RU2204451C2 - Способ определения начального межвалкового зазора при настройке прокатной клети - Google Patents

Способ определения начального межвалкового зазора при настройке прокатной клети Download PDF

Info

Publication number
RU2204451C2
RU2204451C2 RU2001101584/02A RU2001101584A RU2204451C2 RU 2204451 C2 RU2204451 C2 RU 2204451C2 RU 2001101584/02 A RU2001101584/02 A RU 2001101584/02A RU 2001101584 A RU2001101584 A RU 2001101584A RU 2204451 C2 RU2204451 C2 RU 2204451C2
Authority
RU
Russia
Prior art keywords
stand
strip
force
rolling
thickness
Prior art date
Application number
RU2001101584/02A
Other languages
English (en)
Other versions
RU2001101584A (ru
Inventor
В.Н. Скороходов
В.П. Настич
П.П. Чернов
А.Ф. Пименов
А.П. Долматов
А.Е. Чеглов
Original Assignee
Открытое акционерное общество "Новолипецкий металлургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Новолипецкий металлургический комбинат" filed Critical Открытое акционерное общество "Новолипецкий металлургический комбинат"
Priority to RU2001101584/02A priority Critical patent/RU2204451C2/ru
Publication of RU2001101584A publication Critical patent/RU2001101584A/ru
Application granted granted Critical
Publication of RU2204451C2 publication Critical patent/RU2204451C2/ru

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

Изобретение относится к области прокатного производства. Способ определения начального межвалкового зазора при настройке прокатной клети по требуемой толщине полосы на выходе из клети, усилию прокатки, модулю жесткости клети, толщине масляных клиньев в подшипниках жидкостного трения валков и усилию калибровки заключается в определении упомянутого зазора дифференцированно в зависимости от усилия предварительного нагружения клети. Начальный межвалковый зазор определяют с учетом длины нелинейного участка на кривой упругой деформации клети, раздельной деформации клети без полосы и с прокатываемой полосой. Изобретение позволяет повысить точность прокатки и получить на выходе из клети прокат требуемой толщины без отклонений. 2 з.п.ф-лы, 2 табл., 3 ил.

Description

Изобретение относится к области прокатного производства и может быть использовано для определения начальных межвалковых зазоров при настройке клетей листовых и полосовых станов горячей и холодной прокатки.
Если бы рабочая клеть прокатного стана не испытывала упругих деформаций под нагрузкой, то толщина полосы на выходе из клети была бы равна зазору, предварительно установленному между валками при настройке клети. Однако в действительности все детали рабочей клети, воспринимающие усилие прокатки упруго деформируются, вследствие чего первоначально установленный межвалковый зазор увеличивается на величину упругой деформации клети. Поэтому точное определение межвалкового зазора является важнейшей составной частью настройки клети на требуемую толщину полосы.
Известен способ настройки прокатной клети [Повышение точности листового проката/И. М.Меерович, А.И.Герцев, В.С.Горелик и др. - М.: Металлургия, 1969 г. , с.22], при котором толщина полосы на выходе из клети, усилие прокатки, начальный межвалковый зазор и модуль жесткости клети связаны следующим уравнением:
h1=S+P/Mk,
где S - начальный межвалковый зазор клети;
h1 - требуемая толщина полосы на выходе из клети;
Р - усилие прокатки;
Мк - модуль жесткости клети.
Из этого уравнения можно определить требуемый для настройки клети начальный межвалковый зазор:
S=h1+P/Mk
Недостаток известного способа заключается в том, что упругая деформация клети рассматривается как линейная, равная отношению Р/Мк, хотя известно, что кривая нагружения клети состоит из 2-х участков: линейного и нелинейного, на которых клеть упруго деформируется различно [Технологические основы автоматизации листовых станов/Ю.В.Коновалов, А.П.Воропаев, Е.А.Руденко и др. К. : Технiка. - 1981. с.42]. Кроме того, при выборе начального межвалкового зазора не учитывается толщина масляных клиньев в ПЖТ валков.
Наиболее близким по своей сущности и достигаемым результатам к предлагаемому изобретению является способ настройки прокатной клети [Технологические основы автоматизации листовых станов/ Ю.В.Коновалов, А.П.Воропаев, Е.А.Руденко и др. К.: Технiка. - 1981. с.12], в соответствии с которым толщина полосы на выходе из клети определяется величиной нагруженного межвалкового зазора, т.е. уравнением упругой линии клети:
h=S0+P/M-Z, (2)
где S0 - раствор неподвижных ненагруженных валков, мм;
h - требуемая толщина полосы на выходе из клети, мм;
Р - усилие прокатки, тс;
М - статический модуль жесткости клети, тс/мм;
Z - толщина масляной пленки в подшипниках жидкостного трения валков, мм.
Требуемый для настройки прокатной клети начальный межвалковый зазор можно определить из уравнения (2):
S0=h-P/M+Z (2а)
Уравнение (2а) позволяет определить абсолютный межвалковый зазор, отсчитываемый от точки касания валков. На практике же для настройки прокатной клети используют относительный межвалковый зазор, определяемый от начальной точки, именуемой точкой калибровки, Для этого рабочие валки клети без полосы нагружают до усилия калибровки Рк и после установки валков на параллельность сбрасывают на нуль показания устройств отсчета межвалкового зазора клети.
При увеличении усилия предварительного сжатия валков выше Рк межвалковый зазор условно считают отрицательным. При уменьшении усилия предварительного сжатия валков ниже Рк межвалковый зазор считают положительным.
Для получения тонких полос валки клети вводят в "забой", т.е. прижимают друг к другу с усилием предварительного нагружения (Рпр).
Для перехода от абсолютного межвалкового зазора к относительному уравнение (2а) необходимо скорректировать на величину деформации клети до усилия калибровки, т.е. S'=Рк/М.
При этом уравнение (2а) принимает вид:
S0=h-P/M+Z+S'=h-P/M+Z+P/M=h-(P-Pk)/M+Z (2б)
Указанный способ также не обеспечивает высокой точности при определении начального межвалкового зазора при настройке клети. Его недостатки заключаются в том, что упругая деформация клети определяется без учета длины нелинейного участка на кривой нагружения клети, раздельной деформации клети без полосы и с полосой, что вносит погрешность в расчет и приводит к получению на выходе из клети толщины полосы с отклонением от заданного значения.
Если принять М в формуле (2) равным модулю жесткости клети линейного участка нагружения (фиг. 1), то величина погрешности расчета будет определяться почти полной длиной нелинейного участка кривой упругой деформации клети (δp1). Если в качестве М использовать усредненный модуль жесткости клети с учетом линейного и нелинейного участков, то погрешность расчета будет определяться примерно половиной длины нелинейного участка кривой нагружения клети (δp2), величина которого может составлять до 1.8 мм, что вносит значительную погрешность в расчет.
В предлагаемом способе настройки клети упомянутые недостатки устранены.
Техническая задача состоит в улучшении настройки прокатной клети стана за счет более точного определения начального межвалкового зазора клети. Решается техническая задача дифференцированно в зависимости от положения усилия предварительного нагружения на кривой упругой деформации клети с учетом длины нелинейного участка, раздельной деформации клети без полосы и с полосой, чем достигается технический эффект повышения точности прокатки и получения на выходе из клети проката требуемой толщины без отклонений.
Это достигается тем, что начальный межвалковый зазор определяют дифференцированно в зависимости от положения усилия предварительного нагружения на кривой упругой деформации клети с учетом длины нелинейного участка, раздельной деформации клети без полосы и с полосой.
Если усилие предварительного нагружения клети находится в линейной области деформации клети (фиг.2), то определение начального межвалкового зазора клети производят по уравнению:
S0=(h1MkB-P+Pk+ZMkB)/Mко, (3)
где h1 - требуемая толщина полосы на выходе из клети, мм;
МкВ - модуль жесткости клети с прокатываемой полосой шириной В, МН/мм;
Р - усилие прокатки, МН;
Рк - усилие калибровки, МН;
Z - толщина масляных клиньев в ПЖТ валков, мм;
Мко - модуль жесткости линейного участка кривой упругой деформации клети без полосы, МН/мм.
А если усилие предварительного погружения клети находится в нелинейной области кривой погружения клети (фиг. 3), то начальный межвалковый зазор клети определяют по уравнению:
S0=h1+(Pk-Pл)/Mко-(P-Pл)/MkB+Z, (3)
где h1 - требуемая толщина полосы на выходе из клети, мм;
Рк - усилие калибровки, МН;
Рл - усилие, соответствующее началу линейного участка на кривой нагружения клети, МН;
Мко - модуль жесткости линейного участка кривой упругой деформации клети без полосы, МН/мм;
Р - усилие прокатки, МН;
МкВ - модуль жесткости клети с прокатываемой полосой шириной В, МН/мм;
Z - толщина масляных клиньев в ПЖТ валков, мм.
Поясним математическими выкладками, каким образом были получены уравнения (3) и (4).
Прибавим к правой части уравнения (2) масштабный коэффициент S', необходимый для перехода от абсолютного к относительному межвалковому зазору, заменим обозначение М на Мк, h на h1, Р/Мк на δкл и перепишем его в следующем виде:
S0=h1-P/Mk+S'+Z=h1кл+S'+Z, (5)
где S' - масштабный коэффициент для перехода от абсолютного межвалкового зазора к относительному, мм;
δкл - полная упругая деформация клети, мм.
Рассмотрим два случая деформации клети:
а) величина усилия предварительного нягружения (Рпр) находится на линейном участке упругой деформации клети (фиг. 2);
б) величина усилия предварительного нагруженияи (Рпр) находится на нелинейном участке нагружения клети (фиг. 3).
В первом случае общую упругую деформацию клети от усилия прокатки можно рассчитать по формуле:
δкл = δн, (6)
где δн - упругая деформация клети на нелинейном участке нагружения, мм;
δ - упругая деформация клети на линейном участке нагружения от усилия, соответствующего началу линейного участка (Рл) до усилия предварительного нагружения (Рпр), мм;
δ - упругая деформация клети на линейном участке нагружения от усилия предварительного нагружения (Рпр) до усилия прокатки (Р), мм.
Упругую деформацию δ можно рассчитать по формуле:
δ=(Pпр-Pл)/Mко (7)
Из фиг. 2 видно, что от усилия предварительного нагружения до усилия прокатки клеть деформируется с находящейся в ней полосой по прямой, тангенс угла которой равен модулю жесткости клети под полосой шириной В (МкВ). Следовательно,
δ=(P-Pпр)/Mkв (8)
Длину нелинейного участка выразим через S' и упругую деформацию клети на линейном участке от Рл до Рк:
δн=S'-(Pk-Pл)/Mко (9)
Подставив уравнения (7), (8) и (9) в (6), а затем в (5) получим:
δкл=S'-(Pk-Pл)/Mко+(Рпр-Pл)/Mко+(P-Рпр)/MkВ (10)
S0=h1-S'+(Pk-Pл)/Mко+(Рпр-Pл)/Mко-(P-Рпр)/MkВ+S'+Z (11)
После математических преобразований имеем:
S0=h1+(Pkпр)/Mко+(P-Рпр)/MkВ+Z (12)
Если Рпр находится в линейной части нагружения клети, то его значение можно рассчитать по формуле:
Pпр=Pk-MкоS0 (13)
Подставив уравнение (13) в (12), получим:
S0=h1+(PкккоS0)/Мко-(Р-РккоS0)/МкВ + Z;
S0=h1+S0-(P-Pk)/МкВ-MкоS0кВ+ Z (13a)
Умножим левую и правую части уравнения (13а) на МкВ и произведем сокращение:
(h1MkB-P+Pk+ZMkB)/МkB=MкoS0MkB (14)
После окончательных преобразований получим уравнение для определения начального межвалкового зазора клети, если усилие предварительного нагружения находится в линейной области деформации клети:
S0=(h1MkB-P+Pk+ZMkB)/Mko (15)
Во втором случае, когда усилие предварительного нагружения находится на нелинейном участке нягружения клети, общая упругая деформация клети будет складываться из упругой деформации клети в нелинейной области и деформации клети в линейной области кривой нагружения (см. фиг.3).
Если предположить, что упругая деформация клети под полосой на нелинейном участке АС осуществляется по прямой АС, то полную деформацию клети можно рассчитать по уравнению:
δкл = δнл, (16)
где δн - упругая деформация клети на нелинейном участке нагружения;
δл - упругая деформация клети на линейном участке нагружения.
Учитывая, что упругая деформация клети на линейном участке нагружения пропорциональна МкВ, можно записать:
δл=(P-Pл)/MkB (17)
Длину нелинейного участка, как и в первом случае, можно выразить через S' и длину линейного участка нагружения клети от Рк до Рл:
δн=S'-(Pk-Pл)/Mko (18)
Подставив уравнения (17), (18) и (16) в (5), получим:
Figure 00000001

Сокращая в уравнении (19) S', получим уравнение для расчета начального межвалкового зазора прокатной клети, если усилие предварительного нагружения находится в нелинейной части кривой упругой деформации клети:
S0=h1+(Pk-Pл)/Mko-(P-Pл)/MkB+Z (20)
Известное и предложенные технические решения имеют следующие общие признаки: для настройки клети определение ее начального межвалкового зазора осуществляется по требуемой толщине полосы на выходе из клети, усилию прокатки, модулю жесткости клети, при расчете учитывается толщина масляной пленки в ПЖТ валков.
Отличия предложенного способа заключаются в том, что определение начального межвалкового зазора клети, необходимого для ее настройки, осуществляется дифференцированно в зависимости от положения усилия предварительного нагружения на кривой упругой деформации клети с учетом длины нелинейного участка, раздельной деформации клети без полосы и с полосой. За счет этого повышается точность настройки клети стана и получение проката требуемой толщины без отклонений.
Указанные отличительные признаки проявляют во всей совокупности новые свойства, не присущие им в известных совокупностях признаков, состоящие в улучшении точности определения начального межвалкового зазора клети, необходимого для настройки прокатной клети, и повышении точности готового проката по толщине. Это свидетельствует о соответствии предложенного технического решения критерию "изобретательский уровень".
Примеры реализации изобретения
Рассмотрим расчет начальных межвалковых зазоров клетей непрерывного четырехклетьевого стана 1400 для двух режимов холодной прокатки, представленных в таблице 1 при следующих исходных данных.
Модуль жесткости клети без полосы (Мко) всех клетей стана составляет 5,9 МН/мм. Экспериментально определенный модуль жесткости клети с полосой (МкВ) для полосы шириной 1230 мм составляет 5,606 МН/мм, для полосы шириной 1030 мм - 5,265 МН/мм. Начало линейного участка на кривой деформации клетей (Рл) соответствует 4,5 Мн и относительный межвалковый зазор (Sл), соответствующий ему, равен 0.593 мм. Усилие калибровки для всех клетей стана равно 8 МН. Остальные исходные данные и результаты расчетов приведены в таблице 1.
При наличии двух уравнений (15) и (20) для определения начального межвалкового зазора клети расчет сначала был выполнен с использованием уравнения (15) в предположении, что Рпр находится на линейном участке упругой деформации клети. Если полученное значение расчетного начального межвалкового зазора клети было большим, чем Sл, что свидетельствует о том, что усилие предварительного нагружения клети находится в нелинейной области упругой деформации клети, то повторный расчет проводили по уравнению (20). Для сравнения выполнен расчет относительного межвалкового зазора по прототипу (уравнению (2б) при условии равенства Мкко=5,9 МН/мм.
Варианты реализации способа при заправке полосы в клети стана с использованием расчетных значений начальных межвалковых зазоров по прототипу и заявляемому варианту представлены для 2-х режимов прокатки в таблице 2.
Из таблицы 2 следует, что наименьшее отклонение толщины полосы от заданных величин по клетям стана получено по предлагаемому способу определения межвалкового зазора клети. Ошибка прогноза не превышает 2%, в то время как для прототипа она составляет до 22%.
Технико-экономические преимущества предложенного способа заключаются в повышении точности настройки прокатной клети за счет уточненного определения межвалкового зазора прокатной клети и получения на выходе из клети проката заданной толщины. Это исключает дополнительные коррекции межвалкового зазора клети для обеспечения толщины полосы на уровне заданного значения и повышает выход годного при прокатке.

Claims (3)

1. Способ определения начального межвалкового зазора при настройке прокатной клети по требуемой толщине полосы на выходе из клети, усилию прокатки, модулю жесткости клети, толщине масляных клиньев в подшипниках жидкостного трения валков и усилию калибровки, отличающийся тем, что начальный межвалковый зазор клети определяют дифференцированно в зависимости от усилия предварительного нагружения клети, с учетом длины нелинейного участка на кривой упругой деформации клети, раздельной деформации клети без полосы и с прокатываемой полосой.
2. Способ по п. 1, отличающийся тем, что начальный межвалковый зазор при настройке клети определяют по уравнению
S0= h1+(Pк-Pл)/Mко-(P-Pл)/Mкв+Z,
если усилие предварительного нагружения клети находится в нелинейной области кривой упругой деформации клети,
где h1 - требуемая толщина полосы на выходе из клети, мм;
Рк - усилие калибровки, МН;
Рл - усилие, соответствующее началу линейного участка на кривой упругой деформации клети, МН;
Мко - модуль жесткости линейного участка кривой упругой деформации клети без полосы, МН/мм;
Р - усилие прокатки, МН;
Мкв - модуль жесткости клети с прокатываемой полосой шириной В, МН/мм;
Z - толщина масляных клиньев в подшипниках жидкостного трения валков, мм.
3. Способ по п. 1, отличающийся тем, что начальный межвалковый зазор при настройке клети определяют по уравнению
S0= (h1Mкв-P+Pк+ZMкв)/Mко,
если усилие предварительного нагружения клети находится в линейной области кривой упругой деформации клети,
где h1 - требуемая толщина полосы на выходе из клети, мм;
Р - усилие прокатки, МН;
Рк - усилие калибровки, МН;
Мкв - модуль жесткости клети с прокатываемой полосой шириной В, МН/мм;
Мко - модуль жесткости линейного участка кривой упругой деформации клети без полосы, МН/мм;
Z - толщина масляных клиньев в подшипниках жидкостного трения валков, мм.
RU2001101584/02A 2001-01-16 2001-01-16 Способ определения начального межвалкового зазора при настройке прокатной клети RU2204451C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001101584/02A RU2204451C2 (ru) 2001-01-16 2001-01-16 Способ определения начального межвалкового зазора при настройке прокатной клети

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001101584/02A RU2204451C2 (ru) 2001-01-16 2001-01-16 Способ определения начального межвалкового зазора при настройке прокатной клети

Publications (2)

Publication Number Publication Date
RU2001101584A RU2001101584A (ru) 2002-12-20
RU2204451C2 true RU2204451C2 (ru) 2003-05-20

Family

ID=20244981

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001101584/02A RU2204451C2 (ru) 2001-01-16 2001-01-16 Способ определения начального межвалкового зазора при настройке прокатной клети

Country Status (1)

Country Link
RU (1) RU2204451C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112547809A (zh) * 2020-11-20 2021-03-26 安阳钢铁股份有限公司 一种提高轧机辊缝设定精度的方法
CN114433640A (zh) * 2022-02-08 2022-05-06 北京二十一世纪科技发展有限公司 辊缝预控调节值的确定方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КОНОВАЛОВ Ю.В. Технологические основы автоматизации листовых станов. - Киев: Техника, 1981, с.12. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112547809A (zh) * 2020-11-20 2021-03-26 安阳钢铁股份有限公司 一种提高轧机辊缝设定精度的方法
CN114433640A (zh) * 2022-02-08 2022-05-06 北京二十一世纪科技发展有限公司 辊缝预控调节值的确定方法和装置
CN114433640B (zh) * 2022-02-08 2024-05-10 北京二十一世纪科技发展有限公司 辊缝预控调节值的确定方法和装置

Similar Documents

Publication Publication Date Title
CN102548678B (zh) 轧钢机及轧钢机的调零方法
US5406817A (en) Rolling mill and rolling method
AU2009222231B2 (en) Rolling mill and rolling method for flat products of steel
EP1607149B1 (en) Method and apparatus for rolling metallic plate material
US3714805A (en) Control system and method for concurrent automatic gage and crown control of a rolling mill
RU2204451C2 (ru) Способ определения начального межвалкового зазора при настройке прокатной клети
AU2009222686B2 (en) Rolling mill and rolling method for flat products of steel
US4483165A (en) Gauge control method and apparatus for multi-roll rolling mill
Shatalov et al. Development and application of the theory of rigid ends in thin-sheet rolling
WO2018016533A1 (ja) 演算装置および演算方法
JP4268582B2 (ja) 板厚制御方法及び板厚・形状非干渉制御方法
WO2019102790A1 (ja) 演算装置、情報処理プログラム、および記録媒体
WO2019221297A1 (ja) 圧延機及び圧延機の設定方法
JP6251334B1 (ja) 演算装置および演算方法
JPS6245002B2 (ru)
JP4813014B2 (ja) 冷間タンデム圧延機の形状制御方法
Kozhevnikov et al. A CALCULATION OF THE CONTINUOUS COLD ROLLING PARAMETERS TAKING INTO ACCOUNT THE POSSIBILITY OF A VIBRATION IN THE WORKING STANDS.
Shatalov METHOD OF CALCULATION OF STRAINS AND STRESSES ON THE WIDTH OF A THIN STRIP IN COLD ROLLING.
JPH067824A (ja) 圧延機の板厚制御方法
JP2002210512A (ja) 板圧延における圧下位置設定方法
Schaak Strip tracking control using novel insights into the differential rolling process
JP2985989B2 (ja) 圧延機
JP2023033789A (ja) 蛇行制御方法及び蛇行制御装置
Antonov et al. Assessment of the Formation of Surface Roughness of Hot-Rolled Etched Strips during Temper Rolling
CN113680828A (zh) 一种用于板带生产过程中的厚度自动控制方法