RU2159289C1 - Способ выплавки стали в конвертере - Google Patents

Способ выплавки стали в конвертере Download PDF

Info

Publication number
RU2159289C1
RU2159289C1 RU99114733A RU99114733A RU2159289C1 RU 2159289 C1 RU2159289 C1 RU 2159289C1 RU 99114733 A RU99114733 A RU 99114733A RU 99114733 A RU99114733 A RU 99114733A RU 2159289 C1 RU2159289 C1 RU 2159289C1
Authority
RU
Russia
Prior art keywords
converter
melt
highly basic
amount
beginning
Prior art date
Application number
RU99114733A
Other languages
English (en)
Inventor
В.С. Лисин
В.Н. Скороходов
В.П. Настич
В.М. Кукарцев
В.Г. Мизин
Д.В. Захаров
В.И. Савченко
М.К. Филяшин
В.Н. Хребин
Ю.Ф. Суханов
Original Assignee
ОАО "Новолипецкий металлургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ОАО "Новолипецкий металлургический комбинат" filed Critical ОАО "Новолипецкий металлургический комбинат"
Priority to RU99114733A priority Critical patent/RU2159289C1/ru
Application granted granted Critical
Publication of RU2159289C1 publication Critical patent/RU2159289C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

Изобретение относится к металлургии, конкретнее, к процессам выплавки стали в конвертере. Технический эффект - увеличение производительности процесса выплавки стали в конвертере, снижение угара железа, находящегося в шихте, сокращение расхода металлолома и увеличение выхода годного металла. Способ включает подачу в конвертер металлошихты в виде жидкого чугуна и металлолома, шлакообразующих материалов, продувку расплава кислородом сверху через погружную фурму, изменение положения фурмы над уровнем расплава в спокойном состоянии и расхода кислорода. Время опускания фурмы из начального положения в начале продувки до рабочего положения при начале периода обезуглероживания расплава устанавливают по приведенной зависимости. В конвертеры подают высокоосновной агломерат с основностью преимущественно 2 - 5, который содержит, мас.%: SiO2 3 - 6, CaO 10 - 30, MgO 2,0 - 6,5, Al2O 0,5 - 1,5, MnO 1 - 4, FeO 12 - 18, Fe2O3 45 - 55. Количество металлолома устанавливают равным 0,14 - 0,30 и высокоосновного агломерата 0,007 - 0,07 от количества жидкого чугуна. Количество высокоосновного агломерата определяют в зависимости от P1 - содержания фосфора в жидком чугуне и его содержания Р2 в металла на повалке конвертера, по зависимости C = К3 • (P1 - Р2). 1 табл.

Description

Изобретение относится к металлургии, конкретнее, к процессам выплавки стали в конвертере.
Наиболее близким по технической сущности является способ выплавки стали в конвертере, включающий подачу в конвертер металлошихты в виде жидкого чугуна и металлолома, шлакообразующих материалов, высокоосновного агломерата, содержащего окислы кремния, кальция, магния и железа продувку расплава кислородом сверху через погружную форму, изменение по ходу продувки положения фурмы над уровнем расплава в спокойном состоянии и расхода кислорода. Продувку расплава в конвертере производят в два этапа с изменением положения фурмы над уровнем ванны в спокойном состоянии от начального положения до рабочего положения с одновременным изменением расхода кислорода от начального значения до рабочего в начальный период продувки. При этом количество металлолома и извести в завалке конвертера устанавливают соответственно равным 0,316 и 0,77 от количества жидкого чугуна в завалке.
/См. Технология производства стали в современных конвертерных цехах. С. В. Колпаков и др. М., Машиностроение, 1991, с. 24, 61-62, 83-91/.
Недостатком известного способа является недостаточная производительность выплавки стали в конвертере, повышенный угар железа, находящегося в шихте, а также повышенный расход дорогостоящего металлолома и расход кислорода на выплавку стали в конвертере. Это объясняется тем, что время первого периода продувки, состоящего из процесса наведения первичного шлака в ванне конвертера и сопровождающегося процессом опускания кислородной фурмы из начального верхнего положения в нижнее рабочее положение относительно уровня ванны расплава в спокойном состоянии превышает допустимые и необходимые по технологии выплавки значения.
Технический эффект при использовании изобретения заключается в увеличении производительности процесса выплавки стали в конвертере, снижении угара железа, находящегося в шихте, в сокращении расхода металлолома и в увеличении выхода годного металла.
Указанный технический эффект достигают тем, что способ выплавки стали в конвертере включает подачу в конвертер металлошихты в виде жидкого чугуна и металлолома, шлакообразующих материалов, высокоосновного агломерата, содержащего окислы кремния, кальция, магния и железа, продувку расплава кислородом сверху через погружную фурму, изменение по ходу продувки положения фурмы над уровнем расплава в спокойном состоянии и расхода кислорода.
Используют высокоосновной агломерат, дополнительно содержащий окислы алюминия и марганца при следующем содержании в нем окислов, мас.%:
SiO2 - 3-6
CaO - 10-30
MgO - 2,0-6,5
Al2O3 - 0,5-1,5
MnO - 1-4
FeO - 12-18
Fe2O3 - 45-55.
Количество металлолома устанавливают в пределах 0,14 - 0,30 и высокоосновного агломерата - в пределах 0,007 - 0,07 от количества жидкого чугуна. Время опускания фурмы из начального положения в начале продувки до рабочего положения при начале периода обезуглероживания расплава устанавливают по зависимости
τ = K1•A•Q/(B+K2•C),
где τ - время опускания фурмы из начального положения в начале продувки до рабочего положения при начале периода обезуглероживания расплава, мин;
A - количество жидкого чугуна в металлошихте, т;
B - количество металлолома в металлошихте, и;
C - количество высокоосновного агломерата, т;
Q - расход кислорода, м3/мин•т расплава;
K1 - эмпирический коэффициент, учитывающий физико-химические закономерности наведения первичного шлака в конвертере в начале продувки расплава, равный 0,1-1,0 мин2•т/м3;
K2 - эмпирический коэффициент, учитывающий физико-химические закономерности влияния высокоосновного агломерата на образование первичного шлака и ведения процесса выплавки стали в конвертере, равный 6,0-9,5, безразмерный.
Количество высокоосновного агломерата, подаваемого в конвертер, устанавливают по зависимости
C = К3•(P1-P2),
где P1 - содержание фосфора в чугуне, мас.%;
P2 - необходимое содержание фосфора в металле на повалке конвертера, мас.%;
K3 - эмпирический коэффициент, учитывающий физико-химические закономерности влияния высокоосновного агломерата на процесс дефосфорации расплава в конвертере, равный 20-160, т/%.
Основность высокоосновного агломерата составляет 2-5.
Увеличение производительности процесса выплавки стали в конвертере будет происходить вследствие сокращения времени наведения первичного шлака в конвертере в условиях замены в металлошихте части металлолома и шлакообразующих материалов высокоосновным агломератом определенного состава. Кроме того, использования в шихте высокоосновного агломерата приводит к снижению угара железа. При этом сокращается общий расход кислорода за счет уменьшения времени на период наведения первичного шлака в начале продувки стали в конвертере.
Диапазон количества металлолома в пределах 0,14 - 0,30 от количества жидкого чугуна объясняется теплофизическими закономерностями ведения плавки в конвертере. При меньших значениях в процессе плавки будет выделяться излишнее количество тепла, что приводит к интенсивному разрушению футеровки в конвертере. При больших значениях плавка будет "холодной", что приводит к увеличению времени продувки расплава и расхода кислорода.
Указанный диапазон устанавливают в зависимости от емкости конвертера.
Диапазон количества высокоосновного агломерата в пределах 0,007 - 0,07 от количества жидкого чугуна объясняется физико-химическими закономерностями наведения первичного шлака в начале продувки расплава в конвертере. При меньших значениях будет увеличиваться время наведения первичного шлака сверх допустимых значений. При больших значениях будет образовываться излишнее количество шлака, что приведет к разрушению огнеупорной футеровки конвертера.
Указанный диапазон устанавливают в зависимости от емкости конвертера.
Диапазон значений эмпирического коэффициента K1 в пределах 0,1 - 1,0 объясняется физико-химическими закономерностями наведения первичного шлака в начале продувки расплава в конвертере. При меньших значениях время наведения первичного шлака будет выше допустимых значений. При больших значениях будет образовываться излишнее количество шлака, что приведет к интенсивному разрушению огнеупорной футеровки конвертера.
Указанный диапазон устанавливают в зависимости от емкости конвертера.
Диапазон значений эмпирического коэффициента K2 в пределах 6,0-9,5 объясняется физико-химическими закономерностями влияния агломерата заявляемого состава на образование первичного шлака и ведения процесса выплавки стали в конвертере. При меньших значениях увеличивается время наведения первичного шлака в конвертере сверх допустимых значений. При больших значениях не будет образовываться достаточное количество первичного шлака.
Указанный диапазон устанавливают в зависимости от емкости конвертера.
Диапазон значений эмпирического коэффициента K3 в пределах 20-160 объясняется физико-химическими закономерностями дефосфорации расплава в конвертере в процессе выплавки стали в присутствии агломерата. При меньших значениях не будет обеспечиваться необходимый расход агломерата для достижения оптимального содержания фосфора в стали на повалке конвертера. При больших значениях будет увеличиваться расход агломерата сверх допустимых значений без дальнейшего снижения содержания в стали фосфора.
Указанный диапазон устанавливают в зависимости от содержания фосфора в чугуне.
Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".
Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.
Способ выплавки стали в конвертере осуществляют следующим образом.
Пример. В конвертер соответствующей емкости в пределах 100 - 350 т подают металлическую составляющую шихты в виде жидкого чугуна, металлолома, а также шлакообразующие материалы в виде извести и доломита. Расплав продувают сверху кислородом через погружную фурму и изменяют в начале продувки положение фурмы над уровнем расплава в спокойном состоянии, а также изменяют расход кислорода от начального значения до рабочего значения.
В конвертере дополнительно подают агломерат с различным содержанием в нем окислов элементов. Количество металлолома устанавливают в пределах 0,14-0,30 и агломерата в пределах 0,007-0,07 от количества жидкого чугуна, а время опускания фурмы из начального положения в начале продувки до рабочего положения при начале периода обезуглероживания расплава устанавливают по зависимости
τ = K1•A•Q/(B+K2•C),
где τ - время опускания фурмы из начального положения в начале продувки до рабочего положения при начале периода обезуглероживания расплава, мин;
A - количество жидкого чугуна в металлической составляющей шихты, т;
B - количество металлолома в металлической составляющей шихты, т;
C - количество агломерата в металлической составляющей шихты, т;
Q - расход кислорода, м3/мин•т жидкого металла;
K1 - эмпирический коэффициент, учитывающий физико-химические закономерности наведения первичного шлака в конвертере в начале продувки расплава, равный 0,1 - 1,0, мин2•т/м3;
K2 - эмпирический коэффициент, учитывающий физико-химические закономерности влияния агломерата на образование первичного шлака и ведения процессе выплавки стали в конвертере, равный 6,0 - 9,5, безразмерный.
Количество агломерата, подаваемого в конвертер, устанавливают по зависимости
C = K3•(P1 - P2),
где P1 - содержание фосфора в чугуне, мас.%;
P2 - необходимое содержание фосфора в металле на повалке конвертера, мас.%;
K3 - эмпирический коэффициент, учитывающий физико-химические закономерности влияния агломерата на процесс дефосфорации расплава в конвертере, равный 20 - 160, т/%.
Cодержание окислов в агломерате устанавливают в пределах, мас.%:
SiO2 - 3-6
CaO - 10-30
MgO - 2,0-6,5
Al2O3 - 0,5-1,5
MnO - 1-4
FeO - 12-18
Fe2O3 - 45-55
Основность агломерата составляет 2-5.
Фурму опускают из начального положения, равного 3,0-4,5 м над уровнем расплава в спокойном состоянии до 1,5-2,2 м. Калибр сопел фурмы составляет 36 - 42 мм.
В таблице приведены примеры осуществления способа с различными технологическими параметрами.
В первом и пятом примерах вследствие нерегламентированного количества подаваемого в конвертер агломерата не происходит уменьшение времени наведения первичного шлака, что приводит к увеличению общего времени продувки расплава. Не происходит также дефосфорация расплава до необходимых значений.
В оптимальных примерах вследствие подачи в конвертер необходимых количеств компонентов металлической составляющей шихты, в том числе агломерата, обеспечивается снижение времени наведения первичного шлака, а также происходит дефосфорация расплава до необходимых значений.
Применение изобретения позволяет увеличить производительность процесса выплавки стали на 5 - 10% и выход годной стали на 8 - 15%.

Claims (3)

1. Способ выплавки стали в конвертере, включающий подачу в конвертер металлошихты в виде жидкого чугуна и металлолома, шлакообразующих материалов, высокоосновного агломерата, содержащего окислы кремния, кальция, магния и железа, продувку расплава кислородом сверху через погружную фурму, изменение по ходу продувки положения фурмы над уровнем расплава в спокойном состоянии и расхода кислорода, отличающийся тем, что используют высокоосновной агломерат, дополнительно содержащий окислы алюминия и марганца при следующем содержании в нем окислов, мас.%:
SiO2 - 3 - 6
СаО - 10 - 30
MgO - 2,0 - 6,5
Al2O3 - 0,5 - 1,5
MnO - 1 - 4
FeO - 12 - 18
Fe2O3 - 45 - 55,
при этом количество металлолома устанавливают в пределах 0,14 - 0,30 и высокоосновного агломерата - в пределах 0,007 - 0,07 от количества жидкого чугуна, а время опускания фурмы из начального положения в начале продувки до рабочего положения при начале периода обезуглероживания расплава устанавливают по зависимости
τ = K1•A•Q/(B+K2•C),
где τ - время опускания фурмы из начального положения в начале продувки до рабочего положения при начале периода обезуглероживания расплава, мин;
А - количество жидкого чугуна в металлошихте, т;
В - количество металлолома в металлошихте, т;
С - количество высокоосновного агломерата, т;
Q - расход кислорода, м3/мин • т расплава;
К1 - эмпирический коэффициент, учитывающий физико-химические закономерности наведения первичного шлака в конвертере в начале продувки расплава, равный 0,1 - 1,0, мин2 • т/м3;
К2 - эмпирический коэффициент, учитывающий физико-химические закономерности влияния высокоосновного агломерата на образование первичного шлака и ведения процесса выплавки стали в конвертере, равный 6,0 - 9,5, безразмерный.
2. Способ по п.1, отличающийся тем, что количество высокоосновного агломерата, подаваемого в конвертер, устанавливают по зависимости
С = K3 • (P1 - P2),
где P1 - содержание фосфора в чугуне, мас.%;
P2 - необходимое содержание фосфора в металле на повалке конвертера, мас.%;
К3 - эмпирический коэффициент, учитывающий физико-химические закономерности влияния высокоосновного агломерата на процесс дефосфорации расплава в конвертере, равный 20 - 160, т/%.
3. Способ по п.1, отличающийся тем, что основность высокоосновного агломерата составляет 2 - 5.
RU99114733A 1999-07-06 1999-07-06 Способ выплавки стали в конвертере RU2159289C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99114733A RU2159289C1 (ru) 1999-07-06 1999-07-06 Способ выплавки стали в конвертере

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99114733A RU2159289C1 (ru) 1999-07-06 1999-07-06 Способ выплавки стали в конвертере

Publications (1)

Publication Number Publication Date
RU2159289C1 true RU2159289C1 (ru) 2000-11-20

Family

ID=20222358

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99114733A RU2159289C1 (ru) 1999-07-06 1999-07-06 Способ выплавки стали в конвертере

Country Status (1)

Country Link
RU (1) RU2159289C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716554C1 (ru) * 2019-09-24 2020-03-12 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ выплавки стали в конвертере

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КОЛПАКОВ С.В., и др. Технология производства стали в современных конвертерных цехах. - М.: Машиностроение, 1991, с. 24, 61, 62, 83 - 91. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716554C1 (ru) * 2019-09-24 2020-03-12 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ выплавки стали в конвертере

Similar Documents

Publication Publication Date Title
CA2733474C (en) Method of and smelter for producing steel with high manganese and low carbon content
US4514220A (en) Method for producing steel in a top-blown vessel
RU2159289C1 (ru) Способ выплавки стали в конвертере
US4001009A (en) Process for the manufacture of steels with a high chromium content
US4358314A (en) Metal refining process
RU2105072C1 (ru) Способ производства природно-легированной ванадием стали при переделе ванадиевого чугуна в кислородных конвертерах монопроцессом с расходом металлолома до 30%
CN87100166A (zh) 高合金钢的吹氧转炉冶炼工艺方法
CN108823355B (zh) 一种提高钒氮微合金化钢中氮回收率的方法
US3929458A (en) Process for the elaboration of chrome steels
JP2000109924A (ja) 極低硫鋼の溶製方法
RU2112045C1 (ru) Способ выплавки стали в конвертере
KR100225249B1 (ko) 슬로핑 발생 억제를 위한 잔류 슬래그량 조절방법
RU2124567C1 (ru) Способ выплавки стали в конвертере
RU2031131C1 (ru) Способ выплавки стали в конвертере
Biswas et al. Iron-and Steel-Making Process
RU2051179C1 (ru) Способ выплавки стали в конвертере
RU2142017C1 (ru) Способ выплавки стали в конвертере
RU2152442C1 (ru) Способ обработки жидкой стали шлаком
RU2136764C1 (ru) Способ передела ванадиевого чугуна в конвертере
SU675073A1 (ru) Способ выплавки стали
SU1339158A1 (ru) Способ выплавки марганецсодержащей стали в мартеновской печи
RU2002816C1 (ru) Способ дегазации и десульфурации нержавеющей стали
US4165980A (en) Method of rapidly decarburizing ferro- alloys with oxygen
RU2192482C2 (ru) Способ получения стали
CN116287531A (zh) 一种含钒铁水转炉冶炼工艺

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090707