RU2209244C2 - Нуклеиновая кислота, кодирующая лидерную последовательность (варианты), вектор на основе плазмиды р6803-platform (варианты), лидерный пептид (варианты) и способ получения белков - Google Patents

Нуклеиновая кислота, кодирующая лидерную последовательность (варианты), вектор на основе плазмиды р6803-platform (варианты), лидерный пептид (варианты) и способ получения белков Download PDF

Info

Publication number
RU2209244C2
RU2209244C2 RU2001113066/13A RU2001113066A RU2209244C2 RU 2209244 C2 RU2209244 C2 RU 2209244C2 RU 2001113066/13 A RU2001113066/13 A RU 2001113066/13A RU 2001113066 A RU2001113066 A RU 2001113066A RU 2209244 C2 RU2209244 C2 RU 2209244C2
Authority
RU
Russia
Prior art keywords
nucleic acid
secretion
vector
variants
acid molecule
Prior art date
Application number
RU2001113066/13A
Other languages
English (en)
Other versions
RU2001113066A (ru
Inventor
Т.В. Сергеенко
Д.А. Лось
Original Assignee
Закрытое акционерное общество "АСГЛ-Фармацевтические Инновации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "АСГЛ-Фармацевтические Инновации" filed Critical Закрытое акционерное общество "АСГЛ-Фармацевтические Инновации"
Priority to RU2001113066/13A priority Critical patent/RU2209244C2/ru
Priority to AU2002311352A priority patent/AU2002311352A1/en
Priority to PCT/RU2002/000176 priority patent/WO2002088302A2/ru
Publication of RU2001113066A publication Critical patent/RU2001113066A/ru
Application granted granted Critical
Publication of RU2209244C2 publication Critical patent/RU2209244C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Изобретение относится к молекулярной биологии и генетической инженерии и может быть использовано для медико-биологических исследований и биотехнологического производства рекомбинантных белков путем их секреции клетками бактерий. Молекула нуклеиновой кислоты (НК), кодирующая лидерную последовательность для секреции полипептидов в культуральную среду, имеет установленную нуклеотидную последовательность. Последовательность приведена в формуле изобретения. Вектор получен на основе плазмиды р6803-platform и содержит в качестве действующей части молекулу НК, кодирующую лидерную последовательность для секреции полипептидов в культуральную среду. Вектор может содержать фрагмент геномной ДНК цианобактерий Synechocystis для интеграции в геном этой цианобактерии. Представлены олигопептиды размером 20 и 23 аминокислоты. Аминокислотные последовательности приведены в формуле изобретения. Клетку бактерий трансформируют вектором и культивируют. Секреция целевого белка происходит непосредственно в среду. Используют бактерии E.coli или цианобактерии. Изобретение позволяет упростить процесс очистки целевого продукта и повысить его качество. 7 с. и 7 з.п. ф-лы, 9 ил.

Description

Изобретение относится к области биологии, в частности молекулярной биологии и генетической инженерии, и может быть использовано для медико-биологических исследований и биотехнологического производства рекомбинантных белков путем их секреции клетками бактерий.
Известно, что для секреции экспрессируемых белков с использованием метилотрофных дрожжей Pichia pastoris широко используется вектор pPIC9 (Scorer, С. А., Clare, J.J., McCombie, W.R., Romanos, M.A. and Sreekrishna, K. (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology 12:181-184). В этом векторе для секреции полипептидов применяется лидерная последовательность препропептида альфа-фактора спаривания S. cerevisiae. Этот вектор был успешно применен для экспрессии гликопротеина Olea e 1 из оливкового дерева Olea europaea, являющегося аэроаллергеном. Данная система позволяет получать от 60 до 300 мг гликозилированного белка с правильным фолдингом на 1 л культуры (Huecas, S., Villalba, M., Gonzalez, E., Martinez-Ruiz, A., Rodriguez, R. (1999) Production and detailed characterization of biologically active olive pollen allergen Ole e 1 secreted by the yeast Pichia pastoris. Eur. J. Biochem. 261: 539-546), а также для секреции ряда других полипептидов эукариотической природы. Кроме того, лидерная последовательность препропептида альфа-фактора спаривания S. cerevisiae используется также в векторах для секреции гетерологичных белков в других штаммах дрожжей, Kluyveromyces lactis (Hsieh, H.P. and Da Silva, N.A. (1998) Partial-pKDl plasmids provide enhanced structural stability for heterologous protein production in K. lactis. Appl. Microbiol. Biotechnol. 49:411-416), Schizosaccaramyces pombe (Okada, H., Sekiya, Т., Yokoyama, K., Tohda, H., Kumagai, H. And Morikawa, Y. (1998) Efficient secretion of Trichoderma reesei cellobiohydrolase II in Schizosaccaramyces pombe. Appl. Microbiol. Biotechnol. 49: 301-308) и S. cerevisiae (Chung, B. H. and Park, K.S. (1998) Simple reducing proteolysis during secretory production of human hormone in Saccharomyces cerevisiae. Biotechnol Bioeng. 57: 245-249). Для секреции белков клетками эубактерий используется лидерный пептид белка внешней мембраны ОmpА (серия экспрессионных векторов pIN-III) (Ghraeb, J. , Kimura, H. , Takahara, M., Hsiung, H., Masui, Y., Inouye, M. (1984) Secretion cloning vectors in Escherichia coli. EMBO J. 3: 2437-2442). Он позволяет секрецию лишь в периплазматическое пространство, а не непосредственно в среду культивирования. Для секреции гибридных белков грамположительными бактериями применяется лидерный пептид пенициллиназы из алкалофильной бациллы, который используется вместе с полноразмерным геном пенициллиназы (Kato, С., Horikoshi, К. (1990) Polypeptide secretion expression vector, microorganism transformed with the same vector and production of polypeptide by the same microorganism. Patent: JP 1990100685-A).
Недостатками указанных способов является невозможность прямой секреции целевого продукта (например, белка) в культуральную жидкость с помощью грамотрицательных бактерий и невозможность применения описанных способов секреции к клеткам цианобактерий.
Задачей изобретения является разработка нового способа секреции белков клетками бактерий, включая цианобактерии, непосредственно в среду культивирования, что позволит упростить процесс последующей очистки целевого продукта и повысит его качество.
Указанная задача решается за счет применения новых химических веществ - лидерных последовательностей и сконструированных на их основе векторов, содержащих лидерные последовательности с последующей генетической трансформацией и культивированием бактерий-продуцентов, включая трансформированных фотоавтотрофных цианобактерий.
В векторах для трансформации клеток бактерий использованы молекулы нуклеиновой кислоты (Формула п.1 и 2), кодирующие лидерные пептиды (Формула п. 6 и 7, в результате чего получены штаммы бактерий-продуцентов, секретирующие целевой полипептид в среду культивирования. Суть изобретения состоит в том, что для получения штаммов бактерий-продуцентов используются векторы, содержащие оригинальные молекулы нуклеиновых кислот, кодирующие лидерные последовательности, которые обеспечивают секрецию белков непосредственно в среду культивирования. Полученные бактерии-продуценты, включая штаммы цианобактерий, секретируют целевой полипептид в среду культивирования, что обеспечивает его эффективное выделение и очистку.
Изобретение имеет "изобретательский шаг", так как впервые предлагает способ секреции белков в бактериях с использованием молекул нуклеиновых кислот, кодирующих лидерные последовательности секретируемых белков цианобактерии, для получения полипептидов как в гетеротрофных клетках Е.coli, так и в фотоавтотрофных клетках Synechocystis. Применение этих секреторных лидерных последовательностей обеспечивает эффективную секрецию целевого белка в среду культивирования на уровне 50-75% от всего синтезированного в клетках целевого белка.
Изобретение иллюстрируется следующим примером.
Получение последовательности, конструирование вектора и синтез целевого белка.
Пример является одним из вариантов осуществления изобретения, служит для иллюстрации и не ограничивает область возможного использования объектов, изложенных в формуле изобретения, для синтеза и секреции в культуральную среду других целевых продуктов.
Краткое описание фигур.
Фиг. 1 - молекулы нуклеиновых кислот, кодирующие лидерные последовательности для секреции полипептидов в культуральную среду. Фиг.2 (А, В) - схема векторов для экспрессии и секреции полипептидов в среду культивирования, содержащие в качестве действующей части молекулы нуклеиновых кислот, представленных на фиг.1. Фиг.3 (А, В) - схемы векторов для трансформации клеток бактерий, имеющие молекулы нуклеиновых кислот для секреции, промотора, целевого полипептида, гена устойчивости к антибиотику и участки нуклеиновых кислот для интеграции векторов в геном цианобактерии. Фиг.4 - тест на активность целевого полипептида в клетках Escherichia coli, трансформированных векторами, которые экспрессируют целевой полипептид. Фиг.5 - тест на активность целевого полипептида в среде культивирования клеток Escherichia coli, трансформированных векторами, которые экспрессируют целевой полипептид. Фиг. 6 - функциональный тест в ПААГ на активность целевого полипептида, секретируемого в среду культивирования клеток Escherichia coli. Фиг.7 - тест на активность целевого полипептида в клетках Synechocystis, трансформированных векторами, которые экспрессируют целевой полипептид. Фиг.8 - тест на активность целевого полипептида в среде культивирования клеток Synechocystis, трансформированных векторами, которые экспрессируют целевой полипептид. Фиг. 9 - функциональный тест в ПААГ на активность целевого полипептида в среде культивирования и в клетках Synechocystis, трансформированных векторами, которые экспрессируют целевой полипептид.
При определении белков, секретируемых цианобактерией Synechocystis в среду культивирования, обнаружили, что один из белков составляет до 70% от суммы секретируемых белков. Определение N-концевой последовательности белка обнаружило последовательность FTLIELLVVVIIIGVLAAIALP, в которой первый фенилаланин был метилирован. На основании этих данных был идентифицирован полноразмерный ген, получивший название РilА, и его возможный гомолог, белок, названный 2016, и определены нуклеотидные последовательности, кодирующие лидерные пептиды этих белков. На основании этих данных были синтезированы синтетические олигонуклеотиды, соответствующие этим пептидам, которые были использованы для конструирования векторов для секреции белков в клетках Е. coli и Synechocystis. Нуклеотидная последовательность, кодирующая лидерный пептид PilA, состоит из 68 нуклеотидов и кодирует олигопептид из 23 аминокислот. Нуклеотидная последовательность, кодирующая лидерный пептид 2016, состоит из 59 нуклеотидов и кодирует олигопептид из 20 аминокислот. Предлагаемые конструкции содержат сильный конститутивный промотор Ptrc и синтетические лидерные последовательности для секреции.
Синтезированы молекулы нуклеиновых кислот, кодирующие лидерные последовательности для секреции полипептидов в культуральную среду и характеризующиеся формулой, представленной на фиг.1. Был проведен попарный отжиг комплиментарных синтетических олигонуклеотидов, представленных на фиг.1 с получением молекул двуцепочечных нуклеиновых кислот, имеющих с одной стороны выступающий конец для лигирования с сайтом, генерируемым эндонуклеазой рестрикции Nco I, а с другой эндонуклеазой рестрикции Bam HI. Полученные молекулы нуклеиновых кислот были лигированы в аналогичные сайты вектора рТrc99А с получением гибридных векторов, характеризующихся наличием промотора и последовательностей нуклеиновых кислот, обеспечивающих секрецию (фиг.2). Затем фрагменты векторов были вырезаны из полученных конструкций с помощью ферментов Ehe I и Bam HI, очищены с помощью электрофореза в агарозном геле и выделены из геля в чистой форме. Эти фрагменты были лигированы в сайты Hind III (конец предварительно регенерирован до тупого с помощью фрагмента Кленова ДНК-полимеразы I) и Bam HI плазмиды pLicB-Km, несущей ген licВ, кодирующий лихеназу из термофильной бактерии (конец предварительно регенерирован до тупого с помощью фрагмента Кленова ДНК-полимеразы I). Лигирование фрагментов было осуществлено таким образом, что рамка считывания лидерных пептидов совпадала с рамкой считывания гена licВ, в результате чего были получены векторы, характеризующиеся наличием промотора, молекул нуклеиновых кислот, обеспечивающих секрецию (фиг.1), гена целевого репортерного полипептида лихеназы licВ и гена устойчивости к антибиотику канамицину. При этом лидерпые пептиды и лихеназа образовали гибридные белки с одной рамкой считывания (фиг.2). Далее, фрагменты векторов, содержащие промотор, молекулы нуклеиновых кислот, обеспечивающие секрецию (фиг.1), ген целевого репортерного полипептида лихеназы и ген устойчивости к антибиотику канамицину, были выделены с использованием ферментов Ecl 137 I и Sma I и клонированы в сайт Ecl 137 I вектора p6803-platform, который содержал нейтральный фрагмент геномной ДНК цианобактерии Synechocystis, необходимый для интеграции в геном этой цианобактерии (фиг. 3). В результате были сконструированы векторы р6803-licB/рilА и р6803-licB/2016 для секреции белков клетками Escherichia coli и Synechocystis (фиг.3). При этом в клетках Е. coli векторы поддерживали автономную репликацию, а в клетках цианобактерии они были интегрированы в геном.
Клетки бактерий были трансформированы полученными векторами. Анализируемые клоны Е. coli высевались уколом на чашки со стандартной средой LB, содержащей ампициллин (Ар) и канамицин (Km) в конечных концентрациях 100 и 50 мкг мл-1 соответственно, и выращивались в течение ночи при 37oС. Чашки заливали верхним агаром (0,7% агарозы в 50 мМ Трис-НСl рН8), содержащим 0,05% лихенана (Sigma, США). После застывания агара чашки инкубировали в течение 2 ч при 65oС. Окраску лихенана проводили 0,5%-ным водным раствором Конго красного в течение 10 мин при комнатной температуре и периодическом перемешивании. После окрашивания чашки отмывали 1М раствором NaCl три раза по 5 мин при комнатной температуре. Клетки трансформантов, несущие ген licВ, фланкированный лидерными последовательностями РilА и 2016 и находящийся под контролем сильного промотора, синтезировали лихеназу (фиг.4), в то время как клетки трансформантов, в которых ген licВ находится без промотора, не продуцировали лихеназу. Секреция лихеназы в культуральную среду тестировалась тестом на чашках. Клетки отделяли от культуральной среды двукратным центрифугированием с последующей фильтрацией через нейлоновые фильтры, не пропускающие клетки бактерий. Полученную среду смешивали с равным объемом 3%-ной агаризованной среды LB, разливали на чашки Петри и проводили тест на лихеназную активность, как описано выше (фиг.5). В клетках, трансформированных конструкциями, содержащими лидерные последовательности, наблюдали лихеназную активность в среде культивирования. В клетках, несущих конструкции без лидерных последовательностей, лихеназная активность не обнаруживалась (фиг.5).
Белки из культуральных сред концентрировали осаждением сульфатом аммония и разделяли гель-электрофорезом в денатурирующих условиях одновременно в 12%-ных ПААГ и в 12%-ных ПААГ, содержащих лихенан в концентрации 0,2%. Контрольные гели, не содержащие лихенан, окрашивали раствором Кумасси R-250 для визуализации всех белков, присутствовавших в культуральной жидкости. Гели с лихенаном окрашивали Конго красным для проявления активности лихеназы. В препарате, соответствующем контрольной плазмиде p6803-licB/control, несущей ген licВ без лидерной последовательности, не наблюдалось четко выраженных полос, представленных белком, соответствующим LicB (фиг.6,А). В препаратах, соответствующих плазмидам p6803-licB/pilA и р6803-licВ/2016 присутствуют две полосы в районе 32-36 кДа. Эти белки представляют собой две формы лихеназы - полноразмерную и процессированную внутриклеточной пептидазой Е. coli со стороны карбоксильного конца. Тест на лихеназную активность демонстрирует присутствие лихеназы в препаратах белков, полученных из сред культивирования клеток, трансформированных плазмидами р6803-licB/рilА и р6803-licB/2016, содержащими лидерные последовательности, и полное отсутствие лихеназной активности в контрольном препарате, соответствующем плазмиде p6803-licB/control, не содержащей лидерной последовательности. Экспрессия и секреция контрольного белка, лихеназы, в клетках Synechocystis, тестировалась таким же способом, как описано выше для клеток Е. coli. Клетки Synechocystis были трансформированы плазмидами p6803-licB/pilA и р6803-licВ/2016 с получением трансформантов, в которых экспрессионные кассеты были встроены в геном цианобактерии. В клетках трансформантов licВ/pilA и licВ/2016 наблюдалась эффективная экспрессия лихеназы (фиг.7). В обоих случаях наблюдали секрецию лихеназы в среду культивирования, как в тестах на чашках (фиг.8), так и в тестах с использованием разделения секретируемых белков с помощью ПААГ (фиг.9).
Идентификация заявленных молекул нуклеиновых кислот, кодирующих лидерные последовательности для секреции полипептидов (Формула п.1 и 2) была осуществлена с помощью секвенирования векторов (Формула п.3-5) с использованием специфических праймеров для плазмиды рТrc99А. Секвенирование подтвердило идентичность структуры молекул нуклеиновых кислот (фиг.1). Идентификация заявленных олигопептидов (Формула п. 6 и 7) осуществлена путем сравнения аминоконцевых аминокислотных последовательностей белков, синтезированных в клетках, и процессированных белков, обнаруженных в культуральной жидкости. Секвенирование аминокислотных последовательностей подтвердило их идентичность последовательностям, представленным на фиг.1.
В результате заявляемого изобретения был разработан новый способ секреции белков в культуральную среду клетками бактерий, с использованием молекул нуклеиновых кислот, кодирующих лидерные последовательности секретируемых белков цианобактерии, для получения полипептидов как в гетеротрофных клетках Е. coli, так и в фотоавтотрофных клетках Synechocystis. Применение этих секреторных лидерных последовательностей обеспечивает эффективную секрецию целевого белка в среду культивирования на уровне 50-75% от всего синтезированного в клетках целевого белка.

Claims (14)

1. Молекула нуклеиновой кислоты структурной формулы
CCATGGCTAGTAATTTTAAATTCAAACTCCTCTCTCAACTCTCCAAAAAAСGGGCAGAAGGTGGTATGGATCC,
кодирующая лидерную последовательность для секреции полипептидов в культуральную среду.
2. Молекула нуклеиновой кислоты структурной формулы
CCATGGCAGCAAAACAACTATGGAAAATTTTCAATCCTAGACCGATGAAGGGTGGAATGGATCC,
кодирующая лидерную последовательность для секреции полипептидов в культуральную среду.
3. Вектор на основе плазмиды р6803-platform, характеризующийся тем, что в качестве действующей части он содержит молекулу нуклеиновой кислоты по п. 1.
4. Вектор по п.3, отличающийся тем, что он содержит кассету, состоящую из молекулы нуклеиновой кислоты по п.1, гена, кодирующего целевой полипептид, промотора и гена устойчивости к антибиотику.
5. Вектор по п.3 или 4, отличающийся тем, что он содержит фрагмент геномной ДНК цианобактерии Synechocystis для интеграции в геном этой цианобактерии.
6. Вектор на основе плазмиды р6803-platform, характеризующийся тем, что в качестве действующей части он содержит молекулу нуклеиновой кислоты по п. 2.
7. Вектор по п.6, отличающийся тем, что он содержит кассету, состоящую из молекулы нуклеиновой кислоты по п.2, гена, кодирующего целевой полипептид, промотора и гена устойчивости к антибиотику.
8. Вектор по п.6 или 7, отличающийся тем, что он содержит фрагмент геномной ДНК цианобактерии Synechocystis для интеграции в геном этой цианобактерии.
9. Олигопептид размером 23 аминокислоты, имеющий следующую структурную формулу:
MASNFKFKLLSQLSKKRAEGGMG,
являющийся лидерным пептидом для секреции белков.
10. Олигопептид по п.9, отличающийся тем, что он является продуктом трансляции нуклеиновой кислоты по п.1.
11. Олигопептид размером 20 аминокислот, имеющий следующую структурную формулу:
MАAKQLWKIFNPRPMKGGMG,
являющийся лидерным пептидом для секреции белков.
12. Олигопептид по п. 11, отличающийся тем, что он является продуктом трансляции нуклеиновой кислоты по п.2.
13. Способ получения белков, предусматривающий культивирование генетически трансформированных бактерий в культуральной среде, выделение и очистку целевого продукта, отличающийся тем, что осуществляют культивирование клеток бактерий, генетически трансформированных путем введения вектора по любому из пп.3-5 или по любому из пп.6-8, которое приводит к секреции целевого белка в культуральную среду.
14. Способ по п.13, отличающийся тем, что в качестве бактерий продуцентов используют клетки E.coli или цианобактерии.
RU2001113066/13A 2001-04-28 2001-04-28 Нуклеиновая кислота, кодирующая лидерную последовательность (варианты), вектор на основе плазмиды р6803-platform (варианты), лидерный пептид (варианты) и способ получения белков RU2209244C2 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2001113066/13A RU2209244C2 (ru) 2001-04-28 2001-04-28 Нуклеиновая кислота, кодирующая лидерную последовательность (варианты), вектор на основе плазмиды р6803-platform (варианты), лидерный пептид (варианты) и способ получения белков
AU2002311352A AU2002311352A1 (en) 2001-04-28 2002-04-18 Method for secreting proteins by bacteria, leader sequences and vectors for carrying out said method
PCT/RU2002/000176 WO2002088302A2 (fr) 2001-04-28 2002-04-18 Procede de secretion de proteines par des bacteries, sequences de tete et vecteurs destines a sa mise en oeuvre (variantes)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001113066/13A RU2209244C2 (ru) 2001-04-28 2001-04-28 Нуклеиновая кислота, кодирующая лидерную последовательность (варианты), вектор на основе плазмиды р6803-platform (варианты), лидерный пептид (варианты) и способ получения белков

Publications (2)

Publication Number Publication Date
RU2001113066A RU2001113066A (ru) 2003-02-27
RU2209244C2 true RU2209244C2 (ru) 2003-07-27

Family

ID=20249583

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001113066/13A RU2209244C2 (ru) 2001-04-28 2001-04-28 Нуклеиновая кислота, кодирующая лидерную последовательность (варианты), вектор на основе плазмиды р6803-platform (варианты), лидерный пептид (варианты) и способ получения белков

Country Status (3)

Country Link
AU (1) AU2002311352A1 (ru)
RU (1) RU2209244C2 (ru)
WO (1) WO2002088302A2 (ru)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420242A (en) * 1986-10-22 1995-05-30 Kaare M. Gautvik Production of human parathyroid hormone from microorganisms
JP2753274B2 (ja) * 1988-08-24 1998-05-18 株式会社三和化学研究所 モチリン様ポリペプチドの製法並びにそのための組換えdna及び発現用プラスミド
JPH02100685A (ja) * 1988-10-05 1990-04-12 Res Dev Corp Of Japan ポリペプチド分泌発現ベクター,該ベクターで形質転換した微生物及び該微生物によるポリペプチドの製造
CA2040707C (en) * 1990-04-27 2002-07-09 Kenji Mitsushima Cephalosporin acetylhydrolase gene and protein encoded by said gene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЕЗЕПЧУК Ю.В. Биомолекулярные основы патогенности бактерий. - М.: Наука, 1977, с.106-137. *

Also Published As

Publication number Publication date
WO2002088302A3 (fr) 2003-01-23
AU2002311352A1 (en) 2002-11-11
WO2002088302A9 (fr) 2002-12-12
WO2002088302A2 (fr) 2002-11-07

Similar Documents

Publication Publication Date Title
JP4570787B2 (ja) タンパク質を分離する方法
CN102839165B (zh) 基因突变型重组蛋白酶k及其工业化生产方法
Dalbøge et al. High-level expression of active human cystatin C in Escherichia coli
Pines et al. Expression and secretion of proteins in E. coli
JPS6387983A (ja) 酵母の発現及び分泌クロ−ニングベクタ−
TW202031898A (zh) 重組宿主細胞中的碳源調控蛋白質製造
EP0789078A2 (en) Engineered peptide synthetases and their use for the non-ribosomal production of peptides
Chung et al. Highly efficient secretion of heterologous proteins from Saccharomyces cerevisiae using inulinase signal peptides
Lilley et al. Amino acid and DNA sequences of an extracellular basic protease of Dichelobacter nodosus show that it is a member of the subtilisin family of proteases
Nogueira et al. High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis
EP0614982A1 (en) Recombinant vector for the exocellular preparation of single chain antibodies expressed in bacillus subtilis
RU2209244C2 (ru) Нуклеиновая кислота, кодирующая лидерную последовательность (варианты), вектор на основе плазмиды р6803-platform (варианты), лидерный пептид (варианты) и способ получения белков
Kudo Escherichia coli secretion vector using the kil gene
EP0672753A1 (en) Multicloning vector, expression vector, and production of foreign protein with expression vector
KR100497204B1 (ko) 유산균으로부터 분리된 신규한 분비신호
Ebisu et al. Production of a fungal protein, Taka-amylase A, by protein-producing Bacillus brevis HPD31
KR102628628B1 (ko) 효모를 이용한 우유 단백질을 생산하는 방법 및 이를 이용한 우유 단백질을 포함하는 카우-프리 우유 조성물
Kudo 16 Escherichia coli Secretion Vector Using the kil Gene Toshiaki Kudo Institute of Physical and Chemical Research, Saitama, Japan
US10655112B2 (en) Polypeptide having endonuclease activity and method for producing the same
CN108314719A (zh) 一种抗菌肽CC313js、制备方法及应用
EP0411715A2 (en) Modified proteases, process for their preparation and their use in foodstuffs
US20210009978A1 (en) Polypeptide having collagenase activity and method for producing the same
JPH03201987A (ja) ヒト血清アルブミン断片
Jeong et al. Screening and characterization of secretion signals from Lactococcus lactis ssp. cremoris LM0230
US20100279344A1 (en) Integrated cytokine production system

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20050131

MM4A The patent is invalid due to non-payment of fees

Effective date: 20080429