RU2165893C1 - Способ комплексной очистки воды - Google Patents

Способ комплексной очистки воды Download PDF

Info

Publication number
RU2165893C1
RU2165893C1 RU2000110018A RU2000110018A RU2165893C1 RU 2165893 C1 RU2165893 C1 RU 2165893C1 RU 2000110018 A RU2000110018 A RU 2000110018A RU 2000110018 A RU2000110018 A RU 2000110018A RU 2165893 C1 RU2165893 C1 RU 2165893C1
Authority
RU
Russia
Prior art keywords
galvanic cell
water
organic
pollution
treated
Prior art date
Application number
RU2000110018A
Other languages
English (en)
Inventor
С.М. Шебанов
Original Assignee
Шебанов Сергей Михайлович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шебанов Сергей Михайлович filed Critical Шебанов Сергей Михайлович
Priority to RU2000110018A priority Critical patent/RU2165893C1/ru
Priority to EP00118934A priority patent/EP1149803A1/en
Application granted granted Critical
Publication of RU2165893C1 publication Critical patent/RU2165893C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46176Galvanic cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

Изобретение относится к технологии очистки сточных, грунтовых и шахтных вод от примесей тяжелых металлов, мышьяка, органических и радиоактивных загрязнений. Очистку осуществляют в поле гальванического элемента, состоящего из смеси сплава и/или металла и/или смеси металлов с различными углеродсодержащими материалами. Обработанную воду отделяют от материалов гальванического элемента. Примеси осаждают, регулируя pH в соответствии с формулой
Figure 00000001

Ci - мольная концентрация i-го неорганического загрязнения (иона); νi - заряд иона; Nн - число неорганических загрязнений; Cj - мольная концентрация органического загрязнения; No - число органических загрязнений очищаемой воды. Технический результат: простота технологического исполнения, экономичность, экологическая безопасность и высокоэффективность. 4 з.п.ф-лы, 5 табл.

Description

Изобретение относится к технологии очистки сточных, шахтных и грунтовых вод, загрязненных соединениями тяжелых металлов, мышьяка, радиоактивными элементами и органическими примесями.
Известен способ комплексной очистки сточных растворов, загрязненных органическими примесями, сульфат-, аммоний-, нитрит-, нитрат-, арсенат- и/или цианид-ионами, а также ионами тяжелых металлов и радиоактивных элементов (WO 95/14368) [1]. Комплексную очистку в указанном способе осуществляют пропусканием сточных вод через систему биобассейнов, заполненных слоем носителя, состоящего из дробленого известняка, железа и источника органического углерода, расположенных на дне бассейна, в комбинации с бактериальной культурой. Сточную воду подают в условиях интенсивного непрерывного перемешивания.
Процесс требует большого количества реакторов, т.к. скорость биохимических процессов невысока, и, следовательно, процесс является металлоемким. Кроме того, для осуществления процесса требуется продукт, полученный переработкой осадка из биобассейнов из очистных сооружений муниципальных предприятий. Подобные осадки отличаются непостоянством состава, что ограничивает использование данного способа. Транспортировка же этих осадков к месту их использования в установках по очистке воды экологически небезопасна.
В ЕР 0240985, кл. G 21 F 9/10, 07.04.87 [2] предложено проводить очистку грунтовых и сточных вод от тяжелых металлов, радиоактивных и органических загрязнений, осаждением этих примесей с помощью карбоксиметилцеллюлозы или ее водонерастворимых солей и последующим высушиванием и прокаливанием полученного осадка.
Способ связан с использованием дорогостоящей карбоксиметилцеллюлозы или ее водонерастворимых солей. При прокаливании осадка возможно восстановление оксидов тяжелых металлов до экологически небезопасных летучих соединений. Меры по их улавливанию существенно удорожают процесс.
Известен также способ очистки сточных вод от тяжелых металлов и мышьяка средствами многостадийного процесса, включающего осаждение примесей в виде хлопьев под действием органополимерного дефлокулянта, последующее осаждение в виде твердого осадка под действием мела и заключительную стадию - отделение полученных при этом твердых осадков. Особенность этого способа заключается в том, что примеси осаждаются под действием кальций гидрид фосфата, образующегося in situ (WO 93/12041, кл. C 02 F 1/52, 24.06.93) [3]. Этот способ позволяет извлекать из сточных вод никель, медь, кадмий, хром, цинк, свинец, марганец, мышьяк, ртуть, приводит к значительному уменьшению содержания органических примесей в очищенной воде.
Способ связан с затратой больших количеств гидроксида кальция, который при переработке сточных вод образует соответствующее количество шлама, непригодного к дальнейшей утилизации. Захоронение больших количеств твердых остатков вызывает экономические и экологические затруднения.
Очистку грунтовой воды от примесей тяжелых металлов и радиоактивности до кондиции питьевой в соответствии с ЕР 0618592, кл. G 21 F 9/10 [4] осуществляют путем обработки воды силикатами, например, натрия, калия или тетраметилортосиликатом в сочетании с гидроксидом аммония для осаждения примесей. К полученной смеси добавляют затем кислоту для получения pH в интервале от 5 до 9,5 и после отстоя отделяют осадок.
Указанный способ предусматривает использование растворов гидроксида аммония для создания условий осаждения шлама. После осаждения шлама извлечение катиона аммония, остающегося в воде, представляет собой задачу более сложную, чем очистка от тяжелых и радиоактивных элементов.
Известен способ очистки сточных вод гальванических производств путем двухступенчатой гальванохимической обработки (Патент РФ 2061660, кл. C 02 F 1/463, 02.11.92) [6].
Отличительной особенностью способа, в соответствии с [6], является использование на первой ступени очистки гальванического элемента из смеси железной и медной стружки при pH 2,0 - 5,0, отстаивание в присутствии полиакриламида при pH 8,9-9,3 и отделение осадка, на второй ступени используется смесь алюминиевой и медной стружки, отстаивание при pH 6,5 - 7,0. Указанным способом очищают сточные воды от хрома, цинка, меди, никеля, кадмия, железа, ионов аммония, а также органических примесей (нефтепродуктов). Остаточное содержание составляет: Cr - 0,05; Fe - 0,35; Cu - 0,5.
В данном способе в известной степени преодолены недостатки предыдущего, в частности он более универсален и позволяет достичь большей глубины очистки. При этом, однако, осуществление способа в соответствии с [6] связано с использованием меди и полиакриламида, дорогостоящих и экологически малоприемлемых веществ. На второй стадии также вводят медь, в результате чего образуется шлам из трудно утилизируемой смеси органических соединений и тяжелых металлов. Кроме того, применение в указанном способе хлористоводородной кислоты создает трудности для аппаратурного оформления из-за ее высокой коррозионной активности.
Таким образом, задачей настоящего изобретения являлось создание высокопроизводительного, экономичного, технологичного и экологически более приемлемого способа очистки грунтовой и/или сточной воды различного происхождения от загрязнений ионами тяжелых металлов и мышьяка, органическими и радиоактивными загрязнениями.
Было найдено, что поставленная задача, в соответствии с настоящим изобретением, решается способом комплексной очистки грунтовой, и/или шахтной, и/или сточной воды различного происхождения от загрязнений ионами тяжелых металлов, и/или мышьяка, и/или органическими, и/или радиоактивными загрязнениями путем обработки очищаемой воды в поле гальванического элемента с последующим отстаиванием и отделением полученного осадка, осаждением примесей и отделением осадка примесей, отличающегося тем, что в качестве гальванического элемента используют смесь сплава, и/или металла, и/или смесь металлов, имеющих нормальный электродный потенциал выше - 2,5 В с графитированным углеродсодержащим материалом, и/или шунгитом, и/или природным графитом, и/или коксом, и/или термообработанным торфом, и/или термообработанным битуминозным песком, обработанную воду отделяют от материалов гальванического элемента, примеси осаждают, регулируя pH в соответствии с формулой
Figure 00000003

где Ci - мольная концентрация i-ro неорганического загрязнения (иона);
νi - заряд иона;
Nн - число неорганических загрязнений;
Cj - мольная концентрация органического загрязнения;
N0 - число органических загрязнений очищаемой воды,
в предпочтительном варианте в качестве материала гальванического элемента используют углеродсодержащий сплав с содержанием углерода не менее 2%, графитированный тяжелый нефтяной остаток, отходы металлообрабатывающих предприятий и металлургических производств, содержащие углерод, металл и шлак, алюминиевые сплавы и/или сплавы цинка, и/или олова, и/или свинца, и/или марганца, и/или магния, и/или кобальта, и/или никеля.
В качестве металла гальванического элемента используют также смеси магния, алюминия, марганца, цинка, железа, кобальта, никеля, олова, свинца.
В качестве углеродсодержащего материала гальванического элемента используют графиты природного и/или искусственного происхождения, а также термообработанный кокс, и/или шунгит, и/или чаоит, и/или углеродсодержащие сплавы - чугуны, также содержащие графит, и/или угли, и/или отходы металлургических производств, и/или продукты термообработки битуминозных песков, и/или нефтебитуминозных пород, и/или торфа, и/или отходы производства синтетических смол и нефтепереработки.
Используемые в настоящем изобретении углеродсодержащие материалы представляют собой:
шунгиты - горные породы в некристаллическом или графитоидном состоянии, содержащие углерод в количестве от 5 до 99%. Помимо содержания углерода они различаются составом минеральной основы - алюмосиликатной, кремнистой, карбонатной;
чаоит - природный минерал кристаллического углерода.
Гальванический элемент, в соответствии с настоящим изобретением, представляет собой смесь сплава и/или металла и/или смеси металлов и вышеперечисленных углеродсодержащих материалов, помещенных в электролит, роль которого выполняет очищаемая вода с растворенными в ней солями металлов, мышьяка и другими примесями.
Способ, в соответствии с настоящим изобретением, позволяет очистить грунтовые и/или сточные воды от тяжелых металлов в среднем на 98,5%, от мышьяка на 99,5%, от радиоактивных загрязнений на 97,9% и от органических загрязнений на 97,5%.
Способ отличается технологической простотой и экономичностью, не создает проблем экологического характера.
Изобретение иллюстрируется следующими примерами конкретного исполнения.
Примеры 1-15
В примере 2 использован образец шахтной воды, в примерах 4, 9, 10, 12 очистке подвергнуты образцы грунтовых вод, в остальных - сточные воды различного происхождения.
100 мл воды, содержащей различные загрязнения, помещают в поле гальванического элемента, представляющего собой взятые в определенном соотношении материалы гальванического элемента из табл. 1 и табл. 2, и интенсивно перемешивают в течение 8 часов, затем воду декантируют, рассчитывают pH по формуле
Figure 00000004

где Ci - мольная концентрация i-го неорганического загрязнения (иона);
νi - заряд иона;
Nн - число неорганических загрязнений;
Cj - мольная концентрация органического загрязнения;
N0 - число органических загрязнений очищаемой воды.
Концентрацию и число радиоактивных загрязнений учитывают в составе неорганических загрязнений - в первом выражении в скобках формулы для расчета pH. Если при расчете выражения
Figure 00000005
получают величину > 7,7, из полученного значения вычитают корректирующий коэффициент 1,7, если же полученное расчетное значение < 7,7, к нему прибавляют корректирующий коэффициент 1,7.
Для примера 1, где мольные концентрации неорганических загрязнений составляют соответственно, моль/дм3: мышьяка - 0,000032, хрома - 0,000198, заряд ионов: мышьяка - 5, хрома - 6, число неорганических соединений - Nн = 2, число органических соединений - N0 = 0, подставляя в вышеприведенную формулу перечисленные значения концентрации, зарядов ионов и числа загрязнений, получаем выражение 11,5 + lg (5·0,000032 + 6·0,000198 + 0) = 8,62
С учетом того, что полученное значение, равное 8,62, превышает число 7,7, из него вычитают корректирующий коэффициент 1,7. Таким образом, расчетное значение pH для примера 1 составит
pH = 8,62-1,7 = 6,92.
В соответствии с этим pH среды в примере 1 доводят до расчетного значения и фильтруют от полученного при этом осадка. Исходный состав очищаемой воды приведен в табл. 3, условия очистки - в табл. 4, результаты очистки - в табл. 5.
Для примера 6, где мольная концентрация органического загрязнения диурона составляет 0,514·10-7 моль/дм3, число неорганических соединений Nн=0, число органических соединений N0= 1, подставляя в вышеприведенную формулу перечисленные значения концентраций и числа загрязнений, получаем следующее выражение: 11,5+lg (0+0,514·10-7)=4,21. С учетом того что значение 4,21 меньше 7,7, к нему прибавляют коэффициент 1,7, получают
pH = 4,21+1,7 = 5,91.
С учетом полученного расчетным путем значения pH доводят до 5,91 и фильтруют от полученного при этом осадка. Исходный состав очищаемой воды приведен в табл. 3, условия очистки - в табл. 4, результаты очистки - в табл. 5.
По сравнению со способом-прототипом способ, в соответствии с настоящим изобретением, отличается большей универсальностью, т.к. применим для очистки от тяжелых металлов, мышьяка, органических и радиоактивных загрязнений. Кроме того, предлагаемый способ очистки воды является экономичным, технологичным и экологически безопасным.
Использование предлагаемого способа в промышленности не связано с большими капиталовложениями, аппаратурное оформление основано на применении серийно выпускаемого оборудования и материалов, входящих в состав гальванического элемента.

Claims (5)

1. Способ комплексной очистки грунтовой, и/или шахтной, и/или сточной воды различного происхождения от загрязнений ионами тяжелых металлов, и/или мышьяка, и/или органическими, и/или радиоактивными загрязнениями путем обработки очищаемой воды в поле гальванического элемента с последующим отстаиванием и отделением полученного осадка, осаждением примесей и отделением осадка примесей, отличающийся тем, что в качестве гальванического элемента используют смесь сплава и/или металла, и/или смесь металлов, имеющих нормальный электродный потенциал выше - 2,5 В с графитированным углеродсодержащим материалом, и/или шунгитом, и/или природным графитом, и/или коксом, и/или термообработанным торфом, и/или термообработанным битуминозным песком, обработанную воду отделяют от материалов гальванического элемента, примеси осаждают, регулируя рН в соответствии с формулой
Figure 00000006

где Сi - мольная концентрация i-го неорганического загрязнения (иона);
νi - заряд иона;
Nн - число неорганических загрязнений;
Сj - мольная концентрация органического загрязнения;
Nо - число органических загрязнений очищаемой воды.
2. Способ по п.1, отличающийся тем, что в качестве материала гальванического элемента используют углеродсодержащий сплав с содержанием углерода не менее 2%.
3. Способ по п.1 или 2, отличающийся тем, что в качестве материала гальванического элемента используют графитированный тяжелый нефтяной остаток.
4. Способ по п.1, отличающийся тем, что в качестве материала гальванического элемента используют отходы металлообрабатывающих предприятий и металлургических производств, содержащие углерод, металл и шлак.
5. Способ по п.1, отличающийся тем, что в качестве материала гальванического элемента используют алюминиевые сплавы, и/или сплавы цинка, и/или олова, и/или свинца, и/или марганца, и/или магния, и/или кобальта, и/или никеля.
RU2000110018A 2000-04-24 2000-04-24 Способ комплексной очистки воды RU2165893C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2000110018A RU2165893C1 (ru) 2000-04-24 2000-04-24 Способ комплексной очистки воды
EP00118934A EP1149803A1 (en) 2000-04-24 2000-09-01 Process for comprehensive decontamination of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000110018A RU2165893C1 (ru) 2000-04-24 2000-04-24 Способ комплексной очистки воды

Publications (1)

Publication Number Publication Date
RU2165893C1 true RU2165893C1 (ru) 2001-04-27

Family

ID=20233629

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000110018A RU2165893C1 (ru) 2000-04-24 2000-04-24 Способ комплексной очистки воды

Country Status (2)

Country Link
EP (1) EP1149803A1 (ru)
RU (1) RU2165893C1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2515243C2 (ru) * 2012-07-18 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники Способ получения активированной воды
US9868647B2 (en) * 2014-04-02 2018-01-16 Technion Research & Development Foundation Ltd. System and methods for removing impurities from phosphogypsum and manufacturing gypsum binders and products
JP6960817B2 (ja) * 2017-09-29 2021-11-05 日鉄ケミカル&マテリアル株式会社 有価金属回収のための金属捕集材、その製造方法及び有価金属回収方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392102A (en) * 1967-03-16 1968-07-09 Koch Rudolf Galvanic action water purifier
US3784014A (en) * 1970-10-15 1974-01-08 Westinghouse Electric Corp Waste and water treatment system
US3846300A (en) * 1971-01-11 1974-11-05 Inoue Japax Res Water purification
US3725265A (en) * 1971-01-22 1973-04-03 Grace W R & Co Purification of waste water
FR2777272B1 (fr) * 1998-04-09 2000-05-12 Kyoko Sato Dispositif autonome de sterilisation electrochimique de l'eau par pile galvanique

Also Published As

Publication number Publication date
EP1149803A1 (en) 2001-10-31

Similar Documents

Publication Publication Date Title
Kefeni et al. Acid mine drainage: Prevention, treatment options, and resource recovery: A review
US6274045B1 (en) Method for recovering and separating metals from waste streams
RU2531815C2 (ru) Извлечение фосфата из осадка сточных вод
US6254782B1 (en) Method for recovering and separating metals from waste streams
CN103011464B (zh) 一种含锑废水的处理方法
US6270679B1 (en) Method for recovering and separating metals from waste streams
CN102786133A (zh) 一种回收酸性矿山废水中铁/铜资源的分步沉淀工艺
CZ300446B6 (cs) Zpusob zpracování železitých vodárenských kalu a smes pripravená tímto zpusobem
US4364773A (en) Waste metal conversion process and products
US3226319A (en) Process of consolidating a voluminous, low solids content sludge
EP0399035B1 (en) Method of removing arsenic and/or other amphoteric elements from sludge and solid waste materials
Łukasiewicz Post-coagulation sludge management for water and wastewater treatment with focus on limiting its impact on the environment
CN105601021A (zh) 重金属废水的处理方法
RU2165893C1 (ru) Способ комплексной очистки воды
McLaughlin Demonstration of an innovative heavy metals removal process
RU2168467C1 (ru) Способ комплексной очистки воды
CN104402147A (zh) 一种低钙、低氯净化水回用工艺
Trus et al. Removal of sulfates from aqueous solution by using red mud
Yeoman et al. Phosphorus removal and its influence on metal speciation during wastewater treatment
KR100503632B1 (ko) 고농도의 질소와 인을 함유하는 금속표면처리 산업폐수의처리장치 및 방법
JPH10156391A (ja) 下水処理水から回収したリンの処理方法
CN102826724A (zh) 一种用于酸性煤矿废水的处理装置和方法
JP7351199B2 (ja) ヒ素含有廃水の処理方法
CN110342676B (zh) 一种矿山酸性废水的处理方法
CN114604951B (zh) 一种对特辛基苯氧羧酸在含铜废水处理中的应用