RU2123971C1 - Способ удаления газообразных примесей из потока водорода и устройство для его осуществления - Google Patents

Способ удаления газообразных примесей из потока водорода и устройство для его осуществления Download PDF

Info

Publication number
RU2123971C1
RU2123971C1 RU95106479A RU95106479A RU2123971C1 RU 2123971 C1 RU2123971 C1 RU 2123971C1 RU 95106479 A RU95106479 A RU 95106479A RU 95106479 A RU95106479 A RU 95106479A RU 2123971 C1 RU2123971 C1 RU 2123971C1
Authority
RU
Russia
Prior art keywords
nickel
atoms
alloys
titanium
manganese
Prior art date
Application number
RU95106479A
Other languages
English (en)
Other versions
RU95106479A (ru
Inventor
Сукки Марко
Солча Каролина
Д'Арси Лоример
Original Assignee
Саес Геттерс С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Саес Геттерс С.П.А. filed Critical Саес Геттерс С.П.А.
Publication of RU95106479A publication Critical patent/RU95106479A/ru
Application granted granted Critical
Publication of RU2123971C1 publication Critical patent/RU2123971C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение предназначено для удаления газообразных примесей из потока водорода. На стадии А поток водорода сначала вводят в контакт при 5-50°С с одним или более слоями зернистого материала, содержащего никель и/или соединения никеля, причем по крайней мере 1% по массе общего количества никеля присутствует в восстановленной форме до тех пор, пока не будут по существу полностью удалены легко удаляемые примеси. На стадии В поступающий со стадии А поток, по существу свободный от более легко удаляемых примесей, но все еще содержащий более трудно удаляемые примеси, вводят в контакт с одним или более слоями неиспаряющегося газопоглощающего материала при более высокой температуре. Изобретение позволяет повысить степень очистки. 2 с. и 16 з.п.ф-лы, 1 ил., 1 табл.

Description

Изобретение относится к способу удаления газообразных примесей из потока водорода без остаточных следов метана и без образования нового метана, особенно пригодному для продолжительного производства очищенного водорода, содержащего менее 50, а предпочтительно 20 млрд-1, т.е. 20 частей на 109 частей (по объему) метана, и к устройству для его осуществления.
В промышленности полупроводников растет производство интегральных схем со все более увеличивающейся линейной плотностью упаковки, что требует все большего повышения чистоты материалов, используемых в производственных процессах. Поскольку водород является одним из газов, используемых в этих процессах, то необходимо, чтобы он содержал как можно меньше примесей. Основными газообразными примесями в промышленном водороде являются влага (водяной пар), кислород, монооксид углерода (CO), диоксид углерода (CO2) и их смеси (COx), а также азот и метан, причем эти последние (N2 и особенно CH4) очень трудно удаляемы.
Удаление примесей, таких как монооксид углерода (CO), азот (N2) и метан (CH4), из водорода посредством фракционной перегонки при пониженной температуре известно, например, из публикации DE-2442719. Однако при применении такой технологии невозможно достичь требуемого высокого уровня очистки, например, в полупроводниковой промышленности.
Одним из известных способов очистки водорода является селективная диффузия водорода через палладий или сплавы палладия. Но с увеличением перепада давления между противоположными сторонами палладиевого барьера увеличивается скорость диффузии, и к тому же необходима очень высокая рабочая температура, которая требуется для обеспечения экономически выгодной производительности по очищенному водороду при пропускании через палладий.
Кроме того, поскольку примеси водорода забивают барьерный слой палладия, то необходимо устройство или средство для их удаления. Одно из таких устройств описано в патенте США N 3368329, а другой вид очистки водорода посредством диффузионных мембран описан в патенте США N 3534531.
Несмотря на то, что такие диффузионные барьеры очень эффективны, но они имеют некоторые недостатки. Если барьер сделать достаточно тонким для обеспечения высокой пропускной способности при очистке водорода, то он может быть механически разрушен, что приведет к нежелательному проникновению загрязненного примесями водорода в очищенный газ. Этот недостаток еще более усугубляется наличием большого перепада давления между двумя сторонами барьера. При увеличении толщины барьера, чтобы избежать механического разрушения, потребуются очень высокие температуры, чтобы обеспечить производительность по очищенному газу.
Опасно также использование высоких температур в присутствии водорода из-за возможного образования взрывчатых смесей водорода с кислородом (или воздухом). Кроме того, увеличение толщины барьера влечет за собой увеличение количества используемого дорогого палладия.
Таким образом, одной из целей настоящего изобретения является создание усовершенствованного способа очистки водорода, (способа) свободного от одного или более недостатков известного уровня техники.
Другой целью настоящего изобретения является создание усовершенствованного способа очистки водорода без необходимости диффузии через палладий или сплавы палладия.
Еще одной целью настоящего изобретения является создание усовершенствованного способа очистки водорода без больших перепадов давления.
И еще одной целью настоящего изобретения является создание усовершенствованного способа продолжительного получения водорода высокой очистки, свободного от метана, без образования нового метана.
Указанные и другие преимущества настоящего изобретения очевидны для специалистов в данной области техники из следующего ниже описания со ссылками на прилагаемые чертежи.
В самом широком виде настоящее изобретение относится к усовершенствованному способу удаления газообразных примесей из потока водорода, содержащего первый класс более легко удаляемых примесей, таких как, например, COx, и второй класс более трудно удаляемых примесей, в основном состоящих из азота и метана, включающему в себя, по существу, следующие стадии:
A. поток водорода сначала вводят в контакт (при 5 - 50oC) с одним или более слоями зернистого материала, содержащего никель и/или соединения никеля и необязательно также носитель, причем по крайней мере 1% по массе (предпочтительно 5%) общего количества никеля присутствует в восстановленной (элементарной) форме, до тех пор пока более легко удаляемые примеси не будут удалены, по существу, полностью: B. поступающий со стадии A поток, по существу, свободный от более легко удаляемых примесей, но все еще содержащий более трудно удаляемые азот и метан, вводят в контакт с одним или более слоями неиспаряющегося газопоглощающего материала при более высокой температуре.
Подходящее давление потока водорода находится в пределах от 1 до 20 бар, а подходящая температура стадии (B) - в пределах от 400 до 600oC, а предпочтительно от 500 до 600oC.
Объемно-массовая скорость потока водорода обычно составляет от 0,5 до 50 нормальных см3/минуту на грамм газопоглощающего материала, а количество нежелательного метана обычно составляет до 5 частей на миллион (5000 частей на миллиард).
Элементарный никель и соединения никеля (например, оксид), используемые на первой стадии (A) двухстадийного способа в соответствии с настоящим изобретением, целесообразно наносить на носитель, предпочтительно состоящий из силикалита, титан-силикалита, ксерогеля (см. EP-A-537851) или диоксида кремния, имеющего полезную площадь поверхности, равную или более 100 м2/г (предпочтительно 100 - 200 м2/г), как описано в патенте США N 4713224, а за никельсодержащим слоем может следовать или (предпочтительно) ему может предшествовать второй сорбционный слой, в основном состоящий из природного или синтетического молекулярного сита, такого, например, как природные или синтетические цеолиты, силикалиты или титан-силикалиты.
Подходящим газопоглощающим материалом для способа в соответствии с настоящим изобретением является газопоглощающий сплав, выбранный из:
a) сплавов Ti-Ni или Zr-Ni и предпочтительно сплавов, содержащих от 50 до 80% (по массе) титана или циркония (остальное - никель), причем до 50% (по массе) никеля может быть заменено железом и/или марганцем и/или технецием и/или рением;
b) высокомарганцовистых сплавов Ti-V (далее 0 HM-сплавы), описанных в патенте США N 4457891;
c) низкомарганцовистых сплавов Ti-V (далее - LM-сплавы).
Упомянутые HM-сплавы имеют следующий состав (% по массе):
- титан: 25 - 30,9%,
- ванадий: 10 - 24%,
- марганец: 27,1 - 65,1%.
причем на атом титана присутствует от 2 до 2,2 других атомов.
В HM-сплавах примерно до 40% атомов ванадия предпочтительно может быть заменено атомами железа и до 10% атомов ванадия - атомами алюминия, но при этом общее количество атомов железа и алюминия не должно заменять более чем 40% атомов ванадия.
Кроме того, в HM-сплавах возможны следующие необязательные изменения состава:
I) до примерно 20% атомов титана может быть заменено Ca, Y, La, мишметаллом или их смесями;
II) до 0,2 атомов Cr (на атом титана) может заменять соответствующее количество атомов марганца и/или ванадия;
III) до 0,1 атомов Ni и/или 0,05 атомов Cu (на атом титана) могут присутствовать в сплаве, причем не более чем примерно 0,1 атомов никеля и меди заменяют соответствующее количество атомов марганца и/или ванадия.
LM (низкомарганцовистые)-сплавы имеют следующий состав (% по массе):
- титан: 25 - 65%,
- ванадий: 10 - 52%,
причем до 40% (по массе) ванадия может быть заменено железом и до 20% (по массе) титана может быть заменено марганцем.
Газопоглощающий материал может быть использован в форме рыхлого порошка со средним размером частиц в пределах между 1 и 500 микрометрами, предпочтительно между 1 и 250 микрометрами и еще лучше между 1 и 128 микрометрами, но порошок может быть, хотя и необязательно, перед использованием отформован в виде фасонных тел (гранул, таблетки, кольца, седла и т.д.). Формование может быть осуществлено путем прессования или спекания, причем спекание в свою очередь может быть осуществлено путем простого нагрева или путем использования как нагрева, так и присутствия второго порошка, как описано, например, в публикации патента Великобритании N 2077487, для того, чтобы достичь удовлетворительного уровня пористости. Средний размер упомянутых тел обычно равен несколькими миллиметрам (0,5 - 5 мм).
Находящаяся в контакте с потоком водорода поверхность устройства, содержащего указанные сплавы, адсорбирующие примеси, должна быть весьма тщательно отполирована, чтобы она была ровной и гладкой для максимального уменьшения загрязнения. Требуемая степень гладкости упомянутой поверхности может быть выражена через шероховатость поверхности внутренней стенки, которая должна находиться в контакте с водородом, причем в соответствии с предпочтительным вариантом осуществления настоящего изобретения упомянутая шероховатость должна быть равна или меньше 0,50, а предпочтительно 0,25 мкм при выражении через среднюю высоту (Ra) средней линии. Хотя такие значения не являются строго нормируемыми, их рекомендуют в качестве надежного условия безопасности.
На фиг. 1 показан очиститель 100 для удаления примесей из содержащего их потока водорода, содержащий впуск 102 для газа, сообщающийся посредством трубопроводов 104, 104' с камерами 106, 106' предварительной очистки. Клапаны 108, 108' могут быть поочередно открыты или закрыты для обеспечения возможности прохождения содержащего примеси газа через первую или вторую камеры 106, 106' предварительной очистки, которые содержат слой зернистого материала 110 на основе никеля на носителе, обеспечивающий удаление при относительно низкой температуре более легко удаляемых примесей (COx и т.д.). Камеры 106, 106' могут, кроме того, содержать природное или синтетическое молекулярное сито III, способствующее удалению диоксида углерода, или же, в соответствии с другим вариантом, может быть предусмотрено отдельное молекулярное сито. Камеры 106, 106' могут также удалять влагу до следовых уровней, но не удаляют азот и метан.
Таким образом, можно получить частично очищенный водород, содержащий только второй класс примесей, в основном состоящий из азота и метана. Частично очищенный газ, оставив камеры 106, 106' предварительной очистки, поступает в камеру 112 окончательной очистки, где поддерживают намного более высокую температуру, и которая сообщается с камерами 106, 106' посредством трубопроводов 114, 114'. Посредством клапанов 116, 116' управляют потоком частично очищенного газа из той или другой камеры 106, 106' предварительной очистки, что обеспечивает возможность осуществления регенерации никеля в одной камере в то время, когда другая камера работает. В упомянутой камере 112 окончательной очистки частично очищенный водород входит в контакт со слоем неиспаряющегося газопоглощающего материала 118.
Настоящее изобретение может быть лучше понято при рассмотрении приведенных ниже примеров, в которых все части и проценты взяты по объему, если не указано иное. Эти примеры даны только лишь для иллюстративных целей и ни в коем случае не ограничивают существа и объема настоящего изобретения.
Пример 1
Потоку водорода, содержащего 5 частей на миллион (5000 частей на миллиард) по объему метана, а также следы азота и COx, позволяли течь с расходом 100 нормальных см3/минуту при давлении 4 бар и при комнатной температуре (ниже 40oC) через первую предварительную камеру (106), содержащую два слоя сорбирующих материалов: выше по ходу потока - слой (111), состоящий из молекулярного сита (синтетического цеолита), и ниже по потоку - другой слой (110), содержащий приблизительно 20 г материала, содержащего 58% (по массе) никеля (в основном в форме оксида никеля), нанесенного на кремнеземный (диоксид кремния) носитель, имеющий площадь поверхности немного более 100 м2/г и продаваемый ф. "Энгельгард компани" под маркой "Ni 0104T". По крайней мере 5% (по массе) упомянутого никеля было в восстановленном состоянии.
На выходе из предварительной камеры невозможно было найти никаких следов COx. Потоку газа давали затем возможность течь через вторую (окончательную) камеру, загруженную 40 г неиспаряющегося газопоглощающего сплава Ti2Ni в форме рыхлого порошка со средним размером частиц 1 - 150 микрометров, состоящего из (% по массе) 62% Ti и 36% Ni. Температуру газопоглощающего сплава поддерживали на уровне 550oC на протяжении всего испытания.
На выходе из второй камеры измеряли уровень остаточной концентрации CH4 посредством газового хроматографа VALCO, работающего с детектором ионизации метастабильного гелия, имеющим предел чувствительности 5 млрд-1 (частей на миллиард) по метану.
Сначала свежий газопоглотительный сплав полностью адсорбировал весь метан, и никаких следов остаточного метана невозможно было обнаружить на выходе из второй камеры, а затем газопоглотитель начинал заметно насыщаться, и испытание было прекращено, когда концентрация остаточного метана достигла уровня 50 млрд-1. По затраченному времени было вычислено, что адсорбировано общее количество метана более чем 1,36 тор • литр/г. Эта величина представлена в таблице как "сорбционная емкость".
Примеры 2 и 3
Был повторен пример 1 с заменой указанного газопоглощающего сплава двумя другими разными видами газопоглощающих сплавов в соответствии с настоящим изобретением, а точнее двумя газопоглощающими сплавами, имеющими следующий состав (% по массе):
- для примера 2:
56,7% Ti; 30,2% V; 6,6% Fe; 6,5% Mn (LM-сплав);
- для примера 3:
30,1% Ti; 14,4% V; 10,5% Fe; 44,9% Mn (HM-сплав).
Данные и результаты представлены в таблице.

Claims (18)

1. Способ удаления газообразных примесей из потока водорода, содержащего более легко удаляемые и более трудно удаляемые примеси, отличающийся тем, что он включает следующие стадии: (А) поток водорода сначала вводят в контакт при 5 - 50oС с одним или более слоями зернистого материала, содержащего никель и/или соединения никеля, причем по крайней мере 1% по массе общего количества никеля присутствует в восстановленной форме до тех пор, пока не будут по существу полностью удалены легко удаляемые примеси, (В) поступающий со стадии А поток, по существу свободный от более легко удаляемых примесей, но все еще содержащий более трудно удаляемые примеси, вводят в контакт с одним или более слоями неиспаряющегося газопоглощающего материала при более высокой температуре.
2. Способ по п.1, отличающийся тем, что более легко удаляемые примеси содержат COx, а более трудно удаляемые примеси содержат N2 и CH4.
3. Способ по п.1, отличающийся тем, что по крайней мере, 5% общего количества никеля присутствует в восстановленной форме.
4. Способ по п.1, отличающийся тем, что давление потока водорода составляет от 1 до 20 бар, а температура стадии В составляет от 400 до 600oС, предпочтительно от 500 до 600oС.
5. Способ по п.1, отличающийся тем, что никель и/или соединения никеля наносят на носитель, по существу состоящий из силикалита, титан-силикалита, ксерогеля или диоксида кремния, имеющего полезную площадь поверхности, равную или более 100 м2/г, предпочтительно 100 - 200 м2/г.
6. Способ по п.1, отличающийся тем, что за никельсодержащим слоем следует второй сорбционный слой, состоящий из одного или нескольких природных или синтетических молекулярных сит, в частности, из природных или синтетических цеолитов, силикалитов или титан-силикалитов.
7. Способ по п.1, отличающийся тем, что никельсодержащему слою предшествует второй сорбционный слой, состоящий из одного или нескольких природных или синтетических молекулярных сит, в частности из природных или синтетических цеолитов, силикалитов или титан-силикалитов.
8. Способ по п.1, отличающийся тем, что газопоглощающий материал помещают в камеру с гладко и ровно отполированными внутренними стенками, причем шероховатость внутренних стенок, выраженная через среднюю высоту Ra средней линии, равна или ниже 0,50, предпочтительно 0,25 мкм.
9. Способ по п. 1, отличающийся тем, что объемная скорость водорода составляет от 0,5 до 50 нсм3/мин на 1 г газопоглощающего материала, а количество трудноудаляемого метана составляет до 5 ч. на 1 млн.
10. Способ по п.1. отличающийся тем, что газопоглощающий материал используют в виде рыхлого порошка, имеющего средний размер частиц в пределах от 1 до 500, предпочтительно от 1 до 250 мкм.
11. Способ по п.1, отличающийся тем, что газопоглощающий материал используют в виде формованного тела, в частности гранул, предпочтительно имеющих средний размер от 0.5 до 5 мм.
12. Способ по п.1, отличающийся тем, что газопоглощающий материал выбирают из сплавов Ti - Ni или Zr - Ni и предпочтительно сплавов, содержащих от 50 до 80 мас.% титана или циркония, остальное - никель, причем до 50 мас.% никеля может быть заменено железом, и/или марганцем, и/или технецием, и/или рением; высокомарганцовистых сплавов Ti - V, низкомарганцовистых сплавов Ti - V.
13. Способ по п.12, отличающийся тем, что высокомарганцовистые сплавы имеют следующий состав, мас%:
Титан - 25 - 30,9
Ванадий - 10 - 42
Марганец - 27,1 - 65,1
причем на атом титана присутствует от 2 до 2,2 других атомов.
14. Способ по п.13, отличающийся тем, что в высокомарганцовистых сплавах примерно до 40% атомов ванадия заменяют атомами железа и до 10% атомов ванадия - атомами алюминия, при этом общее количество атомов железа и алюминия не должно заменять более чем 40% атомов ванадия.
15. Способ по п.14, отличающийся тем, что в состав высокомарганцовистых сплавов вносят следующие изменения: примерно до 20% атомов титана заменяют Ca, Y, La, миш-металлом или их смесями, до 0,2 атомов Cr на атом титана заменяют соответствующее количество атомов марганца и/или атомов ванадия, в сплав вводят до 0,1 атомов Ni и/или 0,05 атомов Cu на атом титана, причем не более чем примерно 0,1 атомов никеля и меди заменяют соответствующее количество атомов марганца и/или атомов ванадия.
16. Способ по п. 12, отличающийся тем, что низкомарганцовистые Ti - V сплавы имеют следующий состав мас.%: титан 25 - 65, ванадий 10 - 52, причем до 40 мас.% ванадия может быть заменено железом и до 20 мас.% титана - марганцем.
17. Устройство для удаления газообразных примесей из потока водорода, содержащего более легко удаляемые и более трудно удаляемые примеси, отличающееся тем, что оно содержит впуск для потока водорода, сообщающийся посредством трубопроводов с камерами предварительной очистки, клапаны, выполненные с возможностью их поочередного открытия или закрытия для обеспечения возможности прохождения содержащего примеси водорода через первую или вторую камеры предварительной очистки, которые содержат слой зернистого материала на основе никеля на носителе, камеру окончательной очистки, сообщающуюся с камерами предварительной очистки посредством трубопроводов, и клапаны для управления потоком частично очищенного водорода из той или другой камеры предварительной очистки, что обеспечивает возможность осуществления регенерации никеля в одной из камер в то время, когда другая камера работает, причем камера окончательной очистки содержит слой неиспаряющегося газопоглощающего материала.
18. Устройство по п.17, отличающееся тем, что газопоглощающий материал выбран из сплавов Ti - Ni или Zr - Ni, предпочтительно сплавов, содержащих от 50 до 80% по массе титана или циркония, остальное - никель, причем до 50% по массе никеля может быть заменено железом, и/или марганцем, и/или технецием, и/или рением; высокомарганцовистых сплавов Ti - V и низкомарганцовистых сплавов Ti - V.
RU95106479A 1993-04-29 1993-04-24 Способ удаления газообразных примесей из потока водорода и устройство для его осуществления RU2123971C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI93A000851 1993-04-29
ITMI930851A IT1270876B (it) 1993-04-29 1993-04-29 Processo perfezionato per la rimozione di impurezze gassose da una corrente di idrogeno

Publications (2)

Publication Number Publication Date
RU95106479A RU95106479A (ru) 1997-01-10
RU2123971C1 true RU2123971C1 (ru) 1998-12-27

Family

ID=11365943

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95106479A RU2123971C1 (ru) 1993-04-29 1993-04-24 Способ удаления газообразных примесей из потока водорода и устройство для его осуществления

Country Status (10)

Country Link
US (1) US5492682A (ru)
EP (1) EP0696257B1 (ru)
JP (1) JP3094235B2 (ru)
KR (1) KR0180946B1 (ru)
CN (1) CN1032055C (ru)
CA (1) CA2137791A1 (ru)
DE (1) DE69314670T2 (ru)
IT (1) IT1270876B (ru)
RU (1) RU2123971C1 (ru)
WO (1) WO1994025395A1 (ru)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1270875B (it) * 1993-04-29 1997-05-13 Getters Spa Procedimento di purificazione dell'idrogeno e purificatore relativo
US6436352B1 (en) 1993-04-29 2002-08-20 Saes Getter, S.P.A. Hydrogen purification
IT1269978B (it) * 1994-07-01 1997-04-16 Getters Spa Metodo per la creazione ed il mantenimento di un'atmosfera controllata in un dispositivo ad emissione di campo tramite l'uso di un materiale getter
IT1277458B1 (it) * 1995-08-07 1997-11-10 Getters Spa Processo per la rimozione di ossigeno da ammoniaca a temperatura ambiente
US6776970B1 (en) 1995-08-07 2004-08-17 Giorgio Vergani Getter materials for deoxygenating ammonia/oxygen gas mixtures at low temperature
AU7523496A (en) * 1995-10-20 1997-05-07 Ultrapure Systems, Inc. Hydrogen purification using metal hydride getter material
US6325972B1 (en) * 1998-12-30 2001-12-04 Ethicon, Inc. Apparatus and process for concentrating a liquid sterilant and sterilizing articles therewith
US5955044A (en) * 1997-09-30 1999-09-21 Johnson Matthey Inc. Method and apparatus for making ultra-pure hydrogen
US6641625B1 (en) 1999-05-03 2003-11-04 Nuvera Fuel Cells, Inc. Integrated hydrocarbon reforming system and controls
EP1072351A1 (en) * 1999-07-08 2001-01-31 Pierre Diserens Method for laser cutting
US6521192B1 (en) 1999-08-06 2003-02-18 Saes Pure Gas, Inc. Rejuvenable ambient temperature purifier
KR100379625B1 (ko) * 2000-08-05 2003-04-10 주식회사 세종소재 수소 정제용 게터
ITMI20010018A1 (it) * 2001-01-08 2002-07-08 Getters Spa Metodo per la misura della concentrazione di impurezze in elio mediante spettroscopia di mobilita' ionica
AU2003243601A1 (en) * 2002-06-13 2003-12-31 Nuvera Fuel Cells Inc. Preferential oxidation reactor temperature regulation
US6931711B2 (en) * 2002-09-03 2005-08-23 Honeywell International Inc. Methods and apparatus for removing gases from enclosures
KR100825080B1 (ko) * 2008-02-26 2008-04-25 하양호 충전물의 비중이 일정한 게터
US20100037655A1 (en) * 2008-08-13 2010-02-18 Air Liquide Process And Construction Inc. Hydrogen Recovery From A Mixture Of Hydrogen and Hydrocarbons At Low Pressure And Of Low Hydrogen Content
RU2415075C1 (ru) * 2009-08-27 2011-03-27 Федеральное государственное унитарное предприятие "Государственный ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (ФГУП ГНИИХТЭОС) Способ глубокой очистки водорода
TWI617344B (zh) 2012-02-10 2018-03-11 恩特葛瑞斯股份有限公司 氣體純化器
ITMI20120676A1 (it) * 2012-04-24 2013-10-25 Getters Spa Metodo e dispositivo rigenerabile di purificazione a temperatura ambiente per monossido di diazoto
CN112301264A (zh) * 2020-10-16 2021-02-02 北京赛博泰科科技有限公司 一种非蒸散型低温激活吸气合金及其制备方法
CN115786768B (zh) * 2022-11-17 2024-01-12 北京锦正茂科技有限公司 一种超低温真空杜瓦结构的气体吸附材料及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2533138A (en) * 1945-05-18 1950-12-05 Amos S Newton Purification of hydrogen
CA1038169A (en) * 1975-06-25 1978-09-12 Inco Limited Carbonylation process
US4075312A (en) * 1977-06-06 1978-02-21 The United States Of America As Represented By The United States Department Of Energy Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope
DE3210381C1 (de) * 1982-03-20 1983-05-19 Daimler-Benz Ag, 7000 Stuttgart Legierung zum Speichern von Wasserstoff
US4769225A (en) * 1983-12-08 1988-09-06 The United States Of America As Represented By The United States Department Of Energy System for exchange of hydrogen between liquid and solid phases
JPS623008A (ja) * 1985-06-28 1987-01-09 大陽酸素株式会社 アルゴンの超精製装置、並びに精製方法
US4713224A (en) * 1986-03-31 1987-12-15 The Boc Group, Inc. One-step process for purifying an inert gas
SU1527169A1 (ru) * 1987-05-22 1989-12-07 Государственный проектный и научно-исследовательский институт "Гипроникель" Способ получени карбонила никел
SU1650595A1 (ru) * 1989-01-13 1991-05-23 Московский институт стали и сплавов Способ синтеза карбонила никел

Also Published As

Publication number Publication date
IT1270876B (it) 1997-05-13
RU95106479A (ru) 1997-01-10
KR0180946B1 (ko) 1999-03-20
JP3094235B2 (ja) 2000-10-03
KR950704185A (ko) 1995-11-17
DE69314670D1 (de) 1997-11-20
ITMI930851A1 (it) 1994-10-29
CN1094378A (zh) 1994-11-02
US5492682A (en) 1996-02-20
EP0696257A1 (en) 1996-02-14
EP0696257B1 (en) 1997-10-15
CA2137791A1 (en) 1994-11-10
JPH08508968A (ja) 1996-09-24
ITMI930851A0 (it) 1993-04-29
CN1032055C (zh) 1996-06-19
WO1994025395A1 (en) 1994-11-10
DE69314670T2 (de) 1998-02-12

Similar Documents

Publication Publication Date Title
RU2123971C1 (ru) Способ удаления газообразных примесей из потока водорода и устройство для его осуществления
RU2122518C1 (ru) Способ удаления газообразных примесей из потока водорода и устройство для его осуществления
KR100858195B1 (ko) 질소 제조 방법 및 장치
KR102043480B1 (ko) 가스 정제기
US6824590B2 (en) Use of lithium-containing fau in air separation processes including water and/or carbon dioxide removal
JPH07330313A (ja) 高純度液体窒素の製造方法及び装置
EP0484301B1 (en) Process for the purification of ammonia
KR100203021B1 (ko) 불소-포함 가스의 정화방법
CA2186409A1 (en) Pressure swing adsorption air prepurifier
US7465692B1 (en) Reactive media, methods of use and assemblies for purifying
EP0493347B1 (en) Process for the purification of methane