RU2152657C1 - Способ изготовления композитного сверхпроводника на основе соединения nb3sn - Google Patents

Способ изготовления композитного сверхпроводника на основе соединения nb3sn Download PDF

Info

Publication number
RU2152657C1
RU2152657C1 RU99105991/09A RU99105991A RU2152657C1 RU 2152657 C1 RU2152657 C1 RU 2152657C1 RU 99105991/09 A RU99105991/09 A RU 99105991/09A RU 99105991 A RU99105991 A RU 99105991A RU 2152657 C1 RU2152657 C1 RU 2152657C1
Authority
RU
Russia
Prior art keywords
niobium
wire
copper
deformation
tin
Prior art date
Application number
RU99105991/09A
Other languages
English (en)
Inventor
Э.И. Плашкин
Е.В. Никуленков
Н.И. Салунин
А.К. Шиков
Г.П. Ведерников
В.С. Беляев
О.В. Малафеева
А.Е. Воробьева
А.Г. Силаев
Original Assignee
Государственный научный центр Российской Федерации Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственный научный центр Российской Федерации Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара filed Critical Государственный научный центр Российской Федерации Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара
Priority to RU99105991/09A priority Critical patent/RU2152657C1/ru
Application granted granted Critical
Publication of RU2152657C1 publication Critical patent/RU2152657C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано в устройствах, преимущественно предназначенных для работы в магнитных полях выше 10 Тл при высоких плотностях тока и низких гистерезисных потерях. Согласно изобретению способ изготовления композитного сверхпроводника на основе соединения Nb3Sn, включающий операции формирования первичной композитной заготовки, содержащей наружную оболочку из матричного материала и осевой цилиндрический блок из ниобия, содержащий продольно расположенный легирующий компонент, деформирования с промежуточными термообработками первичной композитной заготовки до получения шестигранного прутка, резки шестигранного прутка на мерные длины, операции сборки в чехлы из сплава меди с оловом или меди с введением на данной стадии технологического процесса других элементов провода, например диффузионного барьера из тантала или ниобия, деформирования с промежуточными термообработками до конечного диаметра провода и проведения диффузионной термообработки при 600-750°С для образования сверхпроводящего соединения Nb3Sn, характерен тем, что промежуточные термообработки композитного сверхпроводника проводят на проход через каждые 8-70% холодной деформации при 350-600°С при условии прогрева 1 мм провода по диаметру за 60-5 с. Технический результат изобретения заключается в устранении обрывности провода, связанной с образованием интерметаллического соединения Nb3Sn и распадом твердого раствора NbTi сплава на промежуточных стадиях изготовления провода, за счет сокращения суммарного времени отжига более чем в 25 раз. 1 з.п.ф-лы, 1 ил., 2 табл.

Description

Изобретение относится к области электротехники и может быть использовано в устройствах, преимущественно предназначенных для работы в магнитных полях выше 10 Тл при высоких плотностях тока и низких гистерезисных потерях.
Известен способ получения композитного стабилизированного сверхпроводника на основе интерметаллического соединения Nb3Sn ("бронзовая" технология), включающий формирование заготовки, наружной оболочки в виде бронзовой трубы, размещаемого в ней ниобиевого прутка, деформирование полученного композита до необходимого поперечного сечения, разрезку сформированного провода на отдельные прутки и дальнейшее формирование композита требуемое число раз путем размещения прутков в наружной оболочке в виде бронзовой трубы, деформирование заготовки до конечного диаметра провода требуемого размера и осуществление окончательной диффузионной термообработки для образования соединения Nb3Sn [1].
В процессе обработки бронза подвергается значительному механическому упрочнению, ее пластические свойства падают до одного процента и менее. Сочетание высокой прочности и низкой пластичности приводит к тому, что провод начинает разрушаться. Вследствие этого возникает необходимость в многократных отжигах.
Известен также способ изготовления композитного сверхпроводника на основе Nb3Sn, выбранный в качестве прототипа, включающий операции формирования первичной композитной заготовки, содержащей наружную оболочку из матричного материала и осевой цилиндрический блок из ниобия, содержащий продольно расположенный легирующий компонент, деформирования с промежуточными термообработками первичной композитной заготовки до получения шестигранного прутка, резки шестигранного прутка на мерные длины, операции сборки в чехлы из сплава меди с оловом или меди с введением других элементов провода, например диффузионного барьера из тантала или ниобия, деформирования с промежуточными термообработками до конечного диаметра провода и проведения диффузионной термообработки при 600-750oC для образования сверхпроводящего соединения Nb3Sn, при этом возможность обеспечения совместной деформации многокомпонентной системы композитного сверхпроводника на всех стадиях изготовления для достижения размера готового провода обеспечивается за счет проведения промежуточных отжигов через каждые 18-25% холодной деформации до размера провода ≈ 6,4 мм и через 30-50% ниже этого размера в течение 1 ч при 500oC [2]. Отжиги обычно проводят в печах периодического действия, например в вакуумных печах или камерных печах с нейтральной атмосферой.
Способ обеспечивает получение проводника заданного размера с высокими критическими свойствами, но при этом возникают трудности в обеспечении большой строительной длины, которые связаны с конструкцией проводника, представляющей многокомпонентную систему из металлов и сплавов с различными механическими свойствами, а некоторые с ограниченной пластичностью. Обычно в конструкции проводов, предназначенных для работы в высоких полях, используется до пяти различных металлов и сплавов (медь, ниобий, тантал, БрО13, НТ-50), при этом некоторые элементы провода из одного и того же материала имеют разную конфигурацию: например из ниобия выполнен и диффузионный барьер (фактически тонкостенная труба) и волокна. При этом в процессе изготовления провода структурные изменения, происходящие на границе их соприкосновения с другими материалами, совершенно разные. На границе соприкосновения ниобиевого диффузионного барьера с медью возможно наличие твердого раствора на основе меди (α-фаза) и твердого раствора на основе ниобия (β- фаза); на границе ниобия с танталовым барьером - только твердый раствор. На границе ниобиевого волокна с бронзовой матрицей возможно образование интерметаллического соединения Nb3Sn. Наличие в конструкции медного диффузионного барьера во внимание не принимается, так как к моменту формирования заключительного композита он или отсутствует, или разрушен, или его толщина не устраняет диффузионные процессы. Поэтому режимы обработки для всех перечисленных материалов не могут быть одинаковыми, и в первую очередь необходимо рассматривать и применять режимы, которые в наибольшей степени соответствуют малопластичным материалам, в данном случае которым является бронза.
Используемые отжиги при температуре не ниже 450oC в течение одного часа с учетом количества термообработок (два-три десятка) обеспечивают не только рекристаллизацию бронзы и, как следствие, ее разупрочнение и повышение пластичности, но и связаны с образованием интерметаллической фазы Nb3Sn, которая, имея высокую твердость и практически нулевую пластичность, отрицательно влияет на механические свойства провода, вызывая повышенную обрывность. Количество фазы Nb3Sn, образующейся за счет диффузии олова в ниобий, определяется температурой и временем термообработки, но даже снижение температуры до 350oC не исключает образование химического соединения. Так, например, средняя скорость образования фазы Nb3Sn при 375oC составляет примерно 0,13 мкм за 100 ч. Учитывая параллельно происходящие процессы в этих условиях, связанные с распадом NbTi сплава (Nb-48 мас.% Ti), входящего в конструкцию ниобиевого волокна в качестве легирующего компонента и представляющего β-твердый раствор, можно констатировать общее ухудшение технологичности всего композита вцелом.
Снижение температуры отжига ниже 350oC с целью устранения образования фазы Nb3Sn и распада NbTi сплава нежелательно из-за выделения ε-фазы в бронзе и связанного с этим повышения микротвердости бронзы на 20-40%.
При проведении термообработки время отжига складывается из времени, необходимого для нагрева материала до температуры термообработки, времени выдержки при этой температуре и времени охлаждения до температуры дальнейшей обработки. Причем время нагрева и время охлаждения зависят от оборудования, на котором проводят отжиг, и может составлять несколько часов, если отжиг производят в вакуумных или колпаковых печах. В то же время длительность проведения термообработки при заданной температуре отжига зависит от веса садки. Так, например, при отжиге температура верхних и нижних слоев провода различается и разница по времени может достигать нескольких часов. Разница в продолжительности проведения отжига приводит к нестабильности механических и электрофизических свойств изделия по длине.
Сущность настоящего изобретения заключается в том, что предлагаемый способ, включающий операции формирования первичной композитной заготовки, содержащей наружную оболочку из матричного материала и осевой цилиндрический блок из ниобия, содержащий продольно расположенный легирующий компонент, деформирования с промежуточными термообработками первичной композитной заготовки до получения шестигранного прутка, резки шестигранного прутка на мерные длины, операции сборки в чехлы из сплава меди с оловом или меди с введением других элементов провода, например диффузионного барьера из тантала или ниобия, деформирования с промежуточными термообработками до конечного диаметра провода и проведения диффузионной термообработки при 600-750oC для образования сверхпроводящего соединения Nb3Sn, обеспечивает возможность совместной деформации многокомпонентной системы композитного сверхпроводника на всех стадиях изготовления для достижения размера готового провода за счет проведения промежуточных отжигов композитного сверхпроводника, которые проводят на проход через каждые 8-70% холодной деформации при 350-600oC при условии прогрева 1 мм провода по диаметру за 60 - 5 с в печах непрерывного действия протяжного типа.
В процессе кратковременных отжигов происходит разупрочнение бронзовой составляющей композита без образования фазы Nb3Sn и распада NbTi сплава. Проведенные механические испытания, значения которых приведены в таблице 1, для образцов проводника на основе ниобия, легированного титаном, и высокооловянистой бронзы, заключенных в толстую медную стабилизирующую оболочку с промежуточным диффузионным комбинированным барьером из ниобия и тантала, показывают существенное изменение пластичности уже за короткий промежуток времени при температуре отжига 450oC и не вызывают образование фазы Nb3Sn и других дефектов, приводящих к ухудшению технологичности.
Разупрочнение связано со структурными изменениями в бронзе и меди, вызванными процессами возврата и рекристаллизации за счет аннигиляции дислокаций, встраивания их в стенки ячейки, образования субзеренной структуры.
Кратковременный отжиг для проводника большой строительной длины или массы может быть обеспечен только в печах непрерывного действия протяжного типа (например, проходные и индукционные печи), способных обеспечить за счет своих конструктивных особенностей (изменение скорости протяжки) минимизацию времени на прогрев материала до температуры отжига и самого отжига, обеспечивая высокую стабильность характеристик провода.
Кратковременный отжиг может проводиться в условиях вакуума с использованием нейтральной (аргон, гелий, азот) или восстановительной (водород) атмосферы.
Примеры конкретного выполнения.
На чертеже представлен сверхпроводящий провод на основе интерметаллического соединения Nb3Sn диаметром 0,81 мм, включающий 7225 волокон, с объемной долей стабилизирующей меди 60 % (МКНОС-7225-0,81). Маршрут термообработок, проведенных в проходной печи с восстановительной атмосферой, окончательно сформированного провода представлен в таблице 2. По указанной технологии была выпущена партия провода общей массой более 500 кг в отсутствии обрывности провода.
Технический результат предложенного способа изготовления композитного сверхпроводника на основе соединения Nb3Sn заключается в устранении обрывности провода, связанной с образованием интерметаллического соединения и распадом твердого раствора NbTi сплава на промежуточных стадиях изготовления, за счет сокращения суммарного времени отжига более чем в 25 раз.
Источники информации
1. "Металлургия сверхпроводящих материалов", Под ред. Т.Люмана и Д.Дью-Хьюза. Пер. с англ. М.: "Металлургия", 1984, стр.282.
2. "Bronze-route Nb3Sn superconducting wires with improved Jc and reduced bridging", Advanced in Cryogenic Engineering (Materials), Vol.36, Edited by R. P. Reed and F. R. Fickett, Plenum Press, New York, 1990 (p.139-146) (прототип).

Claims (2)

1. Способ изготовления композитного сверхпроводника на основе соединения Nb3Sn, включающий операции формирования первичной композитной заготовки, содержащей наружную оболочку из матричного материала и осевой цилиндрический блок из ниобия, содержащий продольно расположенный легирующий компонент, деформирования с промежуточными термообработками первичной композитной заготовки до получения шестигранного прутка, резки шестигранного прутка на мерные длины, операции сборки в чехлы из сплава меди с оловом или меди с введением других элементов провода, диффузионного барьера из тантала или ниобия, деформирования с промежуточными термообработками до конечного диаметра провода и проведения диффузионной термообработки при 600 - 750oC для образования сверхпроводящего соединения Nb3Sn, отличающийся тем, что промежуточные термообработки композитного сверхпроводника проводят на проход через каждые 8 - 70% холодной деформации при 350 - 600oC при условии прогрева 1 мм провода по диаметру за 60 - 5 с.
2. Способ по п. 1, отличающийся тем, что промежуточные термообработки композитного сверхпроводника проводят на проход в печах непрерывного действия протяжного типа.
RU99105991/09A 1999-03-22 1999-03-22 Способ изготовления композитного сверхпроводника на основе соединения nb3sn RU2152657C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99105991/09A RU2152657C1 (ru) 1999-03-22 1999-03-22 Способ изготовления композитного сверхпроводника на основе соединения nb3sn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99105991/09A RU2152657C1 (ru) 1999-03-22 1999-03-22 Способ изготовления композитного сверхпроводника на основе соединения nb3sn

Publications (1)

Publication Number Publication Date
RU2152657C1 true RU2152657C1 (ru) 2000-07-10

Family

ID=20217573

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99105991/09A RU2152657C1 (ru) 1999-03-22 1999-03-22 Способ изготовления композитного сверхпроводника на основе соединения nb3sn

Country Status (1)

Country Link
RU (1) RU2152657C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bronze-route Nb 3 Sn supercondueting wires with improved Jc and reduced bridging. Advanced in Cryogenic Engineering (Mateerials). Vol.36, Edited by R.P.Reed and F.R.Fikett, Plenum Press, New York, 1990, p.139-146. *

Similar Documents

Publication Publication Date Title
CA1036337A (en) Method of manufacturing an intermetallic superconductor
US4776899A (en) Method of fabricating multifilament superconductors
WO2005081700A2 (en) METHOD FOR PRODUCING (Nb, Ti)3Sn WIRE BY USE OF Ti SOURCE RODS
US3910802A (en) Stabilized superconductors
US4435228A (en) Process for producing NB3 SN superconducting wires
EP0234071B1 (en) Method of fabricating superconductive electrical conductor
US5362331A (en) Process and apparatus for producing Nb3 Al super-conducting wire
US4224735A (en) Method of production multifilamentary intermetallic superconductors
US4791241A (en) Stabilized superconducting wire
US20070227623A1 (en) Method for producing a superconductive element
US4419145A (en) Process for producing Nb3 Sn superconductor
RU2105370C1 (ru) ПРОВОДНИК ДЛЯ СВЕРХПРОВОДЯЩЕГО ПРОВОДА ИЗ СПЛАВА Nb3X (ВАРИАНТЫ) И ПРОВОДНИК ДЛЯ МНОГОЖИЛЬНОГО СВЕРХПРОВОДЯЩЕГО ПРОВОДА ИЗ СПЛАВА NB3X (ВАРИАНТЫ)
US20020020051A1 (en) Constrained filament niobium-based superconductor composite and process of fabrication
RU2152657C1 (ru) Способ изготовления композитного сверхпроводника на основе соединения nb3sn
US4532703A (en) Method of preparing composite superconducting wire
US4094059A (en) Method for producing composite superconductors
RU2182736C2 (ru) Способ изготовления композитного сверхпроводника на основе соединения nb3sn
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
EP0498413B1 (en) Method of manufacturing Nb3Sn superconducting wire
RU2134462C1 (ru) Способ получения сверхпроводника на основе соединения nb3sn
RU2122253C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО СВЕРХПРОВОДНИКА НА ОСНОВЕ СОЕДИНЕНИЯ Nb3Sn
EP1638151B1 (en) Method for producing a superconductive element
Young et al. Fabrication and properties of an aluminum-stabilized nbti multifilament superconductor
JPH01140521A (ja) Nb↓3A1化合物超電導線材の製造法
JPH03283320A (ja) Nb↓3Sn多芯超電導線の製造方法