RU2193861C2 - Датчик для полярографических исследований катионного состава электролитов - Google Patents

Датчик для полярографических исследований катионного состава электролитов Download PDF

Info

Publication number
RU2193861C2
RU2193861C2 RU2001100097/14A RU2001100097A RU2193861C2 RU 2193861 C2 RU2193861 C2 RU 2193861C2 RU 2001100097/14 A RU2001100097/14 A RU 2001100097/14A RU 2001100097 A RU2001100097 A RU 2001100097A RU 2193861 C2 RU2193861 C2 RU 2193861C2
Authority
RU
Russia
Prior art keywords
electrodes
electrode
glass
electrolytes
sensor
Prior art date
Application number
RU2001100097/14A
Other languages
English (en)
Other versions
RU2001100097A (ru
Inventor
В.А. Часовской
М.Л. Беркенгейм
А.В. Часовской
Original Assignee
Часовской Владимир Александрович
Беркенгейм Михаил Леонидович
Часовской Александр Владимирович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Часовской Владимир Александрович, Беркенгейм Михаил Леонидович, Часовской Александр Владимирович filed Critical Часовской Владимир Александрович
Priority to RU2001100097/14A priority Critical patent/RU2193861C2/ru
Publication of RU2001100097A publication Critical patent/RU2001100097A/ru
Application granted granted Critical
Publication of RU2193861C2 publication Critical patent/RU2193861C2/ru

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Изобретение относится к измерительной технике, предназначенной для применения в медицине в целях диагностики физиологического состояния женской репродуктивной системы путем исследования электролитов. Датчик состоит из корпуса, выполненного в виде стакана из эпоксидного компаунда, в котором установлены два электрода. Основание стакана выполнено в виде стеклотекстолитовой подложки с контактными площадками, на которых с помощью токопроводящего клея укреплены электроды. Электроды выполнены из химически нейтрального материала - стеклоуглерода. К контактным площадкам присоединены выводы электродов. Измерительный электрод имеет активную поверхность в 30-100 раз меньшую, чем активная поверхность противоэлектрода. По периметру стакана выполнен буртик. Изобретение позволяет повысить чувствительность за счет уменьшения поляризации электродов. 4 ил.

Description

Изобретение относится к измерительной технике, предназначенной для применения в медицине в целях диагностики физиологического состояния женской репродуктивной сиситемы путем исследования электролитов (слюна, слизь, экскреции и т.д.). Изобретение также может найти применение в животноводстве для увеличения поголовья путем надежного определения наступления овуляторного цикла тестированием электролитов.
Кроме того, изобретение может применяться и в других отраслях, когда необходимо проведение полярографических исследований катионного состава электролитов (в химии, биологии и т.д.).
Известен датчик для исследования электролитов, содержащий корпус, внутри которого расположены электроды.
К недостаткам известного датчика относится низкая точность исследований, обусловленная поляризацией электродов.
Из известных устройств для полярографических исследований катионного состава электролитов наиболее близким к настоящему изобретению по совокупности существенных признаков является устройство для определения периода овуляции, включающее устройство для исследования катионного состава электролитов, датчик которого представляет собой корпус из диэлектрика в виде стакана, в котором установлены два электрода из химически нейтральных материалов, снабженные выводами (см. патент РФ 2128943 С1, 20.04.1999).
К недостаткам ближайшего аналога относится тот факт, что в процессе испытаний возникает поляризация электродов, приводящая к значительному снижению чувствительности всей системы и неправильному толкованию полученных результатов. Кроме того, известный датчик не позволяет обеспечить удержание исследуемого электролита (слюны, слизи, экскреции и т.д.), так как в его конструкции отсутствует емкость для помещения электролита.
Задача настоящего изобретения заключается в повышении точности исследований катионного состава электролитов и в возможности помещения электролита в емкость, в которой расположены электроды.
Указанная задача решена за счет того, что в датчике для полярографических исследований катионного состава электролитов, содержащем корпус, выполненный в виде стакана из диэлектрика, в котором установлены два электрода из химически нейтрального материала, снабженные выводами, стакан выполнен из эпоксидного компаунда с основанием в виде стеклотекстолитовой подложки с контактными площадками, на которых укреплены посредством токопроводящего клея электроды и выводы электродов, при этом измерительный электрод имеет активную поверхность в 30-100 раз меньшую, чем активная поверхность противоэлектрода, а по периметру края стакана выполнен буртик.
Сущность изобретения заключается в следующем. Для исследования электролитов применяются датчики, работающие на разных электрофизических принципах, а принцип обработки измеренных параметров остается одним и тем же. Ниже приводится обоснование конструктивного выполнения датчика согласно настоящего изобретения, а также показывается его эффективность при исследовании электролитов (слюна, слизь, экскреции) на концентрацию ионов типа К+ и Na+. Обычно при исследовании электролитов измеряется разность редокс-потенциалов (окислительно-восстановительных потенциалов) разнородными по химическому составу, но обратимыми по отношению к исследуемой слизи материалами, представляющими собой электроды, которые приводятся в контакт с цервикальной слизью или слюной. Между электродами устанавливается разность потенциалов - ЭДС, соответствующая свободной энергии окислительно-восстановительной реакции. При этом действие соответствующего химического источника тока основано на протекании при замкнутой внешней цепи пространственно разделенных процессов; на отрицательном электроде - восстановитель окисляется и образующиеся свободные электроны переходят по внешней цепи, создавая разрядный ток, к положительному электроду, где участвуют в реакции восстановления окислителя. При этом ЭДС описывается уравнением Нернста (Шульц М.М. и др. Окислительный потенциал, теория и практика, 1984):
Figure 00000002

где Е0 - величина потенциала Е при концентрациях Сох - окислителя и Cred - восстановителя, равных единице;
F - число Фарадея (F=96500 Кл);
Т - абсолютная температура;
R - газовая постоянная (R=8,315);
n - валентность.
Это позволяет со всей полнотой и достоверностью фиксировать изменения общего катионного состава реагента и точно выявлять период овуляции, в котором наблюдается подъем разности потенциалов с 0,5 до 1,0 В.
Учитывая, что в химическом составе слюны (по Хауку) содержится от 30 до 60 процентов хлоридов, наиболее достоверными измерительными электродами являются электроды из электрохимически чистых меди и алюминия. Недостатком этих электродов является то, что возникающий окисел на поверхности электродов существенно снижает чувствительность датчика и тем самым вносится элемент недостоверности измерений. Для более надежного срабатывания и возможности не пропустить момент овуляции необходимо периодически чистить поверхности электродов датчика и проверять его работоспособность.
Применяя индифферентные электроды (платина, золото, графит, стеклографит), независимо от природы окислителя или восстановителя, в редоксметрии можно получить надежную систему, переносящую электроны, а получающуюся на поверхности пленку оксида можно снять или путем закорачивания электродов и растворения оксидов ввиду обратимости химической реакции, или путем промывания азотной кислотой и водой.
Датчик по данному изобретению основан на методе полярографических исследований электролита.
Для целей измерения концентрации калия или натрия в слюне необходимо, чтобы полярографические измерения отличались высокой степенью воспроизводимости. При применении твердых электродов этого достигнуть сложнее, чем при применении жидких электродов на ртути с обновлением ее поверхности. Однако если использовать любой твердый электрод с периодическим обновлением поверхности и приэлектродного слоя, то такой электрод также будет способен фиксировать ток, воспроизводимость которого от измерения к измерению также будет достаточна. Известны различные конструкции твердых электродов и разработаны приемы полярографии, которые позволяют производить периодическое обновление поверхности и приэлектродного слоя и получать воспроизводимые результаты. Имея дело с неподвижными электродами и исследуемым электролитом, также неподвижным, наиболее приемлемой конструкцией явилось использование принципа броскового тока с последующей деполяризацией электродов. Известно, что при включении неподвижных электродов в цепь тока вначале наблюдается бросковый ток, а затем ток падает во времени. Для процесса линейной диффузии этот ток определяется следующим уравнением (Делимарский Ю.К. Полярография на твердых электродах, 1970):
Figure 00000003

где D - коэффициент диффузии;
F - постоянная Фарадея;
С - концентрация ионов;
А - площадь электрода;
n - валентность.
Бросковые токи, полученные в определенных условиях, правильно характеризуют явление концентрационной поляризации и могут быть использованы для поляризационных измерений. За время броскового тока на электроде выделяется незначительное количество веществ, а концентрационные изменения распространяются от электрода в глубь раствора на незначительное расстояние. Поэтому, если электроды после возникновения броскового тока накоротко замкнуть, они быстро деполяризуются и обновляют поверхность. Диффузионные токи, зависящие в основном от концентрации исследуемых ионов, хорошо выражены и прямо пропорциональны концентрации раствора электролита. Отсчет броскового тока не представляет затруднений, так как бросок тока имеет вполне определенное значение и хорошо воспроизводится на деполяризованном электроде для любой точки отсчета. Бросковый ток не чувствителен к сотрясениям и вибрациям, так как обусловлен диффузией в очень тонких приэлектродных слоях, возникающих за время отсчета тока. В случае бросковых токов на стационарном электроде выполняются условия поляризации, близкие к условиям поляризации для ртутного капельного электрода.
На фиг. 1 представлен общий вид датчика для полярографических исследований катионного состава электролитов по данному изобретению, в разрезе; на фиг. 2 - общий вид; на фиг.3 - схема включения датчика; на фиг.4 - кривая изменения диффузионного тока.
Конструкция датчика представляет собой круглую ячейку диаметром 9 мм с вмонтированными электродами.
Датчик содержит корпус 1, выполненный в виде стакана из диэлектрика, эпоксидного компаунда 10, в котором установлены два электрода 2, 3. Основание стакана выполнено в виде стеклотекстолитовой подложки 4 с контактными площадками 5, 6, на которых с помощью токопроводящего клея укреплены электроды 2, 3. Электроды выполнены из химически нейтрального материала, стеклоуглерода, например, СУ-2000. При этом к контактным площадкам присоединены выводы электродов 7, 8. Измерительный электрод 3 имеет активную поверхность в 30-100 раз меньшую, чем активная поверхность противоэлектрода 2. По периметру края стакана выполнен буртик 9 для надежного удержания исследуемого электролита. Исследуемый электролит помещают в корпус в пространство между электродами.
Схема включения датчика представлена на фиг.3.
Датчик для полярографических исследований катионного состава электролитов функционирует следующим образом.
Исследуемый электролит помещают в корпус 1.
Конструкция электродов выполнена таким образом, что каждый раз перед измерением броскового тока замыканием накоротко устраняются изменения, вызванные предшествующим ходом электролиза, то есть стандартизуются поверхность электрода и приэлектродный слой раствора электролита.
Протекание электрохимической реакции в области потенциалов, ограниченной процессом ионизации твердых электродов с одной стороны и процессом разряда ионов электролита слюны с другой стороны, приводит к образованию волны с хорошо выраженным броском диффузионного тока. При этом создаются условия, при которых электрическое поле экранируется ионами постороннего электролита, которым является раствор органических и хлоридных элементов, присутствующих в электролитах, типа слюна.
При этих условиях в электролите будет наблюдаться нормальный диффузионный ток. Сила этого тока, обусловленная протеканием электрохимического процесса, при прочих равных условиях пропорциональна поверхности электродов и потенциалу разряда исследуемых ионов.
Максимальный диффузионный ток, протекающий по датчику-анализатору, пропорционален концентрации исследуемых ионов (Цфасман С.Б. Электронные полярографы, 1960):
imax ≡ C0
Figure 00000004

Значение функции
Figure 00000005
имеет вид, показанный на фиг.4.
Полное падение напряжения в точке mах имеет значение
Umax=imax•Rизм.
Максимальный же ток составит
imax=2,72•105n3/2AD1/2v1/2C0,
где А - площадь измерительного электрода, см2;
D - коэффициент диффузии ионов, см2/сек;
v - скорость изменения напряжения, В/сек;
n - число реагирующих электронов;
С0 - концентрация ионов испытуемого вещества в растворе, моль•см-3;
R - газовая постоянная, R=8,314 Дж•моль-1•град-1;
F - число Фарадея, F=96493 Кулон;
Т - абсолютная температура.
Щелочные металлы, какими являются калий и натрий, восстанавливаются на твердом электроде при весьма отрицательных потенциалах. На фоне хлоридов ионы щелочных металлов дают хорошо выраженный диффузионный ток со значениями потенциалов полуволн для К -2,17 В и Na -2,15 В. Малая разность потенциалов полуволн не дает возможности раздельно без применения особых фоновых растворов измерить раздельно диффузионные токи натрия и калия. Но достоверно установлено, что в период овуляции увеличивается концентрация не только калия, но и натрия. Поэтому суммарное увеличение концентраций будет реально означать наступление овуляции в женском организме. Возможно также применение в качестве фона спирто-водного раствора, при котором получаются одинаковые значения диффузных токов для эквивалентных количеств натрия и калия, так как коэффициенты их диффузии в этих условиях равны.
Важным вопросом при конструировании датчика явился вопрос выбора материала для твердых электродов. Из полярографии известно, что один электрод в процессе электролиза должен быть предельно поляризованным, а второй - оставаться неполяризованным. Для этого применяют два электрода разной поверхности так, чтобы поверхность индикаторного электрода была в 30-100 раз меньше вспомогательного. При этом в процессе поляризации на электродах образуются окисные пленки, в том числе и на платине, которые существенно искажают измерения. Для этого вводится короткое замыкание в нерабочий период, приводящее к деполяризации электродов, и очищение их от налета восстановленного металла и окисной пленки. Главным критерием в этом процессе является устранение факторов образования на поверхности электродов труднорастворимых или необратимых веществ.
Наибольшие возможности для устранения последствий поляризации открылись при применении в качестве электродов стеклоуглерода марки СУ-2000, который полностью заменяет платину в химико-аналитических работах при температурах до +500oС. Высокая степень чистоты, низкая газопроницаемость стеклоуглерода, его высокая твердость и прочность, химическая инертность делают его перспективным материалом при изготовлении датчиков для полярографии.
Поверхность такого датчика хорошо очищается тампоном от предыдущих замеров, имеет соответствующие прочностные характеристики, малую температурную зависимость. Датчик из стеклоуглерода практически не загрязняет анализируемую пробу слюны, так как содержание примесей мало и их диффузия из стеклоуглерода затруднена.
Стеклографит практически инертен с кислыми и щелочными материалами до весьма высоких температур.
Датчик позволяет проводить измерение тремя методами:
1. Метод броскового тока, когда на стеклоуглероде восстанавливается тонкий слой металлического калия при напряжении на ячейке -2,17 В и металлического натрия при напряжении -2,15 В.
2. Метод обратного броскового тока, проводящийся в два этапа:
1-й этап - процесс поляризации измерительного электрода методом броскового тока, когда на стеклоуглероде выделяется тонкий слой металлического калия и натрия при напряжении на ячейке -2,7 В;
2-й этап - измерение обратного броскового тока при замыкании электродов на нагрузочное сопротивление, возникающего при деполяризации электродов.
3. Метод измерения редокс-потенциала, проводящийся в два этапа:
1-й этап - процесс поляризации измерительного электрода методом броскового тока, когда на стеклоуглероде выделяется тонкий слой металлического калия и натрия при напряжении на ячейке -2,7 В;
2-й этап - измерение редокс-потенциала с участием нанесенного на стеклоуглерод слоя металла и его постепенное растворение в электролите слюны.
Полученный потенциальный всплеск на измерительном электроде усиливается и поступает на блок измерения, на котором фиксируется содержание катионного состава электролита.

Claims (1)

  1. Датчик для полярографических исследований катионного состава электролитов, содержащий корпус, выполненный в виде стакана из диэлектрика, в котором укреплены два электрода из химически нейтрального материала, снабженные выводами, отличающийся тем, что стакан выполнен из эпоксидного компаунда с основанием в виде стеклотекстолитовой подложки с контактными площадками, на которых укреплены посредством токопроводящего клея электроды, при этом измерительный электрод имеет активную поверхность в 30-100 раз меньшую, чем активная поверхность противоэлектрода, а по периметру края стакана выполнен буртик.
RU2001100097/14A 2001-01-05 2001-01-05 Датчик для полярографических исследований катионного состава электролитов RU2193861C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001100097/14A RU2193861C2 (ru) 2001-01-05 2001-01-05 Датчик для полярографических исследований катионного состава электролитов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001100097/14A RU2193861C2 (ru) 2001-01-05 2001-01-05 Датчик для полярографических исследований катионного состава электролитов

Publications (2)

Publication Number Publication Date
RU2001100097A RU2001100097A (ru) 2002-11-27
RU2193861C2 true RU2193861C2 (ru) 2002-12-10

Family

ID=20244308

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001100097/14A RU2193861C2 (ru) 2001-01-05 2001-01-05 Датчик для полярографических исследований катионного состава электролитов

Country Status (1)

Country Link
RU (1) RU2193861C2 (ru)

Similar Documents

Publication Publication Date Title
KR100358933B1 (ko) 평면형 기준 전극
US7063782B2 (en) Electrochemical detection of ischemia
US9034159B2 (en) Method and apparatus for measuring oxidation-reduction potential
JPS6117949A (ja) 固体ペ−ハ−センサ
JP2005529326A (ja) 全有機炭素分析装置
RU2193861C2 (ru) Датчик для полярографических исследований катионного состава электролитов
CN111474216A (zh) 分析物检测仪表和相关使用方法
RU2003104357A (ru) Сенсор на гемоглобин
US20060163088A1 (en) Amperometric sensor with counter electrode isolated from fill solution
JPH026737A (ja) 糖分測定装置
JPH075145A (ja) カートリッジ型分析装置及びカートリッジ
Yalcinkaya et al. Ag/AgCl/Cl− coated silver-stripe reference electrode
KR100385168B1 (ko) 염분 센서 및 염분 센서 장착 기구
KR910002647B1 (ko) 단일 결정식 혈액분석방법 및 그 장치
SU1040399A1 (ru) Потенциометрический датчик дл измерени активности ионов фтора
JPS63281041A (ja) 測定用電極
CN115494131A (zh) 一种具有自校准功能的四电极共面标准电极及其应用
BR102020012146A2 (pt) Sensores eletroquímicos não enzimáticos para detecção de glicose em amostras de saliva
Singh Different Techniques and Ionophores Used For Sensing Sodium Ion
JPH11101775A (ja) 水素イオン濃度測定方法及び装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080106