RU2127319C1 - Способ получения губчатого железа и установка для осуществления этого способа - Google Patents

Способ получения губчатого железа и установка для осуществления этого способа Download PDF

Info

Publication number
RU2127319C1
RU2127319C1 RU97111041A RU97111041A RU2127319C1 RU 2127319 C1 RU2127319 C1 RU 2127319C1 RU 97111041 A RU97111041 A RU 97111041A RU 97111041 A RU97111041 A RU 97111041A RU 2127319 C1 RU2127319 C1 RU 2127319C1
Authority
RU
Russia
Prior art keywords
gas
reduction
exhaust gas
pipeline
blast furnace
Prior art date
Application number
RU97111041A
Other languages
English (en)
Other versions
RU97111041A (ru
Inventor
Диль Йорг
Розенфелльнер Геральд
Original Assignee
Фоест-Альпине Индустрианлагенбау ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фоест-Альпине Индустрианлагенбау ГмбХ filed Critical Фоест-Альпине Индустрианлагенбау ГмбХ
Application granted granted Critical
Publication of RU2127319C1 publication Critical patent/RU2127319C1/ru
Publication of RU97111041A publication Critical patent/RU97111041A/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • C21B2100/282Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/64Controlling the physical properties of the gas, e.g. pressure or temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

Сущность: в способе получения губчатого железа из измельченного материала, содержащего оксид железа, материал, содержащий оксид железа, в зоне восстановления восстанавливают в губчатое железо с помощью восстановительного газа, а газ, образующийся при восстановлении, выводят в виде колошникового газа. Колошниковый газ подвергают очистке от СО2, после чего содержащий CO2 отработаннный газ, отделенный при очистке от СО2, смешивают с кислородсодержащим газом, сжигают и передают его термическую энергию потребителю. Установка для осуществления способа содержит шахтную печь для восстановления с трубопроводом для подачи восстановительного газа, например, от плавильного газификатора, трубопроводом для отвода колошникового газа с расположенным в нем устройством для очистки от CO2, из которого выведен трубопровод для подачи очищенного от CO2 колошникового газа в восстановительную шахтную печь через устройство для нагрева очищенного от СО2 колошникового газа. Устройство для очистки от СО2 колошникового газа снабжено трубопроводом отработанного газа, передающим отделенный содержащий CO2 газ в устройство для нагрева, и трубопроводом для кислородсодержащего газа в устройство для нагрева. Технический результат заключается в обеспечении эффективного использования колошникового газа, образующегося при восстановлении руд. 2 с. и 17 з. п. ф.-лы, 3 ил., 6 табл.

Description

Изобретение относится к способу получения губчатого железа из измельченного материала, содержащего оксид железа, в котором материал, содержащий оксид железа, восстанавливают в губчатое железо в зоне восстановления посредством восстановительного газа, а газ, образующийся при восстановлении, выводят в виде колошникового газа, а также к установке для осуществления этого способа.
В способе такого типа, известном, например, из EP-B-0 010 627, и DE-C-40 37 977 и из AT-B-376.241, губчатое железо, получаемое прямым восстановлением, плавится в газификационной зоне плавления при подаче кусковых носителей углерода и кислородсодержащего газа, при этом в газификационной зоне плавления из кусковых носителей углерода при вдувании кислородсодержащего газа образуется псевдоожиженный слой, в котором задерживаются и плавятся частицы губчатого железа, загружаемые сверху в газификационную зону плавления. При таком способе образуется содержащий CO и H2 восстановительный газ, который подается в зону восстановления и вступает там в реакцию.
Во время этой реакции образуется большое количество колошникового газа, в котором содержание оксида углерода и водорода еще довольно значительно. Если имеется возможность экономического использования этого колошникового газа, то затраты на производство губчатого железа и выплавляемого из него чугуна или получаемых из него полуфабрикатов стали будут весьма низкими.
Известен (DE-C-40 37 977) способ подачи колошникового газа, отводимого из зоны восстановления, в следующую зону восстановления для восстановления дополнительного количества материала, содержащего оксид железа, а именно после очистки газа. Обработка колошникового газа, в принципе, производится путем первичной очистки от его твердых частиц в скруббере, при сильном охлаждении. После этого удаляется CO2, содержащийся в колошниковом газе, поскольку он будет затруднять дальнейшее использование колошникового газа в качестве восстановительного газа. Известны различные способы очистки колошникового газа от CO2, например, способ переменного давления или химическая очистка от CO2 в скруббере.
Согласно DE-C-40 37 977, энергию, химически связанную в колошниковом газе, можно использовать с большой эффективностью. Однако, при этом возникает проблема, связанная с содержащим CO2 отработанным газом, образующимся при очистке колошникового газа, который необходимо удалить экологически приемлемым способом.
Этот отработанный газ содержит CO, H2, CH4, а также H2S и следовательно, не может быть выпущен в атмосферу в таком состоянии, чтобы не загрязнять ее. По этой причине он менее пригоден для дальнейшей обработки. Поэтому из отработанного газа обычно удаляются соединения серы. Ранее такая десульфуризация проводилась различными способами, например, в так называемом "скруббере Стретфорда" или каталитическим окислением на активированном угле, и т.д. Из DE-B-37 16511 известно удаление H2S из CO2-содержащего отработанного газа в десульфуризационном реакторе при помощи губчатого железа. Все эти способы дороги, требуют дополнительных материалов, таких как активированный уголь или абсорбенты, которые, к тому же, должны храниться и подвергаться дальнейшей переработке раздельно.
Известно также регулирование на выходе содержащего CO2 отработанного газа. Однако при таком регулировании необходима подача горючего поддерживающего газа для зажигания и карбюризации, поскольку теплотворная способность содержащего CO2 отработанного газа низка.
Из EP-A-0 571 358 известен способ обработки колошникового газа, образующегося при прямом восстановлении тонкоизмельченной руды с помощью восстановительного газа, получаемого из реформированного природного газа, очисткой от CO2 в скруббере и примешивания очищенного таким образом колошникового газа к свежему восстановительному газу, получаемому из природного газа путем реформинга, и затем введения этой смеси газов в зону восстановления. Это опять-таки создает проблему удаления содержащего CO2 отработанного газа, образующегося при очистке колошникового газа, хотя этот отработанный газ, благодаря получению восстановительного газа из реформированного природного газа, имеет более низкое содержание H2S, чем отработанный газ, образующийся при очистке колошникового газа из восстановительного газа, получаемого из кусковых носителей углерода.
Задачей изобретения является устранение этих недостатков и трудностей и создание эффективного способа использования колошникового газа, образующегося при восстановлении руды, таком как прямое восстановление для производства губчатого железа, путем преодоления трудностей, имевшихся в прежней технологии. В частности, содержащий CO2 отработанный газ не только должен обрабатываться и удаляться экологически приемлемым способом, но также и использоваться максимально эффективно в энергетическом отношении. Кроме того, проблемы, связанные с отделением H2S, осуществляемым одновременно с отделением CO2, также должны решаться экологически приемлемым путем.
В соответствии с изобретением эта цель достигается при помощи способа первоначально определенного типа путем сочетания следующих мер: -
- колошниковый газ подвергают очистке от CO2,
- содержащий CO2 отработанный газ, отделенный при очистке от CO2, смешивают с кислородсодержащим газом,
- сжигают и
- передают его термическую энергию потребителю.
Согласно изобретению, имеется возможность полностью использовать теплосодержание содержащего CO2 отработанного газа, даже если его энергетическое содержание не очень высоко, не оказывая таким образом влияния на окружающую среду.
Является предпочтительным, если
- содержащий CO2 отработанный газ сжигают по меньшей мере частично при косвенной передаче тепла восстановительному газу,
- после чего измельченный материал, содержащий оксид железа, восстанавливают посредством нагретого восстановительного газа.
Главное преимущество изобретения заключается в том, что содержащий CO2 отработанный газ, отделенный от колошникового газа, образующегося в процессе восстановления по меньшей мере большей частью снова энергетически используется в процессе восстановления; причем этот процесс восстановления может быть дополнительным процессом восстановления к процессу восстановления, при котором образуется колошниковый газ, или газ идентичный ему, то есть, по меньшей мере часть колошникового газа, очищенного от CO2, может повторно использоваться в виде восстановительного газа или примеси к восстановительному газу в том же процессе восстановления, в котором он образовался, как колошниковый газ (что известно, например, из DE-B-37 16 511).
Согласно предпочтительному варианту осуществления содержащий CO2 отработанный газ, отделяемый при очистке от CO2, дополнительно смешивают с горючим газом.
Предпочтительно, в качестве горючего газа применяют по меньшей мере часть колошникового газа, образующегося при восстановлении, таком как прямое восстановление измельченного материала, содержащего оксид железа, посредством восстановительного газа. Таким образом, имеется возможность обеспечить нагрев восстановительного газа до температуры восстановления без использования постороннего газа (за исключением подачи кислородсодержащего газа, такого как воздух).
Предпочтительно, колошниковый газ, образующийся в первой зоне восстановления, подвергают очистке от CO2, и колошниковый газ, очищенный от CO2, после нагрева используют в качестве восстановительного газа по меньшей мере в одной следующей зоне восстановления для восстановления следующей порции измельченного материала, содержащего оксид железа. Благодаря этим мерам появляется возможность использования восстановительного газа, образующегося в большом количестве из кусковых носителей углерода в газификационной зоне плавления, для производства оптимального количества губчатого железа после реакции в зоне восстановления, после которой он все еще содержит значительное количество оксида углерода и водорода.
В этом случае колошниковый газ, образующийся во второй зоне восстановления по меньшей мере частично примешивают в виде горючего газа к содержащему CO2 отработанному газу, отделенному при очистке от CO2, и сжигают при косвенной передаче тепла восстановительному газу, который подают во вторую зону восстановления.
Преимуществом является то, что восстановление или удаление CO2 осуществляют способом адсорбции с переменным давлением. Этот способ особенно выгоден, если колошниковый газ выделяется с незначительным давлением, поскольку при низком давлении чрезмерно увеличивается потребление пара для химической очистки в скруббере. При получении восстановительного газа из реформированного природного газа рекомендуется химическая очистка в скруббере для удаления CO2.
Предпочтительно, губчатое железо, образующееся в первой зоне восстановления плавят в зоне плавильной газификации при подаче твердых носителей углерода и кислородсодержащего газа, в результате чего образуется содержащий CO- и H2 - восстановительный газ, который вводят в первую зону восстановления, где он вступает в реакцию.
Установка для осуществления этого способа содержит восстановительную шахтную печь для измельченного материала, содержащего оксид железа, включающую трубопровод для подачи восстановительного газа, а также трубопровод для отвода колошникового газа, и отличается тем, что трубопровод для отвода колошникового газа введен в устройство для очистки от CO2, из которого выведен трубопровод для подачи восстановительного газа, передающий очищенный от CO2 колошниковый газ в восстановительную шахтную печь через устройство для нагрева очищенного от CO2 колошникового газа, и тем, что от устройства для очистки CO2 отведен трубопровод отработанного газа, передающий очищенный от CO2 отработанный газ в устройство для нагрева, в который входит трубопровод, подающий кислородсодержащий газ в устройство нагрева.
Предпочтительный вариант осуществления отличается тем, что от устройства для очистки от CO2 отведен трубопровод для отработанного газа, передающий отделенный, содержащий CO2 отработанный газ по меньшей мере частично в устройство для нагрева, в который входит трубопровод горючего газа, подающий горючий газ в устройство нагрева.
Чтобы использовать для процесса восстановления энергию, содержащуюся в содержащем CO2 отработанном газе, устройство для нагрева, в которое введен трубопровод отработанного газа, подающий содержащий CO2 отработанный газ, представляет из себя устройство косвенного нагрева очищенного от CO2 колошникового газа, а трубопровод подачи восстановительного газа, передающий этот колошниковый газ, введен в устройство для нагрева.
Чтобы обеспечить сгорание содержащего CO2 отработанного газа без присутствия какого-либо постороннего газа, от восстановительной шахтной печи целесообразно отвести трубопровод горючего газа, принимающий по меньшей мере часть колошникового газа, образующегося в восстановительной шахтной печи.
Предпочтительный вариант осуществления включает две восстановительные шахтные печи, соединенные по потоку посредством трубопровода для отвода колошникового газа первой восстановительной шахтной печи, через устройство для очистки от CO2 и через трубопровод для подачи восстановительного газа, выходящий из устройства очистки от CO2 и проходящий через устройство нагрева.
В этом случае трубопровод горючего газа выходит из второй восстановительной шахтной печи.
Предпочтительный вариант осуществления отличается плавильным газификатором, в который входит трубопровод для передачи губчатого железа из первой восстановительной шахтной печи, и который содержит трубопроводы для подачи кислородсодержащих газов и твердых носителей углерода, а также отверстия для слива чугуна и шлака, и из которого выходит трубопровод для восстановительного газа, образующегося в плавильном газификаторе, входящий в первую восстановительную шахтную печь.
Предпочтительно, устройство газовой очистки выполнено в виде адсорбционной установки переменного давления.
Предпочтительно, трубопровод отработанного газа, отводящий отделенный, содержащий CO2 отработанный газ, введен в устройство нагрева, представляющее собой парогенератор.
Предпочтительно, трубопровод отработанного газа, отводящий отделенный, содержащий CO2 отработанный газ, введен в устройство нагрева, дымовые газы из которого могут отводиться через отводной трубопровод дымового газа, включающий теплообменник, в котором материал, подлежащий нагреву, такой как уголь, руда и т.д., может непосредственно контактировать с дымовым газом.
Другой предпочтительный вариант осуществления отличается тем, что трубопровод отработанного газа, отводящий отделенный, содержащий CO2 отработанный газ, проходит через теплообменник, расположенный в трубопроводе для отвода колошникового газа восстановительной шахтной печи, и затем входит в устройство для нагрева.
Далее изобретение поясняется подробно на нескольких примерах, иллюстрируемых на схемах фиг. 1-3.
Согласно фиг. 1-3, измельченный материал, содержащий оксид железа, предпочтительно кусковая железная руда, и, возможно, присадки подают через трубопровод 2 обычным способом в первую восстановительную шахтную печь. Восстановительный газ вдувают в восстановительную шахтную печь через трубопровод 3, навстречу потоку железной руды, опускающейся сверху вниз и осуществляет восстановление загружаемой руды в зоне 4 восстановления. После прохождения через шахтную печь 1 этот газ выводят в виде колошникового газа через трубопровод 5 для его отвода.
Восстановленная шихта, которая содержит железо в виде губчатого железа, попадает в плавильный газификатор 7 по трубопроводам, выполненным предпочтительно, как спускные трубы 6. Через трубопровод 8 в плавильный газификатор 7 обычным способом подают кусковые носители углерода, например, в виде высокотемпературного кокса бурого угля, а также, если желательно, уголь, а кроме того, по трубопроводу 9 подводят кислородсодержащий газ.
Таким образом, шихта или губчатое железо, соответственно, падает сверху в зону 10 плавильной газификации 10 в псевдоожиженный слой или кипящий слой, соответственно, который образован кусковыми носителями углерода и поддерживается вдуваемым кислородсодержащим газом. Благодаря сгоранию кокса, а также, если желательно, угля, под влиянием кислородсодержащего газа, в псевдоожиженном слое или в кипящем слое, соответственно, вырабатывается такое большое количество тепла, что губчатое железо плавится. В расплавленном состоянии оно полностью восстанавливается углеродом, и расплав чугуна собирается на дне плавильного газификатора 7. Над расплавом чугуна образуется расплав шлака. Эти два расплава сливаются по соответственно размещенным отверстиям 11, 12 через определенные промежутки времени.
Во время сгорания кокса и, если желательно, угля в плавильном газификаторе вырабатывается восстановительный газ, в основном состоящий из CO и H2, который выводят из плавильного газификатора 7 через подающий трубопровод 3 и подают в восстановительную шахтную печь 1. Очистка и охлаждение восстановительного газа, образовавшегося в плавильном газификаторе, до температуры, требуемой для восстановления, осуществляют известным способом, что не описывается более подробно.
Колошниковый газ, выводимый через трубопровод 5 для отвода колошникового газа 5, сначала подвергают очистке, например, в циклоне 13 или в скруббере, для освобождения его от частиц пыли. Затем колошниковый газ через конденсатор 14 попадает в устройство 15 для чистки от CO2, в котором он освобождается от CO2 и одновременно от H2S. Устройство 15 для очистки представляет собой адсорбционное устройство переменного давления. В этом случае удаляется также и H2O. Очищенный таким образом колошниковый газ подают по трубопроводу 16 для восстановительного газа во вторую восстановительную шахтную печь 17, работающую по тому же принципу противотока, что и первая восстановительная шахтная печь 1. В этой шахтной печи 17 частицы руды подвергают прямому восстановлению.
Поскольку колошниковый газ во время очистки сильно охлаждается, перед вводом во вторую восстановительную шахтную печь 17 его снова нагревают. Нагрев осуществляют в два этапа. На первом этапе очищенный доменный газ подвергают косвенному нагреву в устройстве 18 для нагрева, представляющем собой теплообменник. Теплообменник (рекуператор) 18 работает за счет смеси содержащего CO2 отработанного газа, отделяемого в устройстве 15 для очистки от CO2, и очищенного колошникового газа, выводимого из второй восстановительной шахтной печи 17. Кроме того, в горелку теплообменника 18 по трубопроводу 19 подают кислородсодержащий газ (в котором кислород присутствует в молекулярной форме), например воздух. Затем нагретый очищенный колошниковый газ подвергают дожиганию во вторичном нагревательном устройстве 20, в котором порция нагретого очищенного колошникового газа сгорает при подаче кислорода. Таким образом, очищенный колошниковый газ приобретает температуру, необходимую для восстановления во второй восстановительной шахтной печи, диапазон которой составляет 700-900oC.
Колошниковый газ, выводимый из восстановительной шахтной печи 17, аналогичным способом подвергают очистке и охлаждению (в скруббере колошникового газа 21), чтобы очистить его от частиц пыли и снизить содержание пара. После этого часть очищенного колошникового газа подают в теплообменник 18 по трубопроводу 12 для горючего газа, в который введен трубопровод 23 для отработанного газа, выводящий содержащий CO2 отработанный газ из устройства для очистки от CO2. Другую часть доменного газа, образующегося во второй восстановительной шахтной печи 17, подают в устройство 15 для очистки от CO2 через конденсатор 24 посредством трубопровода 25, входящего в трубопровод для отвода колошникового газа 5, затем очищают в устройстве 15 для очистки от CO2 и после этого газ готов для повторного использования в качестве восстановительного газа. Остальную часть колошникового газа из восстановительной шахтной печи 17, которая не требуется для технологического процесса согласно изобретению, отводят для других целей в виде готового к употреблению газа по трубопроводу 26. В этот трубопровод 23 для отвода газа, готового к употреблению, может входить ответвленный трубопровод, с помощью которого часть содержащего CO2 отработанного газа, если он не требуется для теплообменника 18, примешивается к газу, готовому для употребления.
Существенное преимущество изобретения заключается в том, что горючий газ, полученный смешиванием содержащего CO2 отработанного газа и колошникового газа из второй восстановительной шахтной печи 17, имеет низкую температуру адиабатического сгорания. Температуру дымового газа перед теплообменными узлами теплообменника 18 регулируют изменяя объемное соотношение между содержащим CO2 отработанным газом и колошниковым газом и/или кислородсодержащим газом. Повторного использования дымового газа, которое может потребоваться для регулирования температуры, если в качестве топлива для теплообменника 18 используется только колошниковый газ, можно избежать. Дымовой газ, образующийся в теплообменнике 18, отводят в очищенном состоянии через трубопровод для отвода дымового газа 28 обычным способом. Если для нагрева восстановительного газа не требуется вся энергия содержащего CO2 отработанного газа или смеси этого отработанного газа с колошниковым газом, соответственно, то будет выгодно примешивать невостребованную порцию отработанного газа или смеси отработанного газа с колошниковым газом, соответственно, к газу, готовому для употребления.
Горючий газ, подаваемый в устройство 18 для нагрева, также может быть образован из содержащего CO2 отработанного газа и горючего газа, например природного газа и т.д., или из содержащего CO2 отработанного газа и колошникового газа, отводимого через боковой трубопровод из первой зоны 4 восстановления и подаваемого через трубопровод 22, показанный пунктирными линиями на фиг. 1.
Благодаря использованию содержащего CO2 отработанного газа в теплообменнике 18 продолжает использоваться энергетическое содержание этого отработанного газа. Так, содержащий CO2 отработанный газ заменяет часть колошникового газа, который, в свою очередь, может быть использован для других целей. Другое преимущество заключается в более высоких допустимых количествах SO2, образующегося при сгорании содержащего CO2 отработанного газа, чем допустимый предел для H2S, присутствующего в несгоревшем содержащем CO2 отработанном газе. Поэтому использование такого содержащего CO2 отработанного газа не приносит вреда окружающей среде. Если же содержание SO2 все-таки велико, рекомендуется десульфуризация дымового газа в соответствии с технологией согласно уровню техники. Однако компоненты CO, H2 и CH4 преобразуются полностью, так что любое их остаточное содержание гораздо ниже предельных допустимых величин.
В варианте осуществления, представленном более подробно с помощью таблиц 1-4, содержащий CO2 отработанный газ, образующийся при очистке от CO2, смешивают с колошниковым газом, отводимым из второй зоны 27 восстановления.
В таблице 1, приведенной ниже, представлен химический состав содержащего CO2 отработанного газа, образующегося при очистке от CO2 колошникового газа из первой зоны 4 восстановления.
Таблица 1
CO - 11,8% об.
CO2 - 80,3% об.
H2 - 1,5% об.
H2O - 5,3% об.
N2 - 0,7%
CH4 - 0,4% об.
H2S макс. - 0,03% об.
кДж/Нм3 - 1,795
В таблице 2 представлен химический состав очищенного и охлажденного колошникового газа, отводимого из второй зоны 27 восстановления второй восстановительной шахтной печи 17, перед смешиванием с содержащим CO2 отработанным газом.
Таблица 2
CO - 43,2% об.
CO2 - 25,4% об.
H2 - 18,0% об.
H2O - 5,7% об.
N2 - 6,2% об.
CH4 - 1,5% об.
H2S макс. - 0,00% об.
кДж/Нм3 - 1,945
В таблице 3 представлен химический состав смеси колошникового газа и содержащего CO2 отработанного газа, которая сгорает в теплообменнике 18.
Таблица 3
CO - 16,6% об.
CO2 - 72,0% об.
H2 - 4,0% об.
H2O - 5,3% об.
N2 - 1,5% об.
CH4 - 0,6% об.
H2S макс. - 0,02% об.
кДж/Нм3 - 2,725
Химический состав дымового газа, образующегося в теплообменнике 18 при сгорании этого газа, представлен в таблице 4.
Таблица 4
CO2 - 60,1% об.
H2O - 7,9% об.
O2 - 0,4% об.
N2 - 31,6% об.
SO2 - 0,02% об.
Температура адиабатического сгорания составляет около 984oC.
Приведенные ниже таблицы 5 и 6 иллюстрируют вариант осуществления, согласно которому содержащий CO2 отработанный газ, образованный при очистке колошникового газа из первой зоны 4 восстановления, (таблица 5) просто смешивают с кислородом и сжигают. Поскольку в этом случае газ, подаваемый в теплообменник 18, состоит только из содержащего CO2 отработанного газа и кислорода (или кислородсодержащего газа), может возникнуть необходимость в раздельной подаче в зажигательные горелки (так называемые пилотные горелки) теплообменника 18 колошникового газа, природного газа или любого другого горючего газа, которая, однако, не представляет важности из-за небольших требуемых количеств газа. Это - а также теплотворная способность газовой смеси для теплообменника 18 - зависит от рабочих характеристик установки для очистки от CO2, т. е. , от количества восстановителей, вырабатываемых в большей степени, если в установке для очистки от CO2 не осуществляют тщательное отделение CO2.
Таблица 5
CO - 11,8% об.
CO2 - 80,3% об.
H2 - 1,5% об.
H2O - 5,3% об.
N2 - 0,7% об.
CH4 - 0,4% об.
H2S макс. - 0,03% об.
кДж/Нм3 - 1,795
Химический состав дымовых газов приведен в таблице 6.
Таблица 6
CO2 - 91,2% об.
H2O - 7,6% об.
O2 - 0,4% об.
N2 - 0,7% об.
SO2 - 0,03% об.
Температура адиабатического сгорания составляет около 867oC.
Согласно варианту осуществления способа, показанному на фиг. 2, часть содержащего CO2 отработанного газа подают по трубопроводу 29 для отработанного газа, ответвляющийся от трубопровода 23 отработанного газа, через теплообменник 30, в котором содержащий CO2 отработанный газ нагревают при помощи колошникового газа, выходящего из второй восстановительной шахтной печи 17, в устройство для нагрева 31, в котором он сгорает при подаче кислородсодержащего газа, или воздуха в качестве носителя кислорода. В этом устройстве 31 для нагрева пар может, например, вырабатываться способом рекуперации; подача воды обозначена позицией 32, а отвод пара - позицией 33. Часть содержащего CO2 отработанного газа - или даже весь объем этого отработанного газа - может подаваться в устройство нагрева 31 непосредственно через трубопровод отработанного газа 29', показанный на фиг. 2 пунктирной линией, без прохождения через теплообменник 30.
Как показано на фиг. 3, содержащий CO2 отработанный газ сгорает в устройстве для нагрева 31', уголь или руда транспортируются внутрь и наружу посредством транспортировочного средства 36, подвергаясь прямому нагреву в камере предварительного нагрева 34 при помощи вырабатываемого отработанного газа. Охлаждаемый дымовой газ выводится через трубопровод 35 для отвода дымового газа.
Как очевидно из фиг. 2 и 3, энергия содержащего CO2 отработанного газа может быть использована различными способами, а также сочетанием нескольких способов использования, так, чтобы эта энергия использовалась оптимальным образом в зависимости от режима работы восстановительных шахтных печей 1 и 17 и от характера использования газа, готового к употреблению, подаваемого потребителям по трубопроводу 26. Можно также, например, обходиться без нагрева восстановительного газа, подаваемого в восстановительную шахтную печь 17 по трубопроводу 16 восстановительного газа, если требуемая температура восстановительного газа может быть достигнута при помощи одного дожигания.

Claims (19)

1. Способ получения губчатого железа из измельченного материала, содержащего оксид железа, включающий его восстановление в зоне восстановления до губчатого железа посредством восстановительного газа, отвод образующегося при восстановлении колошникового газа и его очистку от CO2, отличающийся тем, что в процессе очистки колошникового газа отделяют содержащий CO2 отработанный газ, смешивают его с кислородсодержащим газом и сжигают с последующей передачей термической энергии потребителю.
2. Способ по п.1, отличающийся тем, что содержащий CO2 отработанный газ сжигают по меньшей мере частично при косвенной передаче тепла восстановительному газу, после чего измельченный материал, содержащий оксид железа, восстанавливают посредством нагретого восстановительного газа.
3. Способ по п.1 или 2, отличающийся тем, что содержащий CO2 отработанный газ, отделенный при очистки от CO2, дополнительно смешивают с горючим газом.
4. Способ по п.3, отличающийся тем, что по меньшей мере часть колошникового газа, образующегося при прямом восстановлении измельченного материала, содержащего оксид железа, восстановительным газом, используют в качестве горючего газа.
5. Способ по одному или нескольким пп.1 - 4, отличающийся тем, что восстановление до губчатого железа осуществляют по крайней мере в двух зонах восстановления, при этом колошниковый газ, образующийся в первой зоне восстановления, подвергают очистке от CO2, нагревают и используют в качестве восстановительного газа по крайней мере в одной следующей зоне восстановления для восстановления следующей порции измельченного материала, содержащего оксид железа.
6. Способ по п.5, отличающийся тем, что колошниковый газ, образующийся во второй зоне восстановления, по меньшей мере частично примешивают в виде горючего газа к содержащему CO2, и сжигают при косвенной передачи тепла восстановительному газу, подаваемому во вторую зону восстановления.
7. Способ по одному или нескольким пп.1 - 6, отличающийся тем, что очистку колошникового газа от CO2 осуществляют способом адсорбции с переменным давлением.
8. Способ по одному или нескольким пп.5 - 7, отличающийся тем, что губчатое железо, полученное в первой зоне восстановления, плавят в зоне плавильной газификации при подаче твердых носителей углерода и кислородсодержащего газа с образованием содержащего СО и Н2 восстановительного газа, который вводят в первую зону восстановления, где он вступает в реакцию.
9. Установка для получения губчатого железа из измельченного материала, содержащего оксид железа, содержащая восстановительную шахтную печь для восстановления измельченного материала, содержащего оксид железа, с трубопроводом для подачи восстановительного газа, трубопроводом для отвода колошникового газа с сообщающимся с ним устройством для очистки от CO2, из которого выведен трубопровод для подачи очищенного от CO2 колошникового газа в восстановительную шахтную печь через устройство для нагрева очищенного от CO2 колошникового газа, отличающаяся тем, что устройство для очистки от CO2 снабжено трубопроводом отработанного газа, передающим отделенный содержащий CO2 отработанный газ в устройство для нагрева, и трубопроводом для подачи кислородсодержащего газа в устройство для нагрева, который введен в трубопровод отработанного газа.
10. Установка по п.9, отличающаяся тем, что от устройства для очистки колошникового газа от CO2 отведен трубопровод отработанного газа, передающий отделенный, содержащий CO2 отработанный газ, по меньшей мере, частично в устройство для нагрева, и снабжена трубопроводом горючего газа, подающим горючий газ в устройство для нагрева, и который введен в трубопровод отработанного газа.
11. Установка по п.9 или 10, отличающаяся тем, что устройство для нагрева, в которое входит трубопровод для отвода отработанного газа, содержащего CO2, выполнено в виде устройства косвенного нагрева очищенного CO2 колошникового газа, в которое введен трубопровод для подачи колошникового газа, используемого в качестве восстановительного газа.
12. Установка по п.10 или 11, отличающаяся тем, что восстановительная шахтная печь оборудована трубопроводом горючего газа для отвода по крайней мере части колошникового газа, образующегося в восстановительной шахтной печи.
13. Установка по одному или нескольким пп.9 - 12, отличающаяся тем, что содержит две восстановительные шахтные печи, соединенные друг с другом по потоку посредством последовательно расположенных трубопровода для отвода колошникового газа первой восстановительной шахтной печи, устройства для очистки от CO2, трубопровода для подачи восстановительного газа, выходящего из устройства для очистки от CO2 и входящего в устройство для нагрева.
14. Установки по п.13, отличающаяся тем, что из второй восстановительной шахтной печи выходит трубопровод горючего газа.
15. Установка по п.14, отличающаяся тем, что она содержит плавильный газификатор, оборудованный трубопроводом для передачи губчатого железа из первой восстановительной шахтной печи, трубопроводами для подачи кислородсодержащих газов и твердых носителей углерода и трубопроводом для восстановительного газа, образуемого в плавильном газификаторе, входящим в первую восстановительную шахтную печь, а также отверстиями для выпуска чугуна и шлака.
16. Установка по одному или нескольким пп.9 - 15, отличающаяся тем, что устройство для очистки газа представляет собой адсорбционную установку переменного давления.
17. Установка по одному или нескольким пп.9 - 16, отличающаяся тем, что трубопровод отработанного газа, отводящий отделенный содержащий CO2 отработанный газ, введен в устройство для нагрева, представляющее собой парогенератор.
18. Установка по одному или нескольким пп.9 - 17, отличающаяся тем, что трубопровод отработанного газа, отводящий отделенный содержащий CO2 отработанный газ, введен в устройство для нагрева, который оборудован трубопроводом для отвода дымового газа, включающем теплообменник, в котором материал, подлежащий нагреву, например уголь, руда и т.д., непосредственно контактирует с дымовым газом.
19. Установка по одному или нескольким пп.9 - 18, отличающаяся тем, что трубопровод для отработанного газа, отводящий отделенный, содержащий CO2 отработанный газ, проходит через теплообменник, расположенный в трубопроводе для отвода колошникового газа второй восстановительной шахтной печи, и затем входит в устройство для нагрева.
RU97111041A 1994-12-01 1995-11-28 Способ получения губчатого железа и установка для осуществления этого способа RU2127319C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0223294A AT405187B (de) 1994-12-01 1994-12-01 Verfahren zum herstellen von eisenschwamm sowie anlage zur durchführung des verfahrens
ATA2232/94 1994-12-01
PCT/AT1995/000232 WO1996017089A1 (de) 1994-12-01 1995-11-28 Verfahren zum herstellen von eisenschwamm sowie anlage zur durchführung des verfahrens

Publications (2)

Publication Number Publication Date
RU2127319C1 true RU2127319C1 (ru) 1999-03-10
RU97111041A RU97111041A (ru) 1999-05-27

Family

ID=3530485

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97111041A RU2127319C1 (ru) 1994-12-01 1995-11-28 Способ получения губчатого железа и установка для осуществления этого способа

Country Status (17)

Country Link
US (1) US5997609A (ru)
EP (1) EP0796349B1 (ru)
JP (1) JP3441464B2 (ru)
KR (1) KR100247451B1 (ru)
CN (1) CN1042955C (ru)
AT (2) AT405187B (ru)
AU (1) AU701539B2 (ru)
BR (1) BR9509844A (ru)
CA (1) CA2206583A1 (ru)
CZ (1) CZ284766B6 (ru)
DE (1) DE59504170D1 (ru)
RU (1) RU2127319C1 (ru)
SK (1) SK282341B6 (ru)
TW (1) TW290589B (ru)
UA (1) UA32602C2 (ru)
WO (1) WO1996017089A1 (ru)
ZA (1) ZA9510168B (ru)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582029A (en) * 1995-10-04 1996-12-10 Air Products And Chemicals, Inc. Use of nitrogen from an air separation plant in carbon dioxide removal from a feed gas to a further process
AT406381B (de) * 1996-03-05 2000-04-25 Voest Alpine Ind Anlagen Anlage und verfahren zur herstellung von metallschwamm
US6478841B1 (en) 2001-09-12 2002-11-12 Techint Technologies Inc. Integrated mini-mill for iron and steel making
US20050151307A1 (en) * 2003-09-30 2005-07-14 Ricardo Viramontes-Brown Method and apparatus for producing molten iron
CN101397597B (zh) * 2007-09-26 2010-12-01 宝山钢铁股份有限公司 干煤粉气化热煤气粉矿流化床直接还原生产海绵铁的方法
AT507823B1 (de) * 2009-01-30 2011-01-15 Siemens Vai Metals Tech Gmbh Verfahren und anlage zur herstellung von roheisen oder flüssigen stahlvorprodukten
US20110018179A1 (en) 2009-06-29 2011-01-27 Bairong Li Metal reduction processes, metallurgical processes and products and apparatus
IT1402250B1 (it) 2010-09-29 2013-08-28 Danieli Off Mecc Procedimento ed apparato per la produzione di ferro di riduzione diretta utilizzando una sorgente di gas riducente comprendente idrogeno e monossido di carbonio
DE102011077819A1 (de) * 2011-06-20 2012-12-20 Siemens Aktiengesellschaft Kohlendioxidreduktion in Stahlwerken
CN105492376A (zh) 2013-07-22 2016-04-13 沙特基础工业公司 炉顶气在直接还原工艺中的使用
CN111575428B (zh) * 2020-06-11 2023-05-09 武汉科思瑞迪科技有限公司 一种气固还原竖炉及生产海绵铁的方法
CN111534659B (zh) * 2020-06-11 2023-04-28 武汉科思瑞迪科技有限公司 一种并联蓄热式气基竖炉及生产直接还原铁方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE252202C (ru) *
US1800856A (en) * 1926-04-07 1931-04-14 Bradley Linn Treating iron ore
GB799551A (en) * 1956-02-06 1958-08-13 Texaco Development Corp Reduction of a metal oxide with carbon monoxide and hydrogen
US3653874A (en) * 1970-01-02 1972-04-04 Koppers Co Inc Production of metal pellets from metallic oxides
JPS5362718A (en) * 1976-11-18 1978-06-05 Nippon Steel Corp Manufacture of reduced iron
DE2843303C2 (de) * 1978-10-04 1982-12-16 Korf-Stahl Ag, 7570 Baden-Baden Verfahren und Anlage zur Erzeugung von flüssigem Roheisen und Reduktionsgas in einem Einschmelzvergaser
JPS59107009A (ja) * 1982-12-11 1984-06-21 Nisshin Steel Co Ltd 高炉のオ−ルコ−クス操業における高出銑比操業法
AT376241B (de) * 1983-01-03 1984-10-25 Voest Alpine Ag Verfahren zum schmelzen von zumindest teilweise reduziertem eisenerz
JPH0638132B2 (ja) * 1984-06-25 1994-05-18 キヤノン株式会社 投影レンズ
JPS6199613A (ja) * 1984-10-22 1986-05-17 Nippon Steel Corp 直接還元炉のガス再循環装置
US4685964A (en) * 1985-10-03 1987-08-11 Midrex International B.V. Rotterdam Method and apparatus for producing molten iron using coal
DE3626027A1 (de) * 1986-08-01 1988-02-11 Metallgesellschaft Ag Verfahren zur reduktion feinkoerniger, eisenhaltiger materialien mit festen kohlenstoffhaltigen reduktionsmitteln
AT387038B (de) * 1986-11-25 1988-11-25 Voest Alpine Ag Verfahren und anlage zur gewinnung von elektrischer energie neben der herstellung von fluessigem roheisen
DE3716511A1 (de) * 1987-05-16 1988-12-01 Voest Alpine Ag Verfahren zur entfernung von schwefel aus dem abgas eines reduktionsschachtofens
AT394201B (de) * 1989-02-16 1992-02-25 Voest Alpine Ind Anlagen Verfahren zur erzeugung von brennbaren gasen in einem einschmelzvergaser
DE4037977A1 (de) * 1990-11-29 1992-06-11 Voest Alpine Ind Anlagen Verfahren zur herstellung von roheisen bzw. eisenschwamm
AT396255B (de) * 1991-09-19 1993-07-26 Voest Alpine Ind Anlagen Anlage und verfahren zur erzeugung von roheisen und eisenschwamm
AT402937B (de) * 1992-05-22 1997-09-25 Voest Alpine Ind Anlagen Verfahren und anlage zur direktreduktion von teilchenförmigem eisenoxidhältigem material
JPH06287001A (ja) * 1993-03-31 1994-10-11 Nippon Sanso Kk 水素及び二酸化炭素の製造方法
US5676732A (en) * 1995-09-15 1997-10-14 Hylsa, S.A. De C.V. Method for producing direct reduced iron utilizing a reducing gas with a high content of carbon monoxide

Also Published As

Publication number Publication date
ATE173026T1 (de) 1998-11-15
CZ162997A3 (en) 1997-10-15
DE59504170D1 (de) 1998-12-10
WO1996017089A1 (de) 1996-06-06
BR9509844A (pt) 1997-12-30
JP3441464B2 (ja) 2003-09-02
EP0796349B1 (de) 1998-11-04
US5997609A (en) 1999-12-07
CZ284766B6 (cs) 1999-02-17
SK282341B6 (sk) 2002-01-07
UA32602C2 (ru) 2001-02-15
SK68397A3 (en) 1998-04-08
CN1042955C (zh) 1999-04-14
AT405187B (de) 1999-06-25
ATA223294A (de) 1998-10-15
KR100247451B1 (ko) 2000-04-01
TW290589B (ru) 1996-11-11
ZA9510168B (en) 1996-06-07
EP0796349A1 (de) 1997-09-24
AU3863495A (en) 1996-06-19
CN1167506A (zh) 1997-12-10
JP2001511846A (ja) 2001-08-14
CA2206583A1 (en) 1996-06-06
AU701539B2 (en) 1999-01-28

Similar Documents

Publication Publication Date Title
RU2078142C1 (ru) Способ получения чугуна из железосодержащего окисного материала (варианты)
RU2125613C1 (ru) Способ получения жидкого чугуна или жидких стальных полупродуктов и установка для его осуществления
CS218587B2 (en) Method of reduction of the iron oxides
RU2211865C2 (ru) Установка для получения чугуна и/или губчатого железа и способ получения чугуна и/или губчатого железа
RU2127319C1 (ru) Способ получения губчатого железа и установка для осуществления этого способа
KR20130132783A (ko) 수소 및 일산화탄소를 포함하는 가스 저감 소스를 이용하여 직접환원철을 생산하기 위한 방법 및 장치
US6251162B1 (en) Process for the production of liquid pig iron or liquid intermediate products of steel
RU97107769A (ru) Установка для получения чугуна и/или губчатого железа, способ получения чугуна и/или губчатого железа и способ работы установки
HU188685B (en) Process for production of combustible gas in iron-bath reactor containing carbon monoxid and hydrogen
JP2016526606A (ja) 銑鉄の生産におけるガスの脱硫
RU2276692C2 (ru) Способ восстановления газом оксидсодержащих руд в виде частиц (варианты) и устройство для его осуществления
JPH0471963B2 (ru)
JPH06346127A (ja) 固形状含炭素還元剤を用いて含酸化鉄原料を直接還元する方法
KR100244977B1 (ko) 용융 선철 또는 용융 강 전제품과 해면철의 제조 방법 및 이러한 방법을 수행하기 위한 플랜트
SU1711677A3 (ru) Способ получени расплавленного чугуна или промежуточного продукта дл производства стали и устройство дл его осуществлени
RU97111041A (ru) Способ получения губчатого железа и установка для осуществления этого способа
RU2336311C2 (ru) Способ и установка для производства стали из вторичного сырья на основе металлолома
KR19990087542A (ko) 해면금속 생산용 설비 및 방법
RU2136763C1 (ru) Способ прямого восстановления мелкозернистого содержащего оксид железа материала в форме частиц, а также установка для осуществления этого способа
JPH09210338A (ja) 火力発電所の石炭灰の処理システム
JPS62205208A (ja) 溶融還元炉発生ガスの改質・除塵方法
JPH07207328A (ja) スクラップ溶解時に発生する排ガスの処理方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20031129