RU2127320C1 - Способ обработки расплава магнием - Google Patents

Способ обработки расплава магнием Download PDF

Info

Publication number
RU2127320C1
RU2127320C1 SU4894810A SU4894810A RU2127320C1 RU 2127320 C1 RU2127320 C1 RU 2127320C1 SU 4894810 A SU4894810 A SU 4894810A SU 4894810 A SU4894810 A SU 4894810A RU 2127320 C1 RU2127320 C1 RU 2127320C1
Authority
RU
Russia
Prior art keywords
magnesium
melt
reaction
less
processing
Prior art date
Application number
SU4894810A
Other languages
English (en)
Inventor
Хених Иво
Original Assignee
Георг Фишер АГ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH4258/89A external-priority patent/CH679987A5/de
Application filed by Георг Фишер АГ filed Critical Георг Фишер АГ
Application granted granted Critical
Publication of RU2127320C1 publication Critical patent/RU2127320C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • C22C33/10Making cast-iron alloys including procedures for adding magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Изобретение относится к области металлургии. По способу обработки расплава магнием для получения обработанного расплава, содержащего неметаллические включения в количестве менее 100 г/т, магний вводят на глубину от поверхности расплава не менее 200 мм. Регулируют испарение магния с получением энергии смещения не менее 1000 Вт/м3. Над поверхностью расплава в реакционном сосуде создают неокислительную атмосферу. Магний могут вводить в виде чистого кускового, гранулированного магния или в смеси с реакционно-нейтральным веществом, например железными опилками, при содержании Mg в смеси не менее 40%. 6 з.п. ф-лы, 2 ил.

Description

Изобретение касается способа обработки магнием, предназначенного для получения обработанного расплава с содержанием неметаллических включений менее 100 г/т, а также устройство для проведения этого способа.
При обработке расплава чугуна магнием с целью воздействия на строение графита таким образом, чтобы образовывался шаровидный графит, образуются большие количества неметаллических соединений, например, окислов, сульфидов и тому подобных. Причина этого эффекта заключается в высоком сродстве магния к кислороду и сере.
Большая часть неметаллических реакционных продуктов выделяется уже при обработке расплава чугуна или в период времени между окончанием обработки и разливки вследствие разницы в удельном весе частиц шлака (примерно 3000 кг/м3) и расплава (примерно 7000 кг/м3). Однако известно, что часть реакционных продуктов, а именно частицы, которые меньше 12,5 мкм также и по прошествии обычных, имеющихся в распоряжении промежутков времени, остаются в расплаве во взвешенном состоянии.
Скорость флотации может вычисляться с относительно достаточной точностью по уравнению Стокса.
Figure 00000002

где L - высота флотации в мм;
d - размер частиц в мкм;
δFe - удельный вес чугуна в кг/м3 (7000);
δS cnblacke - удельный вес шлаков в кг/м3 (3000);
t - продолжительность флотации в секундах;
μ = динамическая вязкость (0,007).
Практические измерения показали, что при традиционных методах обработки количества взвешенных частиц составляет от 200 до 600 г/т обработанного чугуна, которые затем попадают с потоком чугуна в литьевую форму. Исследования показали также, что эти включения, остающиеся в отлитой детали, могут значительно снижать динамические свойства отлитой детали.
Чтобы обеспечить процесс флотации реакционных продуктов, расплав должен был бы длительное время отстаиваться в ковше. Следствием этого, однако, были бы значительные, и, как правило, непозволительные температурные потери (6 - 15oC/мин).
Использование известного из технологий производства стали способа промывки расплава инертным газом (N, Ar и другими) вызывает более интенсивное окисление магния, приводящее к образованию дополнительных новых включений, вследствие чего желаемая цель этим способом не достигается.
Известен способ обработки расплава магнием, включающий введение магния в расплав металла, находящегося в реакционном сосуде, на определенную глубину, вывод реакционных продуктов в шлак в процессе испарения магния (DD, N 242637 C 21 G 1/08, C 22 C 33/10, 04/02/87).
Задача настоящего изобретения заключается в том, чтобы предложить способ и устройство, при помощи которых можно было бы управлять процессом обработки таким образом, чтобы снизить до минимума содержание неметаллических включений в обрабатываемом расплаве.
Указанный технический результат достигается за счет того, что для получения обработанного расплава с содержанием неметаллических включений менее 100 г/т магний вводят на глубину не менее 200 мм от поверхности расплава и регулируют испарение магния с получением энергии смешения не менее 1000 Вт/м3, причем над поверхностью расплава в реакционном сосуде создают неокислительную атмосферу.
За счет того, что обрабатывающее средство (реакционный магний) непосредственно вводится в расплав и полностью окружается им, в течение всего времени процесса между обрабатывающим средством происходит реакция по всему объему расплава и сокращается длительность флотации реакционного продукта. Существенное преимущество заключается в том, что вследствие этого отпадает необходимость выдержки расплава в течение длительного периода времени для выплавления продуктов реакции в шлак, находящийся на поверхности расплава, следствием которого может являться нежелательная потеря температуры расплава.
Введение магния в расплав железа является технологически более надежными и экономичным для получения железоуглеродистого литейного материала с шаровидным графитом. При этом магний действует известным самим по себе образом, впрочем как и другие элементы щелочноземельной группы и группы редких металлов, выделяя графит во время затвердевания и/или заключительной термообработки в шаровидной форме и приводит тем самым к значительному повышению механических свойств отливки.
Согласно предложенному изобретению продукты реакции в расплаве после обработки должны уменьшаться до минимума. Это осуществляется путем установки температуры обработки, в частности, за счет мероприятий, при которых магний вводится в расплав ниже уровня расплава, по меньшей мере, на 200 мм. Реакция управляется таким образом, чтобы она происходила во всех направлениях и поэтому обеспечивалось оптимальное перемешивание в расплаве, что улучшает эффект промывки. Неметаллические загрязнения промываются на поверхности, причем пузырьки паров магния служат носителем, действующим как интенсивное перемешивающее средство. Это приводит к повышенному качеству получаемого продукта.
За счет контролируемой промывки расплава в восстановительной атмосфере, находящейся над поверхностью расплава чугуна, уже во время обработки магнием образующиеся при этом процессе реакционные продукты коагулируются и выводятся поднимающимися пузырьками пара магния в виде шлаков на поверхность расплава. На процесс коагуляции реакционных продуктов влияют образующиеся количества пара и энергия смешения. Опыты показывают, что интенсивность процесса коагуляции значительно увеличивается за счет столкновения неметаллических частиц во время их образования, т.е. в месте протекания реакции. Энергия смешения может определяться по следующему уравнению:
Figure 00000003

где E - энергия смешения в Вт/м3;
Q - количество газа в Нл/мин;
T - температура в oК;
p0 - давление на поверхности расплава в атм;
p = p0 + ферростатическое давление в атм;
V - объем расплава в м3.
Практические опыты показали, что количества неметаллических включений в расплаве могут быть снижены до значений менее 100 г/т, эти энергии смешения больше 1000 Вт/м3, если пары магния образуются на глубине не менее 200 мм от поверхности расплава и если атмосфера над расплавом пересыщена паром магния.
Это поясняется ниже при помощи примеров.
Пример 1.
Из расплава чугуна со следующим составом легирующих добавок:
C = 3,72%
Si = 2,3%
Mn = 0,27%
S = 0,08%
P = 0,05%
после обработке чистым магнием в закрытом реакционном сосуде, имеющем отверстие площадью 30 см2, и четыре реакционных отверстия, связывающие реакционную камеру с расплавом и имеющие общую площадь поперечного сечения 1250 мм2, по прошествии времени реакции в 60 с была взята проба. Анализ показал содержание кислорода в количестве 3 млн-1 и серы в количестве 50 млн-1. Было вычислено количество неметаллических включений, равное 20 г/т.
Количественный металлографический анализ показал наличие неметаллических включений в количестве 23 г/т.
Пример 2.
Из расплава, имеющего 3,65% C, 2,12% Si, 0,25% Mn, 0,02% S, 0,05% P после обработки чистым магнием в соответствующей емкости с четырьмя реакционными отверстиями, связывающими реакционную камеру с расплавом, имеющим общую площадь поперечного сечения 1250 мм2, после времени реакции, равном 60 секундам, была взята проба.
Затраченная энергия (E после расчета по формуле) составила 3200 Вт/м3.
Как и в примерах, содержащихся в первоначальном описании, количество неметаллических включений составило 18 - 20 г/т.
Параллельно проведенная обработки с предварительным легированием Fe, Si, Mg (5,5% Mg) с введением предварительно легированных элементов в количестве 1,8 мас. %, при энергии менее чем 400 Вт/м3 установлено количество неметаллических включений, равное от 425 или 515 г/т.
Пример 3.
Исследование осуществлялось в 15 литейных мастерских, работающих с различными печами; дало следующие результаты.
В 9-ти литейных мастерских применяли способ с управляемым количеством энергии, равном 2000 - 3500 Вт/м3 и в 6-ти литейных мастерских применяли обычный способ с предварительным легированием Fe Si Mg (содержащем Mg от 3 до 30%).
Полученное железо содержалось в разливочной печи и непосредственно заливалось в форму. Один раз в неделю из печи сливали собранный шлак, взвешивали и делили на тоннаж получаемого железа:
обычный способ - вес/шлак/на тонну железа = 850 г
контролируемая энергия - вес/шлак/на тонну железа = 80 г
На прилагаемых чертежах представлено устройство для обработки расплава магнием. На фиг. 1 и 2 показан конвертор 1 с расплавом 2 чугуна. Конвертор, являющийся в данном примере реакционным сосудом, имеет реакционную камеру 4, отделенную от расплава стенкой 5 с отверстиями 7a и 7b, через которые может осуществляться связь между реакционной камерой и расплавом. В верхней части конвертера имеется отверстие, которое соединяет его полость с окружающей атмосферой, обеспечивая при этом над поверхностью расплава избыточное давление пара магния.

Claims (7)

1. Способ обработки расплава магнием, включающий введение магния в расплав металла, находящегося в реакционном сосуде, на определенную глубину, вывод реакционных продуктов в шлак в процессе испарения магния, отличающийся тем, что для получения обработанного расплава с содержанием неметаллических включений менее 100 г/т магний вводят на глубину не менее 200 мм от поверхности расплава и регулируют испарение магния с получением энергии смешения не менее 1000 Вт/м3, причем над поверхностью расплава в реакционном сосуде создают неокислительную атмосферу.
2. Способ по п.1, отличающийся тем, что магний вводят в расплав в виде кускового чистого магния.
3. Способ по п.1, отличающийся тем, что используют гранулированный магний.
4. Способ по любому из пп.1 и 3, отличающийся тем, что дополнительно в расплав вводят реакционно-нейтральное вещество, например железные опилки, в смеси с гранулированным чистым магнием при содержании магния в смеси не менее 40 мас.%.
5. Способ по любому из пп.1 - 4, отличающийся тем, что содержание серы в исходном расплаве металла составляет от 0,001 до 0,30 мас.%.
6. Способ по любому из пп.1 - 5, отличающийся тем, что расплав обрабатывают при температуре от 1400 до 1500oC.
7. Способ по любому из пп.1 - 6, отличающийся тем, что основность шлака при обработке расплава металла составляет более 1.
SU4894810A 1989-11-28 1990-11-27 Способ обработки расплава магнием RU2127320C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4258/89A CH679987A5 (ru) 1989-11-28 1989-11-28
CH4258/89 1989-11-28

Publications (1)

Publication Number Publication Date
RU2127320C1 true RU2127320C1 (ru) 1999-03-10

Family

ID=4272766

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4894810A RU2127320C1 (ru) 1989-11-28 1990-11-27 Способ обработки расплава магнием

Country Status (5)

Country Link
DK (1) DK173273B1 (ru)
ES (1) ES2028563A6 (ru)
RU (1) RU2127320C1 (ru)
SE (1) SE506027C3 (ru)
ZA (1) ZA909520B (ru)

Also Published As

Publication number Publication date
SE9003756L (sv) 1991-05-29
ES2028563A6 (es) 1992-07-01
DK276890D0 (da) 1990-11-21
ZA909520B (en) 1991-09-25
SE506027C2 (sv) 1997-11-03
DK173273B1 (da) 2000-06-05
SE9003756D0 (sv) 1990-11-26
DK276890A (da) 1991-05-29
SE506027C3 (sv) 1997-12-22

Similar Documents

Publication Publication Date Title
US3819365A (en) Process for the treatment of molten metals
RU2127320C1 (ru) Способ обработки расплава магнием
US5098651A (en) Magnesium treatment process and apparatus for carrying out this process
EP0142585B1 (en) Alloy and process for producing ductile and compacted graphite cast irons
SU1224349A1 (ru) Брикет дл модифицировани чугуна
RU2222604C2 (ru) Порошковая проволока для десульфурации чугуна
SU834141A1 (ru) Способ получени чугуна с шаровиднымгРАфиТОМ
US3367772A (en) Method for treating ferrous metals
RU2044063C1 (ru) Способ производства низколегированной стали с ниобием
SU692680A1 (ru) Способ отливки прокатных валков
RU2006515C1 (ru) Модификатор для чугуна
SU1024508A1 (ru) Способ получени высокопрочного чугуна
SU1503993A1 (ru) Способ изготовлени отливок из чугуна с шаровидным графитом
US3414404A (en) Method for treating ferrous metals
RU2162109C1 (ru) Способ модифицирования чугуна
SU1071655A1 (ru) Способ приготовлени алюминиевомагниевых сплавов
RU2069702C1 (ru) Модификатор для обработки чугуна
RU2020158C1 (ru) Способ обработки чугуна
US3362814A (en) Process for producing nodular iron
RU2069704C1 (ru) Модификатор для сфероидизирующей обработки чугуна
KR0165543B1 (ko) 마그네슘 을 사용하는 용융철의 처리방법 및 그 방법을 수행하는 장치
RU2204613C2 (ru) Способ внепечного рафинирования стали
SU1225872A1 (ru) Высокопрочный чугун
SU1328065A1 (ru) Состав дл модифицировани чугуна в литейной форме
US3639117A (en) Method for producing bearing grade alloy steels