RU2183364C2 - Способ получения кремниевых наноструктур - Google Patents

Способ получения кремниевых наноструктур Download PDF

Info

Publication number
RU2183364C2
RU2183364C2 RU2000120226/28A RU2000120226A RU2183364C2 RU 2183364 C2 RU2183364 C2 RU 2183364C2 RU 2000120226/28 A RU2000120226/28 A RU 2000120226/28A RU 2000120226 A RU2000120226 A RU 2000120226A RU 2183364 C2 RU2183364 C2 RU 2183364C2
Authority
RU
Russia
Prior art keywords
matrix
silicon
nanostructures
nanocavities
heated
Prior art date
Application number
RU2000120226/28A
Other languages
English (en)
Other versions
RU2000120226A (ru
Inventor
В.Н. Богомолов
В.И. Соколов
Original Assignee
Физико-технический институт им. А.Ф. Иоффе РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Физико-технический институт им. А.Ф. Иоффе РАН filed Critical Физико-технический институт им. А.Ф. Иоффе РАН
Priority to RU2000120226/28A priority Critical patent/RU2183364C2/ru
Publication of RU2000120226A publication Critical patent/RU2000120226A/ru
Application granted granted Critical
Publication of RU2183364C2 publication Critical patent/RU2183364C2/ru

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

Способ получения кремниевых наноструктур относится к электронике и может найти применение при изготовлении наноэлектронных структур субмикронных размеров, используемых для передачи, преобразования, хранения и генерации информационных сигналов. Сущность: способ получения кремниевых наноструктур включает воздействие физико-химическим фактором на кремнийсодержащее вещество и последующее осаждение выделяющегося при упомянутом воздействии кремния в нанополостях силикатной матрицы. Новым в способе является нагрев со скоростью 20-500oС/мин самой матрицы в восстановительной среде до 700-950oС и выдержка ее при этой температуре в течение времени, определяемого из предварительно построенной зависимости заданного размера наноструктуры от времени нагрева матрицы. Матрица может иметь открытые нанополости на поверхности. Матрица может быть выполнена из обезвоженного опала. Нагрев матрицы может быть осуществлен при пониженном давлении среды, например при давлении 10-5-10-6 мм рт. ст. Технический результат изобретения заключается в обеспечении возможности формирования наноструктур различной конфигурации как в объеме матрицы, так и на ее поверхности. 4 з.п. ф-лы, 1 табл., 1 ил.

Description

Изобретение относится к электронике, а более конкретно к технологии получения наноэлектронных структур субмикронных размеров, используемых для передачи, преобразования, хранения или генерации информационных сигналов.
Наноструктуры микронных и субмикронных размеров представляют собой пространственно упорядоченные конструкции из наноразмерных кластеров произвольной геометрической формы. В настоящее время пространственно упорядоченные ансамбли наноразмерных структур различных веществ получают либо путем внедрения соответствующих веществ в наноразмерные полости или каналы, существующие в структуре некоторых природных или искусственных материалов (применяя различные физико-химические процессы); либо путем формирования наноразмерных структур на поверхности подложки.
Известен способ получения наноразмерных кластеров на плоской поверхности подложки с помощью туннельного атомного силового микроскопа. По этому способу на подложку окисленного кремния наносят тонкий слой титана. На поверхности напыленного металлического слоя сорбируется тонкая пленка воды. В присутствии сильного электрического поля между подложкой и зондом микроскопа в результате электрохимических процессов производят локальное окисление титана. В результате этого процесса формируется МОМ-транзистор с толщиной базовой области в несколько десятков нм (см. Matsumoto К., Sedawa K-Applcation of Scanning Tunneling Microscopy Nanofabrication process to Single Electron Transistor. - Journ. Vac. technol. - 1996, v. 14, pp. 1331-1335).
Известный способ позволяет получать наноструктуры заданных размеров и варьировать расстояние между ними, однако наноструктуры формируются лишь на поверхности подложки.
Известен способ формирования проводящей структуры, включающий нанесение на подложку слоя материала толщиной 2-20 нм и преобразование материала в проводящий под действием модулированного излучения от источника заряженных частиц после нанесения материала на подложку (см. патент РФ 2129320, кл. Н 01 L 21/263, опубликован 20.04.1999 г.).
Известный способ обеспечивает получение наноструктур различной конфигурации, однако их формирование происходит лишь на поверхности подложки и требует применения сложного оборудования.
Наиболее близким по технической сущности и количеству совпадающих с заявляемым способом существенных признаков является способ получения кремниевых кластеров в структурных полостях цеолитов, заключающийся во введении в структурные полости цеолита дисилана (Si2Н6) с последующим окислением его. В результате реакции выделяющийся кремний собирается в нанокластеры. Этот способ является частной реализацией метода химического осаждения паров (CVD) (см. Dad О. , Kuperman A., MacDonald P.M., Ozin G.A. - A New Form of Luminescent Silicon-Synthesis of Silicon Nanoclusters in Zeolite-Y. - Zeolites and Related Microporous Materials: State of the Art. - 1994, v.84, pp. 1107-1114).
Известный способ не позволяет формировать кремниевые наноструктуры в локальных областях, так как трансформирует используемую цеолитовую подложку практически по всей ее толщине. С помощью известного способа получают фактически однородный композитный материал.
Задачей настоящего изобретения являлась разработка такого способа получения кремниевых наноструктур, который позволял бы формировать локальные области кремния различной топологии.
Поставленная задача решается тем, что в способе получения кремниевых наностуктур, включающем воздействие на кремний-содержащее вещество физико-химическим фактором и последующее осаждение выделяющегося кремния в наноразмерных полостях силикатной матрицы, нагревают саму матрицу в восстановительной среде, обеспечивающей разрыв кремний-кислородных связей, до 700-950oС и выдерживают при этой температуре в течение времени, определяемого из предварительно построенной зависимости заданного размера наноструктуры от времени нагрева матрицы. Матрица может иметь наноразмерные полости различной геометрии (в том числе в виде каналов) как распределенные в ее объеме, так и сосредоточенные на ее поверхности. В последнем случае нанополости представляют собой углубления на поверхности матрицы. В качестве восстановительной среды может быть использован, например, осушенный водород, окись углерода СО или вакуум. Пористая силикатная матрица может быть выполнена, например, из обезвоженного опала или цеолита. Как силикатная матрица, опал характеризуется набором структурных полостей, имеющих габаритные размеры от 30 до 800
Figure 00000002
. В других силикатных матрицах размеры этих полостей меньше - от 6 до 25
Figure 00000003
(см. Богомолов В.Н., Павлова Т.М. Трехмерные кластерные решетки. - ФТП, 1996, т. 29, 5, с. 826).
Матрицу целесообразно нагревать при пониженном давлении, например при давлении среды 10-5-10-6 мм рт. ст., так как в этом случае наилучшим образом обеспечивается чистота поверхности матрицы и удаляется кислород, образующийся при декомпозиции двуокиси кремния SiO2. Скорость нагрева матрицы обычно выбирают в пределах 20-500oС/мин. Меньшая скорость нагрева экономически нецелесообразна, а при большей скорости нагрева матрица может рассыпаться под воздействием давления образующихся паров воды. Минимальная температура нагрева матрицы определяется тем обстоятельством, что при температуре ниже 700oС не происходит декомпозиции двуокиси кремния SiО2, который входит в состав матрицы. При температуре выше 950oС начинается разрушение структурных элементов матрицы. Скорость нагрева и время выдержки матрицы при максимальной температуре определяют характер распределения кремниевых наноструктур. Для образования наноструктур по всему объему матрицы формируют наноразмерные полости во всем ее объеме. Для образования наноструктур в локальной области силикатной матрицы в этой области матрицы формируют наноразмерные полости, например открытые нанополости на ее поверхности.
В заявляемом способе необходимые для создания наноразмерных кластеров атомы кремния не вводят извне, а получают в результате декомпозиции окисной матрицы SiО2 при ее нагреве. Использование матрицы, в структуре которой имеются наноразмерные полости, позволяет выделившимся атомам кремния собираться в этих полостях в результате поверхностной диффузии, формируя наноструктуры.
Авторам не известен из патентной и другой научно-технической литературы способ получения наноструктур, содержащий заявляемую совокупность признаков, что, по их мнению, свидетельствует о соответствии заявляемого способа критерию "новизна".
Использование нагрева самой матрицы в указанных выше интервалах температуры и времени выдержки позволяет создавать кремниевые наноструктуры заданной конфигурации как в объеме матрицы, так и на ее поверхности, что не достигается применением известных способов. Таким образом, отличительные признаки заявляемого способа в совокупности с известными из прототипа признаками обеспечивают получение нового технического эффекта.
На чертеже приведены зависимости времени нагрева силикатной матрицы (обезвоженного опала) от температуры нагрева при различных заданных средних размерах наноструктуры (1 - размер наноструктур 20-40 нм; 2 - размер наноструктур 60-80 нм; 3 - размер наноструктур 100-150 нм).
Заявляемый способ получения кремниевых наноструктур осуществляют следующим образом. Предварительно для конкретной силикатной матрицы (например, обезвоженного опала) определяют зависимость заданного размера наноструктуры от времени нагрева матрицы при различных температурах нагрева в интервале 700-950oС (см. фиг.1). Силикатную матрицу помещают в восстановительную среду. Восстановительную среду проще всего можно создать в любой вакуумной установке, обеспечивающей получение вакуума до 10-6 мм рт. ст. и содержащей нагревательный элемент, позволяющий нагревать матрицу до 1000oС. Матрицу укрепляют на поверхности нагревательного элемента, установку герметизируют и включают откачку. Затем включают нагревательный элемент и осуществляют нагрев матрицы со скоростью V=20-500oС. Скорость нагрева варьируется изменением подводимой мощности и определяет разброс формирующихся кремниевых наностуктур по размерам: чем выше скорость нагрева, тем этот разброс меньше. Время выдержки матрицы при максимальной температуре определяет размеры формирующихся наноструктур. При более высокой температуре и большей выдержке средний размер наноструктур выше. По завершении заданного времени выдержки производят выключение нагревательного элемента, матрицу после ее остывания извлекают из вакуумной камеры.
Нагрев матрицы в газовой восстановительной среде (например, водороде) осуществляют следующим образом. Матрицу размещают на подложке в кварцевом реакторе, вставленном в трубчатую печь. Реактор с одного торца подключен к газораспределительной системе для напуска водорода, а с другого торца снабжен трубкой, соединенной с водяным затвором, герметизирующим атмосферу в реакторе. Нагрев печи включают после того, как водород, подаваемый из газораспределительной системы, вытеснит из реактора весь воздух. Нагрев и охлаждение матрицы производят также, как в случае использования вакуума в качестве восстановительной среды.
О глубине декомпозиции матрицы судят по интенсивности и локализации зеленой полосы в спектре катодолюминесценции, сопровождающем процесс формирования кремниевых наноструктур при нагреве матрицы.
Примеры конкретного выполнения способа получения кремниевых наноструктур. Указанным выше способом в вакууме и в атмосфере водорода были обработаны пластинки полированного синтетического опала толщиной до 1 мм. Режимы нагрева и полученные результаты приведены в таблице.

Claims (5)

1. Способ получения кремниевых наноструктур, включающий воздействие физико-химическим фактором на кремнийсодержащее вещество и последующее осаждение выделяющегося при упомянутом воздействии кремния в нанополостях силикатной матрицы, отличающийся тем, что воздействие физико-химическим фактором на кремнийсодержащее вещество и последующее осаждение выделившегося кремния осуществляют нагревом самой матрицы в восстановительной среде со скоростью 20-500oС/мин до 700-950oС и выдержки ее при этой температуре в течение времени, определяемого из предварительно построенной зависимости заданного размера наноструктуры от времени нагрева упомянутой матрицы.
2. Способ по п. 1, отличающийся тем, что нагревают силикатную матрицу с открытыми нанополостями на поверхности.
3. Способ по п. 1, отличающийся тем, что нагревают матрицу, выполненную из обезвоженного опала.
4. Способ по п. 1, отличающийся тем, что нагревают матрицу при пониженном давлении среды.
5. Способ по п. 4, отличающийся тем, что нагревают матрицу при давлении среды 10-5-10-6 мм рт. ст.
RU2000120226/28A 2000-07-19 2000-07-19 Способ получения кремниевых наноструктур RU2183364C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000120226/28A RU2183364C2 (ru) 2000-07-19 2000-07-19 Способ получения кремниевых наноструктур

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000120226/28A RU2183364C2 (ru) 2000-07-19 2000-07-19 Способ получения кремниевых наноструктур

Publications (2)

Publication Number Publication Date
RU2000120226A RU2000120226A (ru) 2002-04-27
RU2183364C2 true RU2183364C2 (ru) 2002-06-10

Family

ID=20238557

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000120226/28A RU2183364C2 (ru) 2000-07-19 2000-07-19 Способ получения кремниевых наноструктур

Country Status (1)

Country Link
RU (1) RU2183364C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067445A1 (en) * 2003-01-31 2004-08-12 Institute Of Geological & Nuclear Sciences Limited Formation of silicon nanostructures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAD O. at al. А new form of luminescent silicon-sinthesis of silicon nanoclusters in zeolites-Y.-Zeolite and Related Microporous materials: State of tne Art.- 1994, v.84, рр.1107-1114. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067445A1 (en) * 2003-01-31 2004-08-12 Institute Of Geological & Nuclear Sciences Limited Formation of silicon nanostructures

Similar Documents

Publication Publication Date Title
JP3912583B2 (ja) 配向性カーボンナノチューブ膜の製造方法
Cheng et al. Synthesis of graphene paper from pyrolyzed asphalt
US7531156B2 (en) Method and device for synthesizing high orientationally arranged carbon nano-tube by using organic liquid
JP3183845B2 (ja) カーボンナノチューブ及びカーボンナノチューブ膜の製造方法
US7879309B2 (en) Method for preparing functional nanomaterials utilizing endothermic reaction
JP7156648B2 (ja) カーボンナノ構造化材料及びカーボンナノ構造化材料の形成方法
US6960528B2 (en) Method of forming a nanotip array in a substrate by forming masks on portions of the substrate and etching the unmasked portions
WO2010038793A1 (ja) ナノ炭素材料複合基板およびその製造方法
KR20010085509A (ko) 제품 제조 방법
JP2008156222A (ja) カーボンナノチューブ配列の成長方法
Masuda et al. Fabrication of highly ordered anodic porous alumina using self-organized polystyrene particle array
Diaf et al. Revisiting thin film of glassy carbon
Yamamoto et al. Digital etching study and fabrication of fine Si lines and dots
RU2183364C2 (ru) Способ получения кремниевых наноструктур
Phely‐Bobin et al. Preferential self‐assembly of surface‐modified Si/SiOx nanoparticles on UV/ozone micropatterned poly (dimethylsiloxane) films
Koshida et al. Emerging functions of nanostructured porous silicon—With a focus on the emissive properties of photons, electrons, and ultrasound
JP2006036593A (ja) 単層カーボンナノチューブの製造方法およびその製造装置
Chen et al. Aligned conical carbon nanotubes
Amirov et al. Self-formation of a nanonet of fluorinated carbon nanowires on the Si surface by combined etching in fluorine-containing plasma
JP4829634B2 (ja) 触媒の形成方法およびそれを用いた炭素膜の製造方法
RU2153208C1 (ru) Способ получения кремниевых наноструктур
JP2004196631A (ja) ナノカーボンの製造方法
CN111943270A (zh) 一种用于制造二硫化钼量子点阵列的设备与工艺方法
GB2288272A (en) X-ray windows
CN114314569B (zh) 一种在基体上形成石墨烯的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060720