2101367C1 (ru) 1995-11-02 1995-11-02 Способ производства трубной стали

Publications (2)

Publication Number Publication Date
RU95118593A RU95118593A (ru) 1997-11-20
RU2101367C1 true RU2101367C1 (ru) 1998-01-10

Family

ID=20173388

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95118593/02A RU2101367C1 (ru) 1995-11-02 1995-11-02 Способ производства трубной стали

Country Status (1)

Country Link
RU (1) RU2101367C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533071C1 (ru) * 2013-10-15 2014-11-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства стали
RU2555304C1 (ru) * 2014-04-28 2015-07-10 Публичное акционерное общество "Северский трубный завод", RU Способ производства трубной стали
RU2564373C1 (ru) * 2014-07-10 2015-09-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства трубной стали

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533071C1 (ru) * 2013-10-15 2014-11-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства стали
RU2555304C1 (ru) * 2014-04-28 2015-07-10 Публичное акционерное общество "Северский трубный завод", RU Способ производства трубной стали
RU2564373C1 (ru) * 2014-07-10 2015-09-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства трубной стали

Similar Documents

Publication Publication Date Title
CN109252008A (zh) 一种低碳低氮超低硫钢的生产方法
CN101935740A (zh) Lf精炼炉用白渣精炼剂及其制备方法
EP0199714B1 (de) Verfahren zur Herstellung von Stahl aus Eisenschwamm sowie Anlage zur Durchführung des Verfahrens
RU2101367C1 (ru) Способ производства трубной стали
RU2148659C1 (ru) Способ производства трубной стали
US5037609A (en) Material for refining steel of multi-purpose application
GB2117005A (en) Dephosphorization and desulphurization method for molten iron alloy containg chromium
RU2566230C2 (ru) Способ переработки в кислородном конвертере низкокремнистого ванадийсодержащего металлического расплава
DE2559188C2 (de) Verfahren zur Entschwefelung von Stahlschmelzen
RU2166550C2 (ru) Способ производства низкокремнистой стали
RU2185448C1 (ru) Способ обработки стали в ковше
RU2138563C1 (ru) Способ обработки стали в ковше
RU2201458C1 (ru) Способ модифицирования стали
RU2104311C1 (ru) Способ легирования стали марганцем
CN116479214B (zh) 一种合成渣及其制备方法和应用
RU2533071C1 (ru) Способ производства стали
RU2044063C1 (ru) Способ производства низколегированной стали с ниобием
RU2096491C1 (ru) Способ производства стали
RU2223332C1 (ru) Способ микролегирования и модифицирования стали
RU2254380C1 (ru) Способ получения рельсовой стали
RU2318032C1 (ru) Ферротитан для легирования стали и способ его алюминотермического получения
RU2202628C2 (ru) Способ раскисления и легирования стали
RU2222608C1 (ru) Способ получения хромсодержащей стали
SU1252354A1 (ru) Способ производства низколегированной трубной стали
RU2269579C1 (ru) Способ получения высокоуглеродистой стали кордового качества

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20041103