RU2189654C2 - Ионные жидкости в качестве растворителей - Google Patents

Ионные жидкости в качестве растворителей Download PDF

Info

Publication number
RU2189654C2
RU2189654C2 RU99104525A RU99104525A RU2189654C2 RU 2189654 C2 RU2189654 C2 RU 2189654C2 RU 99104525 A RU99104525 A RU 99104525A RU 99104525 A RU99104525 A RU 99104525A RU 2189654 C2 RU2189654 C2 RU 2189654C2
Authority
RU
Russia
Prior art keywords
ionic liquid
fuel
metal
nitrate
oxidation state
Prior art date
Application number
RU99104525A
Other languages
English (en)
Other versions
RU99104525A (ru
Inventor
Марк ФИЕЛДС
Грехем Виктор ХАТСОН
Кеннет Ричард Седдон
Чарльз Макинтош ГОРДОН
Original Assignee
Бритиш Нуклеа Фюэлс ПЛС
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бритиш Нуклеа Фюэлс ПЛС filed Critical Бритиш Нуклеа Фюэлс ПЛС
Publication of RU99104525A publication Critical patent/RU99104525A/ru
Application granted granted Critical
Publication of RU2189654C2 publication Critical patent/RU2189654C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • G21C19/44Reprocessing of irradiated fuel of irradiated solid fuel
    • G21C19/48Non-aqueous processes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G56/00Compounds of transuranic elements
    • C01G56/004Compounds of plutonium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Pyridine Compounds (AREA)

Abstract

Изобретение относится к регенерации облученного топлива и растворению оксидов металлов. Результат изобретения: создание нового способа растворения любых топлив. Металл находится в степени окисления, которая ниже его максимальной степени окисления. Ионная жидкость реагирует с металлом и окисляет его до более высокой степени окисления. Первоначально металл может быть в форме соединения. Металл - это облученное ядерное топливо, содержащее UO2 и/или PuO2, а также продукты расщепления. Ионной жидкостью является жидкость на нитратной основе, например, пиридиний или замещенный имидазолий нитрат. Она содержит кислоту Бренстеда или кислоту Франклина для повышения окисляющей способности нитрата. Пригодными кислотами являются HNO3, H2SO4 и [NO+]. 17 з.п.ф-лы, 7 табл.

Description

Изобретение относится к регенерации облученного топлива, а также к способу растворения оксидов металлов в ионных жидкостях и к новым продуктам или композициям, включающим ионные жидкости.
Облученное топливо может представлять собой топливо, которое образуется, например, в результате использования топливных элементов в реакторах на легкой воде (LWR). Ниже будут сделаны ссылки на такое топливо, однако следует понимать, что изобретение не ограничивается этим и может быть применено для регенерации любого особого типа облученного топлива.
Облученное топливо из LWR расположено внутри Циркалоевых оболочек, которые окисляются в результате облучения. В известном способе регенерации облученного топлива PUREX первая стадия включает разрубание и разрезание топливных стержней так, чтобы именно облученное топливо само по себе могло быть растворено в азотной кислоте.
Известно использование в качестве растворителей расплавов солей, и они могут быть предположительно использованы для регенерации облученного топлива из LWRs. Эти расплавы солей, обычно, представляют собой смеси солей, которые находятся в жидком состоянии только при высоких температурах и имеют незначительные преимущества при использовании в качестве растворителей перед водными или органическими средами.
В последнее время стали известны соли, смеси солей или смеси компонентов, которые образуют соли, плавящиеся ниже или чуть выше комнатной температуры (по определению в данном изобретении соль состоит полностью из катионов и анионов). Такие жидкости известны как "ионные жидкости, хотя этот термин может быть использован для солей, плавящихся при относительно высоких температурах, включая, например, температуры до 100oС. Общие свойства ионных жидкостей включают нулевое давление паров при комнатной температуре, высокую растворяющую способность и большой диапазон температуры нахождения в жидком состоянии (например, порядка 300oС).
Известные ионные жидкости включают хлорид алюминия (III) в комбинации с галогенидами имидазолия, пиридиния или фосфония. Примеры включают 1-этил-3-метилимидазолий хлорид, N-бутилпиридиний хлорид и тетрабутилфосфоний хлорид. Примером известной ионной жидкой системы является смесь 1-этил-3-метилимидазолий хлорида и хлорида алюминия (III). E.S. Lane (J. Chem. Soc., 1953, 1172-1175) описал получение некоторых алкилпиридиний нитратных ионных жидкостей, включая втор-бутилпиридиний нитрат. Сведений об использовании жидкостей не приводилось, однако были сделаны ссылки на фармакологическую активность декаметилен-бис-пиридиний нитрата.
L. Heerman et al. (J. Electroanal. Chem., 1985, 193, 289) описывает растворение UО3 в системе, включающей N-бутилпиридиний хлорид и хлорид алюминия (III).
В WO 96/32729 раскрывается, что оксидные ядерные топлива могут быть растворены в расплавах карбонатов щелочных металлов с образованием соединений, которые могут быть в дальнейшем переработаны так, чтобы выделить из них уран.
WO 95/21871, WO 95/21872 и WO 95/21806 относятся к ионным жидкостям и к их использованию в катализе реакций конверсии углеводородов (например полимеризации или олигомеризации олефинов) и реакций алкилирования. Ионные жидкости представляют собой, предпочтительно, 1-(С11 алкил)-3-(C6-C30 алкил)имидазолий хлориды и, особенно, 1-метил-3-С10 алкилимидазолий хлорид или 1-гидрокарбилпиридиний галогенид, в котором гидрокарбильная группа представляет собой, например, этил, бутил или другой алкил.
Настоящее изобретение обеспечивает в своем первом аспекте использование содержащей окислитель ионной жидкости для растворения металла необязательно в форме его соединения. Окислитель окисляет металл до более высокой степени окисления, при которой металл становится обычно более растворимым в ионных жидкостях по сравнению с металлом в его первоначальной степени окисления. В особенности, обеспечивается способ первоначальной степени окисления. В особенности, обеспечивается способ растворения в ионной жидкости металла, находящегося в начальной степени окисления, которая ниже его максимальной степени окисления, при этом способ характеризуется тем, что ионная жидкость реагирует с металлом и окисляет его до более высокой степени окисления.
При использовании в данном описании под термином "металл" подразумевают не только металлические элементы в (0) степени окисления, но также и металлы в степени окисления выше нуля, связанные с другими элементами, например U(IV) и U(VI). Таким образом металл в его первоначальной степени окисления может представлять соединение металла, например оксид металла.
Описываемый металл представляет собой уран (в виде UO2), или плутоний (в виде РuО2), или оба и, обычно, продукты расщепления. UO2 или PuO2 не растворяются прямо в окисляющей ионной жидкости, а сначала оксид реагирует с ионной жидкостью с образованием окисленного продукта, который растворяется в ионной жидкости. Такие предпочтительные процессы растворения могут быть использованы в регенерации облученного ядерного топлива.
Используемая ионная жидкость может содержать не только один анион и один катион, но в дополнение другой компонент, усиливающий способность жидкости реагировать и окислять субстрат. При предпочтительном осуществлении изобретения жидкость содержит как мягкий окисляющий анион [NO3-], так и кислоту, которая может быть кислотой Бренстеда или Франклина, такой как HNO3, Н2SO4 или [NO+], например из [NO][BF4]. Кислота делает жидкость более способной к окислению таких субстратов, как UO2 и РuО2.
Ионная жидкость включает нитрат-анион и органический катион, особенно азотсодержащие гетероциклы, включающие четвертичный азот, такие как, например, пиридиниевый или замещенный имидазолиевый ионы. Типичные ионные жидкости включают 1-бутилпиридиний нитрат, 1-октилпиридиний нитрат, 1-бутил-3-метилимидазолий нитрат, 1-гексил-3-метилимидазолий нитрат и 1-октил-3-метилимидазолий нитрат.
Изобретение включает также использование способа регенерации облученного топлива ионной жидкостью для растворения топлива, также как и способы регенерации, которые включают стадию растворения топлива в ионной жидкости.
Процесс растворения ведут при температуре от 50 до 100oС.
Растворитель
Растворитель включает ионную жидкость, которая, обычно, содержит агент или частицы, придающие растворителю способность окислять между прочим выбранные субстраты, хотя присутствие этого агента не является необходимым в случае всех аспектов изобретения (как объяснено ниже в разделе под заголовком "Металл"). Агент может быть окислителем, растворенным в неокисляющей жидкости или дополнительным агентом для повышения окисляющей способности других окисляющих частиц. Если растворитель содержит нитрат ионы, агент повышает окисляющую способность растворителя сверх той, которую должны обеспечивать сами по себе нитрат ионы; как описано выше, такие агенты включают кислоты Бренстеда и Франклина.
Растворитель, в принципе, может включать любую ионную жидкость, но эта жидкость, обычно, содержит нитрат анионы.
Катион, на практике, может включать один или более органических катионов, особенно азотсодержащие гетероциклы, содержащие четвертичный азот, в особенности N-замещенный пиридиний или N,N'-дизамещенный имидазолий. Заместители представляют собой, предпочтительно, гидрокарбилы и, более предпочтительно, алкилы, которые, например, могут быть разветвленными. Гидрокарбильные (например, алкильные) группы обычно содержат от 1 до 18 углеродных атомов и более обычно содержат от 1 до 8 атомов.
Катион, таким образом, может быть ионом дизамещенного имидазолия, в котором заместители имеют формулу CnH2n+1, где 1 n 8, и являются линейными или разветвленными. В предпочтительных дизамещенных ионах имидазолия один заместитель имеет n=1, 2 или 3 (из которых метил особенно предпочтителен) и другой имеет n= 4, 5, 6, 7 или 8 (из которых октил, гексил и, предпочтительно, С4, особенно бутил, являются предпочтительными). Линейные группы предпочтительны. Альтернативно катион может быть замещенным пиридиниевым ионом, в котором замещающая группа также имеет формулу CnH2n+1, где 1 n 8, и является линейной или разветвленной; подходящими заместителями являются бутил, 2-(2-метил)пропил, 2-бутил и октил, однако линейные алкилы, особенно бутил, являются предпочтительными.
Конечно, незначительные количества примесей могут присутствовать, например, метилимидазолия в 1-бутил-3-метилимидазолии.
Из описанного выше можно заключить, что ионные жидкости могут иметь нитратную основу, например, иметь нитрат в качестве аниона. Ионные жидкости, содержащие нитрат, являются новыми и включены в изобретение за исключением некоторых алкилпиридиниевых нитратов и полиметилен-бис-(пиридиний нитрат)соединений, раскрытых Lane. Новым также является использование нитратсодержащих ионных жидкостей в качестве реакционной среды или растворителя. Ионная жидкость по данному изобретению включает нитрат и катионный компонент, который не является только алкилпиридиний нитратом или полиметилен-бис-(пиридиний нитратом). Однако 1-бутилпиридиний нитрат является особенно предпочтительной ионной жидкостью, которая является новой и, также, включена в изобретение. Продукты, включающие новые ионные жидкости, составляют предмет данного изобретения.
Новые ионные жидкости на нитратной основе могут быть получены смешиванием водного нитрата серебра (I) с соответствующим органическим галогенидом. В виде примера одна такая жидкость получена смешиванием растворов водного нитрата серебра (I) и 1-бутил-3-метилимидазолий хлорида (bmim). Хлорид серебра выпадает в осадок и образуется жидкость 1-бутил-3-метилимидазолий нитрат:
Figure 00000001

Продукт может быть очищен фильтрацией и удалением избытка воды из фильтрата.
1-Гексил-3-метилимидазолий нитрат получают аналогичным способом, и этот продукт также является жидким при комнатной температуре.
Катионы, альтернативные пиридинию и имидазолию, включают четвертичные фосфониевые катионы, например, тетра(гидрокарбил)фосфоний. Подходящие гидрокарбильные группы являются такими же, как описано выше для пиридиниевых и имидазолиевых катионов.
Агент для повышения окисляющей способности ионной жидкости (когда используется - раздел под заголовком "Металл") обычно представляет собой кислоту Бренстеда (например, HNO3 или Н2SO4) или кислоту Франклина, например, [NO+], полезные в том или другом случае для того, чтобы сделать нитрат более реакционно-способным к окислению таких субстратов как, например, UO2 и РuО2. Другими словами, один класс ионных жидкостей по изобретению содержит оксидант, включающий нитрат, и вещество, усиливающее его действие. Оксидант при смешивании с ионной жидкостью может реагировать с ней с образованием новых частиц, которые также представляют собой ионные жидкости. Так, предположительно, [NО] [ВF4] реагирует с азотнокислыми солями органических катионов, образуя тетрафторборатные (III) соли катиона. Примером такой реакции является:
[Bu-py][NO3]+[NO][BF4]•N2O4+[Bu-py][BF4],
где Bu-py представляет собой 1-бутилпиридиний. [Bu-py][BF4] является новым и включен в данное изобретение. Результатом реакции является трехкомпонентная ионная жидкость. Изобретение включает использование других составных ионных жидкостей.
Реакция тетрафторборатной (III) соли и ионной жидкости приводит к безводному тетрафторборатному (III) продукту. Получение тетрафторборатной соли (III) по такой реакции является новым и включено в данное изобретение; такая методика получения находит особое применение в изготовлении органических тетрафторборатных (III) солей, например, солей имидазолия, пиридиния и фосфония.
Соответственно, ионная жидкость может включать органические катионы, как описано выше, и тетрафторборатные (III) анионы, например, представлять собой тетрафторборатную (III) соль четвертичного азотсодержащего гетероцикла.
Металл
Природа металла не является лимитирующей для данного изобретения. В первом аспекте металл до растворения находится в относительно низкой степени окисления и состав ионной жидкости является окисляющим. Предпочтительно, металл до растворения находится в состоянии, при котором он менее растворим в ионной жидкости, чем когда он находится в более высокой степени окисления и состав ионной жидкости является окисляющим. Металл, обычно, находится в форме оксида. Предпочтительно, оксиды металла включают различные оксиды урана и оксид плутония (IV). Так, экспериментальным путем было установлено, что UO2 может реагировать с ионной жидкостью, которая окисляет атомы урана (IV) до атомов урана (VI), например окисляет диоксид урана до транс-диоксоурана (VI) в комплексной форме. Подобным образом, плутоний (IV), обычно в форме РuО2, может реагировать с ионной жидкостью, окисляющей плутоний (IV) до плутония (VI), например, она окисляет диоксид плутония до транс-диоксоплутония (VI) в комплексной форме.
В соответствии с одним из путей осуществления изобретения оксиды металла включают оксиды плутония и урана, прежде всего в форме облученного ядерного топлива, например, в облученных топливных стержнях. Ядерные топливные стержни состоят из таблеток топлива, содержащихся в оболочке, и в соответствии с изобретением считается, что оболочка удаляется при окислении ионной жидкостью. Оболочка, обычно, представляет собой циркониевый сплав, например, такой, какой продают под торговой маркой Zircaloy. При другом осуществлении данного изобретения ионная жидкость может быть использована для того, чтобы растворить свободный металл (в виде, в котором его включают в сплавы), который может быть материалом оболочки или облученным металлическим топливом, например, металлическим ураном, содержащим продукты расщепления и актиниды и который начинают использовать или как чистый металлический уран, или как сплав урана и, по крайней мере, одного другого металла.
В некоторых аспектах изобретение относится к ионным жидкостям, которые не содержат какой-либо кислоты или другого усилителя окисления. Так, ионные жидкости на нитратной основе без добавления кислоты могут быть использованы в качестве реакционной среды или растворителя. Например, они могут быть использованы как реакционная среда для окисления веществ, способных к окислению нитратом. Подходящий оксид для растворения в таких растворителях на нитратной основе может включать оксид тория (IV).
Изобретение не ограничено одним путем, по которому металл растворяют в растворителе из ионной жидкости. Обычно, растворение осуществляют при повышенной температуре в 50oС и более, например, до 350oС. Наиболее предпочтительно использование повышенной температуры от 50oС до 100oС. Металл, обычно, растворяют при турбулентном перемешивании.
Образующийся раствор может быть подвержен дальнейшей обработке, например, для селективного удаления определенных частиц. В особенности, такими селективными приемами выделения могут быть отделены друг от друга уран и плутоний; альтернативно, смешанный оксид урана / плутония может быть отделен от других компонентов раствора. Известный способ электроосаждения может быть использован для выделения из раствора урана и/или плутония, в то время как продукты расщепления остаются в растворе и раствор может быть затем подвергнут пирогидролизу, чтобы сделать оксиды готовыми для удаления. Для обеспечения стабильной формы отходов, предназначенных для удаления, могут быть использованы другие химические процессы. Альтернативно способ, подобный известному PUREX-способу, включающему экстракцию растворителем, может быть использован после первоначального растворения топлива в ионной жидкости. По этому способу топливо и, предпочтительно, оболочку растворяют в ионной жидкости и проводят несколько стадий экстракции, чтобы удалить продукты расщепления из ионной жидкой системы и отделить урановый продукт от плутониевого продукта, готовыми для их последующего повторного использования.
Изобретение, предпочтительно, относится к регенерации облученного ядерного топлива. В одном из способов топливные стержни помещают в окисляющую ионную жидкость, и сначала оболочки, а затем уран и плутоний растворяют в ионной жидкости. Уран и, необязательно, плутоний повторно перерабатываются в новые топливные стержни, например, любым подходящим способом, после экстракции из ионной жидкости. Первая группа способов включает стадию механического разрушения оболочки для того, чтобы подвергнуть таблетки топлива действию ионной жидкости. В соответствии с другим путем осуществления способа топливные стержни помещают сначала в первую ионную жидкость для растворения оболочки и затем во вторую ионную жидкость для растворения урана и плутония. Уран и плутоний находятся, обычно, в форме их оксидов.
Те способы по данному изобретению, которые касаются регенерации ядерного топлива, могут включать проведение одной или более стадий для перевода растворенного топлива в форму промежуточного или конечного продукта из ядерного топлива, например, геля, порошка, таблеток, топливных стержней или топливных сборок.
Изобретение может быть использовано для регенерации любых облученных топлив, например, LWR, быстрых реакторов и металлических топлив. Оно также может быть использовано для получения очищенного нитрата диоксоурана (VI) из урановой руды или уранового рудного концентрата ("желтый кек").
Изобретение иллюстрируется следующими примерами.
Примеры
В примерах используют следующие сокращения:
Вu:бутил
Hex:гексил
mim:метилимидазолий
Oct:октил
ру:пиридиний
Сокращения в 1Н я.м.р.
s:синглет
d:дублет
t:триплет
quin:пентаплет
sex:гексаплет
m:мультиплет
br:широкий
Пример 1
Реактивы
Твердый UO2 от фирмы BNFL. UO2(NO3)2•6Н2O от фирмы BDH и тетрафторборат (III) нитрония ([NO][BF4]) от фирмы Aldrich были использованы в том виде, в каком они поставляются.
1-Метилимидазол перегоняют под вакуумом и хранят в атмосфере азота до момента использования. Соли 1-алкил-3-имидазолия или 1-алкилпиридиния готовят прямой реакцией подходящего алкилгалогенида или галогеналкана с 1-метилимидазолом или пиридином, соответственно, и перекристаллилизацией из ацетонитрила или этилацетата.
Спектры
УФ - видимые спектры сняты в кювете, имеющей ширину 1 мм и кварцевые окна, для сравнения использовали соответствующую чистую ионную жидкость. Инфракрасные спектры сняты в тонких пленках с использованием пластинок NaCl.
Получение нитратных ионных жидкостей
Все нитратные ионные жидкости готовят по аналогии со способом, в соответствии с которым получают 1-бутил-3-метилимидазолий нитрат.
1-Бутил-3-метилимидазолий хлорид (8,04 г, 46,0 ммол) растворяют в воде (15 см3). К этому раствору прибавляют раствор нитрата серебра (1) (7,82 г, 46,0 ммол) в воде (20 см3). Немедленно образуется белый осадок (возможно хлорида серебра (1)). Смесь перемешивают (20 мин) для того, чтобы убедиться в завершении реакции, после чего фильтруют дважды через Р 3 стеклянный фильтр для того, чтобы отделить белый осадок (второе фильтрование обычно необходимо для удаления следов осадка). Воду удаляют на роторном испарителе, при этом остается вязкая желтая или коричневая жидкость, иногда со следами маленьких черных твердых частиц. Неочищенный продукт, 1-бутил-3-метилимидазолий нитрат, растворяют в небольшом количестве сухого ацетонитрила, после чего для обесцвечивания к раствору добавляют древесный уголь. Реакционную массу перемешивают (30 мин) и фильтруют через Celite©. Ацетонитрил удаляют под вакуумом и полученный слабо-желтый продукт, представляющий собой ионную жидкость, высушивают путем нагревания в вакууме (приблизительно 50oС 2-3 дня). Некоторое окрашивание продукта появляется в случае, если нагревание было слишком энергичным. Полученную ионную жидкость хранят в атмосфере азота для предотвращения попадания влаги.
Спектр 1Н я. м. р. и микроанализ ионных жидкостей на нитратной основе, приготовленных в соответствии с описанным процессом, приведены в табл.1-6.
Пример 2
Получение [NO][BF4]:[Bu-py][NO3] в соотношении 1:10
При перемешивании к 1-бутилпиридиний нитрату (2,258 г, 11,4 ммол) прибавляют нитроний тетрафторборат (III) (0,121 г, 1,03 ммол). При первоначальном прибавлении вокруг твердых частиц [NO][BF4] наблюдается зеленое окрашивание, которое тем не менее исчезает, после того как смесь перемешивают в течение двух дней. Кроме того, наблюдается выделение бурого газа. Инфракрасный спектр с очевидностью демонстрирует удаление воды из ионных жидкостей с помощью [NO][BF4].
Пример 3
Получение [NO][BF4]:[Bu-py][NO3] в соотношении 1:2
При перемешивании к 1-бутилпиридиний нитрату (3,000 г, 15,1 ммол) прибавляют нитроний тетрафторборат (III) (0,910 г, 7,8 ммол). Немедленно появляется бурый дым, и раствор быстро приобретает темный зелено-голубой цвет. После перемешивания в течение ночи весь [NO][BF4] растворяется с образованием зелено-голубого раствора, который значительно менее вязок, чем исходный материал, 1-бутилпиридиний нитрат (см. табл.7).
Пример 4
Растворение UO2 в смеси нитратная ионная жидкость:азотная кислота 1:1
Приготавливают смесь 1-бутилпиридиний нитрата и концентрированной азотной кислоты в мольном соотношении 1:1, из которой удаляют на роторном испарителе как можно больше воды. К 0,5 см3 этого раствора прибавляют UO2 (приблизительно 0,01 г) и вначале смесь перемешивают (2 часа) при комнатной температуре без видимых признаков реакции. Затем ее нагревают (от 80 до 90oС, 6 часов), и в это время раствор становится желтым при почти полном растворении UO2. УФ - видимый спектр раствора продукта демонстрирует полосу с тонкой структурой, имеющей центр при λ=438 нм, которая подтверждает наличие комплекса иона [UО2]+2.
Пример 5
Растворение UO2 в [NO][BF4]:[Bu-py][NO3] 1:10.
UO2 (0,02 г, 0,074 ммол) прибавляют к смеси [NO][BF4]:[Bu-py][NO3] 1:10 (1,656 г). Перемешивание при комнатной температуре не приводит к изменению цвета смеси (бледно-желтый), поэтому смесь нагревают (90oС, 5 часов). На этой стадии большая часть UO2 уже растворена, и раствор приобрел более интенсивно желтый цвет. На этой стадии прибавляют еще порцию UO2 (0,101 г, 0,37 ммол) к реакционной смеси и продолжают нагревание (100oС, 48 часов). К концу этого времени останется небольшое количество нерастворенного UO2, но раствор имеет интенсивно желтый цвет. УФ - видимый спектр показывает полосу с тонкой структурой, имеющей центр при λ=436 нм, подтверждающий наличие комплексного иона [UO2]+2. Собирают твердый реакционный остаток и взвешивают его (0,018 г), что показывает, что всего UO2 в количестве 0,103 г (0,38 ммол) прореагировало с ионной жидкостью.
Пример 6
Растворение UO2 в [NO][BF4]:[Bu-py][NO3] 1:2
UO2 (0,059 г, 0,22 ммол) прибавляют к смеси [NO][BF4]:[Bu-py][NO3] 1:2 (2,45 г) в атмосфере азота, чтобы исключить любое попадание влаги. Смесь нагревают (приблизительно при 65oС, 16 часов) после чего весь черный UO2 оказывается растворенным и образуется желтый раствор. Дополнительно прибавляют к раствору UO2 (1,140 г, 0,52 ммол) и нагревание продолжают ( приблизительно 65oС, 44 часа). В конце этого времени раствор становится интенсивно желтым, но при этом тем не менее остается нерастворенным некоторое неопределенное количество UO2. Вновь УФ - видимый спектр и инфракрасный спектр четко подтверждают наличие комплексного иона [UO2]+2.

Claims (18)

1. Способ растворения в растворителе металла в первоначальной степени окисления, которая ниже его максимальной степени окисления, в соответствии с которым растворитель взаимодействует с металлом и окисляет его до более высокой степени окисления, отличающийся тем, что растворитель представляет собой ионную жидкость, содержащую органический катион и имеющую точку плавления не более 100oС, а металл в его первоначальной степени окисления представляет собой UO2 или РuО2 или их смесь.
2. Способ по п. 1, отличающийся тем, что металл имеет большую растворимость в ионной жидкости в более высокой степени окисления, чем в первоначальной степени окисления.
3. Способ по п. 1-2, отличающийся тем, что ионная жидкость содержит ионы нитрата.
4. Способ по п. 3, отличающийся тем, что ионная жидкость дополнительно содержит кислоту.
5. Способ по п. 4, отличающийся тем, что кислота представляет собой кислоту Бренстеда или кислоту Франклина.
6. Способ по п. 5, отличающийся тем, что кислота представляет собой НNО3, Н24 или [NO+] .
7. Способ по п. 6, отличающийся тем, что ионную жидкость, содержащую [NO+] , получают путем растворения [NО] [ВF4] в ионной жидкости, имеющей нитрат анионы.
8. Способ по любому из предшествующих пунктов, отличающийся тем, что катионы в ионной жидкости представляют собой азотсодержащие гетероциклы, имеющие четвертичный атом азота.
9. Способ по п. 8, отличающийся тем, что катионами являются N-замещенный пиридиний или N, N1-дизамещенный имидазолий.
10. Способ по п. 9, отличающийся тем, что катионами являются (C1-C8 алкил)-пиридиний или 1-(С48 алкил)-3-метилимидазолий.
11. Способ по любому из предшествующих пунктов, отличающийся тем, что его проводят при температуре от 50 до 100oС.
12. Способ по любому из предшествующих пунктов, отличающийся тем, что его используют при регенерации облученного топлива, и при этом он включает стадию растворения топлива в ионной жидкости.
13. Способ по любому из предшествующих пунктов, отличающийся тем, что металл содержится в облученном топливе и способ включает его регенерацию путем растворения в ионной жидкости, причем облученное топливо окислено.
14. Способ по п. 13, отличающийся тем, что топливо растворяют в ионной жидкости вместе с его оболочкой.
15. Способ по п. 13, отличающийся тем, что для растворения оболочки используют первую ионную жидкость и для растворения самого топлива используют вторую ионную жидкость.
16. Способ по любому из предшествующих пунктов, отличающийся тем, что растворенный уран экстрагируют из ионной жидкости с помощью жидкостной экстракции или электрохимическим способом.
17. Способ по п. 15, отличающийся тем, что стадию растворения проводят при температуре от 50 до 100oС.
18. Способ по п. 13, отличающийся тем, что он включает процесс преобразования растворенного топлива в продукт, представляющий собой ядерное топливо.
RU99104525A 1996-08-02 1997-08-01 Ионные жидкости в качестве растворителей RU2189654C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9616264.9 1996-08-02
GB9616264A GB9616264D0 (en) 1996-08-02 1996-08-02 Reprocessing irradiated fuel

Publications (2)

Publication Number Publication Date
RU99104525A RU99104525A (ru) 2001-01-27
RU2189654C2 true RU2189654C2 (ru) 2002-09-20

Family

ID=10797921

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99104525A RU2189654C2 (ru) 1996-08-02 1997-08-01 Ионные жидкости в качестве растворителей

Country Status (11)

Country Link
US (1) US6379634B1 (ru)
EP (1) EP1008147A2 (ru)
JP (1) JP2000515971A (ru)
KR (1) KR100504123B1 (ru)
CN (1) CN1168099C (ru)
AU (1) AU3703497A (ru)
CA (1) CA2260969A1 (ru)
GB (1) GB9616264D0 (ru)
RU (1) RU2189654C2 (ru)
WO (1) WO1998006106A2 (ru)
ZA (1) ZA976868B (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2446107C1 (ru) * 2010-11-10 2012-03-27 Учреждение Российской Академии Наук Институт Общей И Неорганической Химии Им. Н.С. Курнакова Ран (Ионх Ран) Способ получения твердого раствора диоксида плутония в матрице диоксида урана
RU2554626C2 (ru) * 2013-08-20 2015-06-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ получения твердого раствора диоксида плутония в матрице диоксида урана
RU2598943C1 (ru) * 2015-05-13 2016-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ получения твёрдого раствора диоксида плутония в матрице диоксида урана

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9719551D0 (en) * 1997-09-16 1997-11-19 British Nuclear Fuels Plc Treatment of molten salt reprocessing wastes
GB9802852D0 (en) * 1998-02-11 1998-04-08 British Nuclear Fuels Plc Nuclear fuel reprocessing
FR2779143B1 (fr) * 1998-05-29 2001-10-12 Inst Francais Du Petrole Procede ameliore de preparation d'un sel fondu
GB9919496D0 (en) * 1999-08-18 1999-10-20 British Nuclear Fuels Plc Process for separating metals
US6372829B1 (en) 1999-10-06 2002-04-16 3M Innovative Properties Company Antistatic composition
US6998152B2 (en) 1999-12-20 2006-02-14 Micron Technology, Inc. Chemical vapor deposition methods utilizing ionic liquids
DE10027995A1 (de) * 2000-06-09 2001-12-13 Merck Patent Gmbh Ionische Flüssigkeiten II
US6991718B2 (en) 2001-11-21 2006-01-31 Sachem, Inc. Electrochemical process for producing ionic liquids
WO2004016571A2 (en) 2002-08-16 2004-02-26 Sachem, Inc. Lewis acid ionic liquids
US7750166B2 (en) * 2002-08-16 2010-07-06 University Of South Alabama Ionic liquids containing a sulfonate anion
US6852229B2 (en) * 2002-10-22 2005-02-08 Exxonmobil Research And Engineering Company Method for preparing high-purity ionic liquids
DE10327128B4 (de) * 2003-06-13 2014-07-03 Basf Se Verfahren zur Herstellung von Chlor aus HCI
ES2404532T3 (es) * 2003-08-27 2013-05-28 Proionic Production Of Ionic Substances Gmbh & Co Kg Procedimiento para la fabricación de líquidos iónicos, sólidos iónicos o mezclas de los mismos
US7423164B2 (en) * 2003-12-31 2008-09-09 Ut-Battelle, Llc Synthesis of ionic liquids
US20080258113A1 (en) * 2004-07-16 2008-10-23 Simon Fraser University Phosphonium Ionic Liquids as Recyclable Solvents for Solution Phase Chemistry
US20060183654A1 (en) * 2005-02-14 2006-08-17 Small Robert J Semiconductor cleaning using ionic liquids
US7923424B2 (en) * 2005-02-14 2011-04-12 Advanced Process Technologies, Llc Semiconductor cleaning using superacids
WO2006088737A2 (en) * 2005-02-14 2006-08-24 Small Robert J Semiconductor cleaning
US7638058B2 (en) 2005-04-07 2009-12-29 Matheson Tri-Gas Fluid storage and purification method and system
KR101400173B1 (ko) * 2006-09-12 2014-05-27 술저 켐테크 악티엔게젤샤프트 이온성 액체의 정제 방법
JP4753141B2 (ja) * 2007-08-01 2011-08-24 独立行政法人 日本原子力研究開発機構 イオン液体を用いたウランの溶解分離方法、及びそれを用いたウランの回収方法
GB0905894D0 (en) 2009-04-06 2009-05-20 Univ Belfast Ionic liquids solvents for metals and metal compounds
GB2547364B8 (en) 2010-10-05 2017-11-29 The Queen's Univ Of Belfast Process for removing metals from hydrocarbons
JP4843106B2 (ja) * 2011-01-24 2011-12-21 独立行政法人日本原子力研究開発機構 イオン液体を用いたウランの回収方法
DE102011080230A1 (de) * 2011-08-01 2013-02-07 Helmholtz-Zentrum Dresden - Rossendorf E.V. Extraktion von Edelmetall(ionen) mittels ionischer Flüssigkeiten
US9631290B2 (en) * 2011-10-07 2017-04-25 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Las Vegas Room temperature electrodeposition of actinides from ionic solutions
US20130087464A1 (en) * 2011-10-07 2013-04-11 Nevada, Las Vegas Room temperature electrodeposition of actinides from ionic solutions
US8747786B2 (en) 2012-09-07 2014-06-10 Savannah River Nuclear Solutions, Llc Ionic liquids as templating agents in formation of uranium-containing nanomaterials
CN103778983B (zh) * 2012-10-24 2017-05-03 北京大学 一种离子液体直接溶解二氧化铀或乏燃料氧化物的方法
US20150094486A1 (en) * 2013-09-27 2015-04-02 Uop Llc Active ionic liquid mixtures for oxidizing alkylaromatic compounds
US10422048B2 (en) 2014-09-30 2019-09-24 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Las Vegas Processes for recovering rare earth elements
US10094778B1 (en) * 2017-06-02 2018-10-09 Chevron U.S.A. Inc. Integrated systems and processes for online monitoring of a chemical concentration in an ionic liquid
CN108998669A (zh) * 2018-09-21 2018-12-14 东北大学 一种采用n-辛基吡啶四氟硼酸盐萃取稀土元素的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2181883B1 (ru) 1972-04-27 1976-04-23 Agip Nucleare Spa
US4201690A (en) * 1978-04-03 1980-05-06 United Kingdom Atomic Energy Authority Processing of irradiated nuclear fuel
US4686019A (en) * 1982-03-11 1987-08-11 Exxon Research And Engineering Company Dissolution of PuO2 or NpO2 using electrolytically regenerated reagents
US5264191A (en) * 1990-08-28 1993-11-23 Agency Of Industrial Science And Technology Quaternary ammonium trihalide and method for dissolution of metal with liquid containing the compound
GB9402612D0 (en) 1994-02-10 1994-04-06 British Petroleum Co Plc Ionic liquids
MX9504271A (es) 1994-02-10 1997-04-30 Bp Chem Int Ltd Liquidos ionicos.
GB9402569D0 (en) 1994-02-10 1994-04-06 Bp Chem Int Ltd Alkylation process
GB9425105D0 (en) 1994-12-13 1995-02-08 Bp Chem Int Ltd Ionic liquids
GB9507644D0 (en) 1995-04-12 1995-06-14 British Nuclear Fuels Plc Method of processing oxide nuclear fuel
FR2739216B1 (fr) * 1995-09-22 1997-10-24 Commissariat Energie Atomique Procede de traitement de combustibles et/ou de cibles nucleaires a base d'aluminium metallique par des solutions d'hydroxyde de tetramethylammonium
US5855809A (en) * 1995-11-13 1999-01-05 Arizona Board Of Regents Electrochemically stable electrolytes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILKES J.S. et al. Air and Water Stabile 1-Ethyl-3-methylimidazolium Based Ionic Liquids, Journal of Chemical Society, Chemical Communications, 1992, №13, р.965-967. MORGAN L.G. et al. Molten Salt Oxidation - Reduction Processes for Fuel Processing, ACS Symposium Series, 1980, v. 117, Actinide Separations. HEERMA N.L. et al J. Electroanalytical Chemistry, 1985, v. 193, р.289. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2446107C1 (ru) * 2010-11-10 2012-03-27 Учреждение Российской Академии Наук Институт Общей И Неорганической Химии Им. Н.С. Курнакова Ран (Ионх Ран) Способ получения твердого раствора диоксида плутония в матрице диоксида урана
RU2554626C2 (ru) * 2013-08-20 2015-06-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ получения твердого раствора диоксида плутония в матрице диоксида урана
RU2598943C1 (ru) * 2015-05-13 2016-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ получения твёрдого раствора диоксида плутония в матрице диоксида урана

Also Published As

Publication number Publication date
GB9616264D0 (en) 1996-09-11
KR20000029744A (ko) 2000-05-25
CA2260969A1 (en) 1998-02-12
JP2000515971A (ja) 2000-11-28
EP1008147A2 (en) 2000-06-14
US6379634B1 (en) 2002-04-30
CN1226992A (zh) 1999-08-25
KR100504123B1 (ko) 2005-07-27
WO1998006106A3 (en) 1998-05-22
AU3703497A (en) 1998-02-25
ZA976868B (en) 1999-03-31
CN1168099C (zh) 2004-09-22
WO1998006106A2 (en) 1998-02-12

Similar Documents

Publication Publication Date Title
RU2189654C2 (ru) Ионные жидкости в качестве растворителей
Binnemans Lanthanides and actinides in ionic liquids
Mudring et al. Ionic liquids for lanthanide and actinide chemistry
Takao et al. Actinide chemistry in ionic liquids
US6468495B1 (en) Treatment of molten salt reprocessing wastes
RU99104525A (ru) Ионные жидкости в качестве растворителей
Polovov et al. In situ spectroscopy and spectroelectrochemistry of uranium in high-temperature alkali chloride molten salts
KA et al. A review on the electrochemical applications of room temperature ionic liquids in nuclear fuel cycle
EP2454390B1 (fr) Procede d'extraction d'au moins un element chimique d'un milieu sel fondu
US4790960A (en) Process for the stripping of cesium ions from aqueous solutions
JPS6251142B2 (ru)
EP1055240A1 (en) Nuclear fuel reprocessing
CN101252027A (zh) 离子液体中溶解UO2、PuO2或乏燃料的方法
WO2014124428A1 (en) Room temperature electrodeposition of actinides from ionic solutions
EP2694501B1 (fr) Dérivés de la 2,9-dipyridyl-1,10-phenanthroline utiles comme ligands des actinides, leur procédé de synthèse et leurs utilisations
Babai et al. Structural and electrochemical properties of YbIII in various ionic liquids
WO2004080974A1 (en) A purification method of ionic liquids to obtain their high purity
Jang et al. Synthetic diversity in the preparation of metallic uranium
US9631290B2 (en) Room temperature electrodeposition of actinides from ionic solutions
US5609745A (en) Process for the electrochemical oxidation of Am(III) to Am(VI) usable for separating americium from spent nuclear fuel reprocessing solutions
US4005178A (en) Method for converting UF5 to UF4 in a molten fluoride salt
JPH06505508A (ja) 窒素含有複素環式置換基をもつアミドによる(3)アクチニドの選択的抽出方法
EP2670874B1 (fr) Procede de separation d'au moins un element platinoïde d'une solution aqueuse acide comprenant, outre cet element platinoïde, un ou plusieurs autres elements chimiques
CA1288599C (en) Process for the stripping of cesium ions from aqueous solutions
Fife et al. Intramolecular general base catalyzed transesterification: The cyclization of ethyl 2-hydroxymethylbenzoate and ethyl 2-hydroxymethyl 4-nitrobenzoate to phthalide and 5-nitrophthalide

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060802