RU2146223C1 - Способ получения синтетического гранулированного фожазита - Google Patents
Способ получения синтетического гранулированного фожазита Download PDFInfo
- Publication number
- RU2146223C1 RU2146223C1 RU99102254/12A RU99102254A RU2146223C1 RU 2146223 C1 RU2146223 C1 RU 2146223C1 RU 99102254/12 A RU99102254/12 A RU 99102254/12A RU 99102254 A RU99102254 A RU 99102254A RU 2146223 C1 RU2146223 C1 RU 2146223C1
- Authority
- RU
- Russia
- Prior art keywords
- granules
- sio
- faujasite
- carbon black
- ratio
- Prior art date
Links
Images
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Изобретение относится к производству цеолитов. Природный глинистый материал, имеющий содержание диоксида кремния и гидрооксида алюминия, соответствующие соотношения SiO2 : Аl2О3 = 2 : 1, смешивают с диоксидом кремния в количестве, обеспечивающем соотношение SiO2 : Аl2О3 = 3,5 : 1, к исходной смеси добавляют 2 - 8 мас.% технического углерода и обрабатывают 3%-ным раствором хлорида натрия до получения однородной массы и формуют в гранулы. Полученные гранулы подвергают термообработке с последующим охлаждением, гидротермальной кристаллизацией в щелочном растворе, обработкой гранул раствором ортофосфорной кислоты с pH 4 - 5 и сушкой при 180 - 200°С. Полученный цеолит обладает высокой сорбционной емкостью и механической прочностью. 1 табл.
Description
Изобретение относится к получению гранулированного фожазита, не содержащего связующего. Полученный цеолит может быть использован как катализатор (или его составная часть) в химической и нефтехимической промышленности, в качестве адсорбента для осушки и очистки природного газа при газопереработке, для разделения смесей углеводородов на молекулярном уровне, как ионообменный материал при очистке водных потоков от катионов тяжелых металлов и радионуклидов в атомной энергетике.
Наиболее близким по технической сущности к предложенному способу является "Способ получения синтетического фожазита" (патент RU 2119453 кл. 6 С 01 В 39/20 от 03.04.1997 г.). В соответствии с известным способом фожазит получают путем смешивания природного глинистого материала, имеющего содержание диоксида кремния и окиси алюминия, соответствующее соотношению SiO2 : Al2O3 = 2:1 (каолину, галлуазиту), с диоксидом кремния. Конечное соотношение SiO2 : Al2O3 = 2:1. При перемешивании в смесь добавляют воду до влажности 40-45 мас.%. Смесь перемешивают до образования пластичной массы, которую затем формуют в гранулы, и полученные гранулы сушат при 120-140oC в течение 3-х часов.
Затем проводят термическую активацию при 700oC.
Полученные аморфные гранулы промежуточного состава размалывают до размера частиц не более 100 мкм, порошок смешивают с предварительно приготовленным алюмокремнегидрогелем до образования пластичной массы.
Затем пластичную массу формуют в гранулы (диаметром 2 мм) и подвергают гидротермальной кристаллизации в растворе, содержащем алюминат ионы, и сушат.
Недостатком известного способа является невозможность достижения полной кристаллизации рентгеноаморфных гранул в кристаллическую структуру целевого цеолита, так как:
- не обеспечивается стабильная вязкость исходной алюмосиликатной пластичной массы для грануляции, потому что смешивание аморфного алюмосиликата приводит к термохимической реакции и последующему отвердению рабочей массы в грануляторе, и, как следствие, гранулы получаются с неоднородной внутренней структурой, что затрудняет массообменные процессы при гидротермальной кристаллизации;
- не удаляются из состава целевой гранулы цеолита, синтезированного из природного глинистого материала, оксиды и гидрооксиды металлов, присутствующие в исходном алюмосиликатном сырье (в химическом составе обогащенных каолинов, галлуазитов содержатся: TiO2 - 0,5-1,4%, Fe2O3 - 0,4-2,0%, CaO - 0,2-0,8%, MgO - 0,1-0,8%), которые образуют на поверхности гранулы налет, несмываемый водой.
- не обеспечивается стабильная вязкость исходной алюмосиликатной пластичной массы для грануляции, потому что смешивание аморфного алюмосиликата приводит к термохимической реакции и последующему отвердению рабочей массы в грануляторе, и, как следствие, гранулы получаются с неоднородной внутренней структурой, что затрудняет массообменные процессы при гидротермальной кристаллизации;
- не удаляются из состава целевой гранулы цеолита, синтезированного из природного глинистого материала, оксиды и гидрооксиды металлов, присутствующие в исходном алюмосиликатном сырье (в химическом составе обогащенных каолинов, галлуазитов содержатся: TiO2 - 0,5-1,4%, Fe2O3 - 0,4-2,0%, CaO - 0,2-0,8%, MgO - 0,1-0,8%), которые образуют на поверхности гранулы налет, несмываемый водой.
Кроме этого, в известном способе имеются нетехнологичные приемы, такие как: гранулирование исходной алюмосиликатной массы с последующим размолом полученного промежуточного продукта, полученного в результате термообработки при 700oC; вторичное гранулирование смеси из помола и алюмокремнегидрогеля.
Вышеперечисленные недостатки известного способа приводят к получению целевого продукта с остаточным содержанием примесей и других фаз (аморфных исходных компонентов) и в связи с этим со сравнительно низкими основными показателями (сорбционная емкость и механическая прочность), которые определяют эффективность использования цеолита в промышленных условиях.
Задача настоящего изобретения - получение сравнительно чистой кристаллической структуры цеолита без остаточного содержания примесей и других фаз (аморфных исходных компонентов) и, как следствие, совершенствование технологии и получение синтетического гранулированного фожазита с повышенными сорбционной емкостью и механической прочностью.
Поставленная задача решается за счет использования следующих технологических приемов:
- смесь, полученную после смешивания природного алюмосиликата с диоксидом и техническим углеродом, обрабатывают 3%-м раствором хлорида натрия до получения однородной пластичной массы, стабильной по вязкости, а затем гранулируют, в результате этого обеспечивается однородность внутренней структуры гранулы, а при термической обработке происходит полное выгорание технического углерода, что позволяет получить пористую структуру гранулы высокой степени проницаемости и при дальнейшей гидротермальной кристаллизации эффективное образование поликристаллических сростков в виде гранул, а обработка исходной алюмосиликатной смеси хлоридом натрия увеличивает выход цеолита при синтезе;
- гранулы цеолита после кристаллизации обрабатывают раствором ортофосфорной кислоты с pH 4 - 5, при этом происходит удаление налета гидрооксидов металлов с поверхности гранулы.
- смесь, полученную после смешивания природного алюмосиликата с диоксидом и техническим углеродом, обрабатывают 3%-м раствором хлорида натрия до получения однородной пластичной массы, стабильной по вязкости, а затем гранулируют, в результате этого обеспечивается однородность внутренней структуры гранулы, а при термической обработке происходит полное выгорание технического углерода, что позволяет получить пористую структуру гранулы высокой степени проницаемости и при дальнейшей гидротермальной кристаллизации эффективное образование поликристаллических сростков в виде гранул, а обработка исходной алюмосиликатной смеси хлоридом натрия увеличивает выход цеолита при синтезе;
- гранулы цеолита после кристаллизации обрабатывают раствором ортофосфорной кислоты с pH 4 - 5, при этом происходит удаление налета гидрооксидов металлов с поверхности гранулы.
Указанные отличительные признаки способа обеспечивают:
приготовление стабильной по вязкости исходной алюмосиликатной массы, формование гранул с однородной внутренней структурой,
получение после термической обработки гранул высокой степени проницаемости, проведение гидротермальной кристаллизации с высоким выходом целевого цеолита, удаление примесей с поверхности гранулы, как следствие, достижение практически чистой кристаллической структуры фожазита в грануле, обладающей повышенной прочностью и развитой внутренней сетью транспортных каналов, значительное упрощение технологии.
приготовление стабильной по вязкости исходной алюмосиликатной массы, формование гранул с однородной внутренней структурой,
получение после термической обработки гранул высокой степени проницаемости, проведение гидротермальной кристаллизации с высоким выходом целевого цеолита, удаление примесей с поверхности гранулы, как следствие, достижение практически чистой кристаллической структуры фожазита в грануле, обладающей повышенной прочностью и развитой внутренней сетью транспортных каналов, значительное упрощение технологии.
С точки зрения промышленного использования изобретения процесс получения фожазита по предлагаемому способу значительно упрощен, так как способ не предусматривает использование таких компонентов, как силикат натрия и гидрооксид алюминия и, как следствие, отсутствуют блоки разварки силикат-глыбы и приготовления алюмината натрия.
Переработка технологичной исходной алюмосиликатной смеси обеспечивает устойчивую работу гранулирующего оборудования и повышает качество экструзии гранул. Снижение затрат на сырье (силикат натрия и алюминат) и его переработку существенно уменьшает себестоимость получаемого цеолита. Кроме того, отсутствуют оборудование для размола гранул и дополнительный гранулятор.
Предлагаемый способ осуществляют следующим образом.
Основной исходный материал - природный глинистый материал, имеющий содержание диоксида кремния и окиси алюминия, соответствующее соотношению SiO2 : AlO3 = 2:1 (каолин, галлуазит), смешивают с диоксидом кремния в количестве, обеспечивающем соотношение SiO2 : AlO3 = 3,5:1, и техническим углеродом, взятым в количестве 2-8 мас.%.
В качестве технического углерода используют дисперсный порошок сажи ПМ-1. В качестве оксида кремния используют высокодисперсный порошок SiO2 в химически активной форме, например отход производства фосфатных удобрений - белая сажа, или отход металлургического производства ферросилицидов.
При перемешивании в смесь добавляют 3%-й раствор хлористого натрия до образования пластичной массы, которую затем формуют в гранулы (оптимальный размер гранул 3.2 и 1.6 мм), и полученные гранулы сушат при 120-140oC в течение 3-х часов.
Затем проводят термическую активизацию при 720oC, в результате которой образуется промежуточный аморфный алюмосиликат, способный кристаллизоваться в цеолитную структуру фожазита, а полное выгорание технического углерода обеспечивает проницаемость гранулы для проведения эффективного массообмена в процессе гидротермальной кристаллизации. Полученные аморфные гранулы охлаждают и подвергают гидротермальной кристаллизации в щелочном растворе.
Гранулы целевого цеолита обрабатывают раствором ортофосфорной кислоты для удаления примесей.
Сущность способа поясняется конкретными примерами его осуществления.
Пример 1. Данный пример демонстрирует возможность получения фожазита при использовании каолина и 5 мас.% технического углерода.
В смеситель загружают 200 г каолина с соотношением SiO2 : AlO3 = 2; 75 г белой сажи и 14,5 г технического углерода - сажи ПМ-1. Смесь перемешивают 15 минут и затем добавляют 92 мл 3%-го хлорида натрия.
Перемешивание продолжают до образования однородной пластичной массы
Затем осуществляют формование, получая гранулы диаметром 3,2 мм, которые сушат при 140oC в течение 3-4-х часов. Высушенные гранулы подвергают термической активации при 720oC в течение 2 часов, после чего их охлаждают.
Затем осуществляют формование, получая гранулы диаметром 3,2 мм, которые сушат при 140oC в течение 3-4-х часов. Высушенные гранулы подвергают термической активации при 720oC в течение 2 часов, после чего их охлаждают.
Аморфные гранулы после прокалки помещают в кристаллизатор и заливают кристаллизационным раствором, полученным смешиванием 540 мл воды и 165 мл раствора едкого натра, с концентрацией по оксиду натрия 484 г/л. Суммарное соотношение компонентов в гранулах и кристаллизационном растворе составляет: 2,1 Na2O • 3,2 SiO2 Al2O3 • 60H2O.
Полученная реакционная масса выдерживается при 30oC в течение 18 часов, затем температура повышается до 60oC и масса выдерживается 12 часов, потом температура поднимается до 90oC и реакционная масса выдерживается еще 12 часов.
Полученный цеолит обрабатывают раствором ортофосфорной кислоты с pH 4-5 и сушат при 180-200oC.
У полученного образца рентгеноструктурным методом определяли тип кристаллической решетки и степень кристаллизации, динамическую сорбционную емкость и механическую прочность гранул путем раздавливания таблеток цеолита на прессе Рухгольца.
Физико-химические характеристики цеолита представлены в таблице.
Пример 2. Данный пример демонстрирует возможность получения фожазита при использовании каолина и 2 мас.% технического углерода.
В смеситель загружают 200 г каолина с соотношением SiO2 : Al2O3 = 2; 75 г белой сажи и 5,8 г технического углерода - сажи ПМ-1. Смесь перемешивают 15 минут и затем добавляют 92 мл 3%-го хлорида натрия.
Дальнейшие операции проводят, как в примере 1.
Физико-химические характеристики цеолита представлены в таблице.
Пример 3. Данный пример демонстрирует возможность получения фожазита при использовании каолина и 8 мас.% технического углерода
В смеситель загружают 200 г каолина с соотношением SiO2 : Al2O3 = 2; 75 г белой сажи и 23,9 г технического углерода - сажи ПМ-1. Смесь перемешивают 15 минут и затем добавляют 92 мл 3%-го хлорида натрия.
В смеситель загружают 200 г каолина с соотношением SiO2 : Al2O3 = 2; 75 г белой сажи и 23,9 г технического углерода - сажи ПМ-1. Смесь перемешивают 15 минут и затем добавляют 92 мл 3%-го хлорида натрия.
Дальнейшие операции проводят, как в примере 1.
Физико-химические характеристики цеолита представлены в таблице.
Пример 4. В данном примере показана возможность получения фожазита при использовании галлуазита и 5 мас.% технического углерода.
Смешивают 200 г галлуазитовой глины, 75 г белой сажи и 14,5 г технического углерода - сажи ПМ-1. Смесь перемешивают 15 минут и затем добавляют 105 мл 3%-го хлорида натрия. Перемешивание продолжают до образования однородной пластичной массы. Затем осуществляют формование, получая гранулы диаметром 3,2 мм, которые сушат при 140oC в течение 3-4-х часов. Высушенные гранулы подвергают термической активации при 720oC в течение 2-х часов, после чего их охлаждают.
Аморфные гранулы после прокалки помещают в кристаллизатор и заливают кристаллизационным раствором, полученным смешиванием 580 мл воды и 177 мл раствора едкого натра, с концентрацией по оксиду натрия 484 г/л. Суммарное соотношение компонентов в гранулах и кристаллизационном растворе составляет: 2,1 Na2O • 3,2 SiO2 Al2O3 • 60H2O.
Дальнейшие операции проводят, как в примере 1.
Физико-химические характеристики цеолита представлены в таблице.
Пример 5. В данном примере показана возможность получения фожазита при использовании галлуазита и 2 мас.% технического углерода.
Смешивают 200 г галлуазитовой глины, 75 г белой сажи и 5.8 г технического углерода - сажи ПМ-1. Смесь перемешивают 15 минут и затем добавляют 105 мл 3%-го хлорида натрия. Перемешивание продолжают до образования однородной пластичной массы.
Дальнейшие операции проводят, как в примере 4.
Физико-химические характеристики цеолита представлены в таблице.
Пример 6. В данном примере показана возможность получения фожазита при использовании галлуазита и 8 мас.% технического углерода.
Смешивают 200 г галлуазитовой глины, 75 г белой сажи и 23,9 г технического углерода - сажи ПМ-1. Смесь перемешивают 15 минут и затем добавляют 105 мл 3%-го хлорида натрия. Перемешивание продолжают до образования однородной пластичной массы.
Дальнейшие операции проводят, как в примере 4.
Физико-химические характеристики цеолита представлены в таблице.
Как видно из таблицы, полученный цеолит обладает сравнительно более высокими показателями сорбционной емкости и механической прочности по сравнению с прототипом, что обеспечивает его более эффективное использование в технологических процессах.
Claims (1)
- Способ получения синтетического гранулированного фожазита, не содержащего связующего, включающий смешение природного глинистого минерала, имеющего соотношение SiO2 : Al2O3 = 2 : 1, выбранного из ряда каолин, галлуазит, с диоксидом кремния, взятым в количестве, обеспечивающем конечное соотношение SiO2 : Al2O3 = 3,5 : 1, добавление жидкости до получения однородной массы, формование гранул, термоактивацию, гидротермальную кристаллизацию и сушку, отличающийся тем, что на смешение дополнительно подают технический углерод в количестве 2 - 8 мас.%, в качестве жидкости добавляют 3%-ный раствор хлорида натрия, термоактивацию проводят при 720oC, после кристаллизации осуществляют обработку гранул раствором ортофосфорной кислоты с pH 4 - 5, гранулы сушат при 180 - 200oC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99102254/12A RU2146223C1 (ru) | 1999-02-11 | 1999-02-11 | Способ получения синтетического гранулированного фожазита |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99102254/12A RU2146223C1 (ru) | 1999-02-11 | 1999-02-11 | Способ получения синтетического гранулированного фожазита |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2146223C1 true RU2146223C1 (ru) | 2000-03-10 |
Family
ID=20215501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99102254/12A RU2146223C1 (ru) | 1999-02-11 | 1999-02-11 | Способ получения синтетического гранулированного фожазита |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2146223C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2540086C1 (ru) * | 2013-08-06 | 2015-01-27 | Федеральное государственное бюджетное учреждение науки Институт нефтехимии и катализа Российской академии наук | СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕЗ СВЯЗУЮЩЕГО ЦЕОЛИТА NaY |
RU2665466C2 (ru) * | 2013-12-24 | 2018-08-30 | Мицубиси Газ Кемикал Компани, Инк. | Катализатор для применения для получения метилметакрилата и способ получения метилметакрилата |
RU2671574C2 (ru) * | 2014-04-10 | 2018-11-02 | Мицубиси Газ Кемикал Компани, Инк. | Формованный катализатор для применения в производстве метилметакрилата и способ производства метилметакрилата с применением указанного катализатора |
-
1999
- 1999-02-11 RU RU99102254/12A patent/RU2146223C1/ru not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2540086C1 (ru) * | 2013-08-06 | 2015-01-27 | Федеральное государственное бюджетное учреждение науки Институт нефтехимии и катализа Российской академии наук | СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕЗ СВЯЗУЮЩЕГО ЦЕОЛИТА NaY |
RU2665466C2 (ru) * | 2013-12-24 | 2018-08-30 | Мицубиси Газ Кемикал Компани, Инк. | Катализатор для применения для получения метилметакрилата и способ получения метилметакрилата |
RU2671574C2 (ru) * | 2014-04-10 | 2018-11-02 | Мицубиси Газ Кемикал Компани, Инк. | Формованный катализатор для применения в производстве метилметакрилата и способ производства метилметакрилата с применением указанного катализатора |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4503024A (en) | Process for the preparation of synthetic zeolites, and zeolites obtained by said process | |
US3094383A (en) | Method for making synthetic zeolitic material | |
US3065054A (en) | Synthetic crystalline zeolite produced from dehydrated aluminum silicate | |
JPH11513969A (ja) | 分子篩錯体化合物の製造方法 | |
US3367886A (en) | Synthetic zeolite contact masses and method for making the same | |
US3338672A (en) | Method for making a faujasite-type crystalline zeolite | |
US4994191A (en) | Removal of heavy metals, especially lead, from aqueous systems containing competing ions utilizing wide-pored molecular sieves of the ETS-10 type | |
Król | Hydrothermal synthesis of zeolite aggregate with potential use as a sorbent of heavy metal cations | |
US5976490A (en) | Zeolite containing cation exchangers methods for preparation and use | |
RU2283280C1 (ru) | Способ получения синтетического цеолита типа а | |
RU2146223C1 (ru) | Способ получения синтетического гранулированного фожазита | |
JPS6366771B2 (ru) | ||
RU2283278C1 (ru) | Способ получения гранулированного цеолитного адсорбента структуры a и x высокой фазовой чистоты | |
RU2321539C2 (ru) | Способ получения синтетического гранулированного цеолита типа а | |
RU2404122C1 (ru) | СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕЗ СВЯЗУЮЩЕГО ЦЕОЛИТА ТИПА NaX ВЫСОКОЙ ФАЗОВОЙ ЧИСТОТЫ | |
RU2283281C1 (ru) | Способ получения гранулированного цеолита типа а высокой фазовой чистоты | |
RU2146222C1 (ru) | Способ получения синтетического цеолита типа а | |
RU2425801C2 (ru) | Способ получения гранулированного без связующего цеолита типа а | |
RU2420457C1 (ru) | Способ получения гранулированного без связующего цеолитного адсорбента структуры а и х высокой фазовой чистоты | |
RU2203224C1 (ru) | Способ получения гранулированного фожазита высокой фазовой чистоты | |
RU2180320C1 (ru) | Способ получения синтетического цеолита типа y | |
SI24426A (sl) | Postopek priprave zeolitnih ZSM-5 granulatov brez anorganskega veziva | |
RU2180319C1 (ru) | Способ получения синтетического гранулированного фожазита | |
RU2119453C1 (ru) | Способ получения синтетического фожазита | |
KR100274118B1 (ko) | 석탄비산재로부터 에이형 제올라이트를 제조하는 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HE4A | Notice of change of address of a patent owner | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20120212 |