RU2120934C1 - Способ получения стирола - Google Patents

Способ получения стирола Download PDF

Info

Publication number
RU2120934C1
RU2120934C1 RU96116685A RU96116685A RU2120934C1 RU 2120934 C1 RU2120934 C1 RU 2120934C1 RU 96116685 A RU96116685 A RU 96116685A RU 96116685 A RU96116685 A RU 96116685A RU 2120934 C1 RU2120934 C1 RU 2120934C1
Authority
RU
Russia
Prior art keywords
styrene
methylphenylcarbinol
hydrogen
water vapor
fraction
Prior art date
Application number
RU96116685A
Other languages
English (en)
Other versions
RU96116685A (ru
Inventor
А.А. Петухов
В.А. Комаров
Г.З. Сахапов
И.М. Васильев
Л.В. Кузьмина
Г.Н. Мельников
Original Assignee
Акционерное общество "Нижнекамскнефтехим"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Нижнекамскнефтехим" filed Critical Акционерное общество "Нижнекамскнефтехим"
Priority to RU96116685A priority Critical patent/RU2120934C1/ru
Application granted granted Critical
Publication of RU2120934C1 publication Critical patent/RU2120934C1/ru
Publication of RU96116685A publication Critical patent/RU96116685A/ru

Links

Images

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения стирола дегидрацией метилфенилкарбинольной фракции, содержащей до 3 мас.% тяжелых остатков, образующихся в процессе производства окиси пропилена и стирола, в присутствии водяного пара на катализаторе, содержащем окись алюминия, причем процесс проводят путем добавления в исходную метилфенилкарбинольную фракцию водяного пара и водородсодержащего газа в массовом соотношении метилфенилкарбинол : водяной пар : водород, равном 1: 0,03 - 0,6 : 0,0004 - 0,001, и нагрева в одном потоке до температуры реакции перед подачей в каталитическую зону. Указанный способ позволяет снизить расход водяного пара более чем в 2 раза. 1 ил., 6 табл.

Description

Изобретение относится к нефтехимической промышленности и может быть использовано в процессе совместного получения пропиленоксида и стирола.
Известен способ получения стирола дегидратацией фенилэтилового спирта в паровой фазе при температуре 200oC на цеолитсодержащем катализаторе и весовом разбавлении фенилэтиловый спирт : азот, равном 1:2,2 (Заявка Японии 61-72727, МКИ C 07 C 15/46, C 07 C 1/24, опубл. 14.04.86).
Недостатком этого способа является невысокий выход стирола и большое разбавление сырья азотом.
Известен способ получения стирола дегидратацией метилфенилкарбинола в паровой фазе при температуре 270 - 350oC в присутствии окисного катализатора дегидратации, с введением в зону реакции от 0,1 до 4 молей пара на 1 моль сырья дегидратации. Причем сырье может содержать не более 60 мас.% ацетофенона. (Патент США 3658928, НКИ 585-437, МКИ C 07 C 15/10, опубл. 25.04.1972). Недостатком этого способа являются ограничения по сырью и недостаточно высокий выход стирола.
Наиболее близким по своей технической сути является способ получения стирола дегидратацией метилфенилкарбинола на катализаторе окись алюминия (ав. св. СССР 1309518, МКИ C 07 C 15/46 1995) в двухступенчатом адиабатическом реакторе с промежуточным подогревом контактного газа и промежуточным выделением смолы из фракции метилфенилкарбинола, подаваемого на дегидратацию, в котором с целью увеличения выхода стирола выделенную смолу в количестве 0,6-3 мас. % вводят во фракцию метилфенилкарбинола, подаваемую на дегидратацию. Недостатком этого метода является малая длительность работы катализатора из-за снижения его активности в результате засмоления и отложения на нем солей натрия.
Сущностью заявляемого изобретения является получение стирола дегидратацией метилфенилкарбинольной фракции, содержащей до 3 мас.% тяжелых, на катализаторе, содержащем окись алюминия. В сырье добавляют водяной пар и водородсодержащий газ в соотношении метилфенилкарбинол : водяной пар : водород, равном 1:0,03-0,6:0,0004-0,001 по весу, и нагревают в одном потоке до температуры реакции перед подачей в каталитическую зону.
Схема описываемого способа получения стирола приведена на фиг. 1.
Фракция метилфенилкарбинола, (поток 1) смешивается с водяным паром (поток 2) и водородсодержащим газом (поток 3), затем общий поток нагревают в зоне нагрева 4 до температуры реакции и (поток 5) подают в реактор 6. В реакторе 6 на катализаторе, содержащем γ- окись алюминия, одновременно протекают реакции дегидратации, гидродеалкилирования, гидрирования. Катализат из реактора 6 по линии 7 поступает на конденсатор 8, из которого жидкие продукты, содержащие стирол, поступают по линии 9 на разделение ректификацией, а несконденсировавшийся газ, содержащий непрореагировавший водород и метан, по линии 10 рециркулируют в зону нагрева 4. Избыток несконденсированного газа из линии 10 по линии 11 отводится в топливную сеть или используется в зоне нагрева 4. В качестве водородсодержащего газа используют метановодородную фракцию, содержащую 90% об. водорода.
Отличительными признаками изобретения является добавление в сырье, содержащее до 3% масс. тяжелых, водяного пара и водородсодержащего газа в соотношении метилфенилкарбинол : водяной пар : водород, равном 1:0,03-0,6: 0,0004-0,001, и нагрев в одном потоке до температуры реакции перед подачей в каталитическую зону. При сопоставлении существенных признаков изобретения с таковыми прототипа можно сделать вывод о соответствии заявляемого технического решения критерию "новизна". Добавление в метилфенилкарбинол тяжелых (образующихся на стадиях окисления этилбензола до гидропероксида; эпоксидирования пропилена гидроперекисью этилбензола; дегидратации метилфенилкарбинола в стирол; и на стадиях разделения продуктов эпоксидирования и разделения конденсата после дегидратации), которые шли ранее в отходы, или использование недоочищенной (полученной менее четкой ректификацией) метилфенилкарбинольной фракции, нагрев ее в определенной пропорции в смеси с водяным паром и водородом до температуры реакции перед подачей в каталитическую зону позволяет получить дополнительное количество стирола за счет разложения и селективного гидрирования этих отходов. Наибольший эффект в процессе достигается при заявляемом соотношении метилфенилкарбинол : водяной пар : водород. Введение новых отличительных признаков в сочетании с достигаемым эффектом, не описанным ни в одном аналогичном способе, указывает на "изобретательский уровень" предложенного способа. Заявленное изобретение соответствует критерию промышленная применимость", так как оно осуществимо в промышленности, например в промышленном процессе совместного получения окиси пропилена и стирола.
Заявляемый способ иллюстрируется следующими примерами:
Пример 1 (сравнительный). Дегидратацию метилфенилкарбинола (МФК) проводят известным способом на катализаторе γ-окиси алюминия. Объемная скорость подачи по МФК 0,6 ч-1. Температура в реакторе 300oC. Разбавление МФК : водяной пар 1:1,475 по весу. В реактор загружено 1800 мл катализатора. Расход фракции метилфенилкарбинола, содержащей МФК, выдерживался 1,5 кг/ч и водяного пара 1,59 кг/ч.
Состав сырья и катализата приведены в табл. 1.
Конверсия метилфенилкарбинола:
K = (1270,95-98,54)•100/1270,95=92,25%
Выход стирола на пропущенный МФК составил:
K1 = (958,36-0,30) • 122,17 • 100/1270,95 • 104,15 = 88,42% мол.
Выход стирола на разложенный МФК составил:
K2=(958,36-0,30)•122,17•100/(1270,95 98,54)•104,15 = 95,85% мол.
Расход водяного пара составил:
Pп=1590/(958,36-0,30)=1,67 г/г стирола
Пример 2. Дегидратацию метилфенилкарбинола проводят по предлагаемому способу на катализаторе γ-окиси алюминия. Фракцию метилфенилкарбинола смешивают с водяным паром и метановодородной фракцией в соотношении метилфенилкарбинол : водяной пар : водород, равным 1:0,60:0,004 по весу, нагревают в одном потоке в зоне нагрева 4 до температуры 300oC и подают в каталитическую зону - реактор 6.
В реактор загружено 1800 мл катализатора. Расход фракции метилфенилкарбинола, содержащей МФК, выдерживался 1,5 кг/ч, водяного пара 0,9 кг/ч и метановодородной фракции, содержание водорода в которой составляло 90% об. - 74,67 л/ч.
Состав сырья и катализата приведены в таблице 2.
конверсия метилфенилкарбинола:
K = (1270,95-77,47)•100/1270,95=93,90%
Выход стирола на пропущенный МФК составил:
K1 = (987,17-0,30) • 122,17 • 100/1270,95 • 104,15=91,08% мол.
Выход стирола на разложенный МФК составил:
K2= (987,17-0,30) • 122,17 • 100/(1270,95-77,47) • 104,15=96,99% мол.
Расход водяного пара составил:
Pп=900/(987,17-0,30)=0,91 г/г стирола
Пример 3. Дегидратацию метилфенилкарбинола проводят по предлагаемому способу на катализаторе цеолит NaX. Фракцию метилфенилкарбинола смешивают с водяным паром и метановодородной фракцией в соотношении метилфенилкарбинол : водяной пар : водород, равным 1:0,03:0,004 по весу, нагревают в одном потоке в зоне нагрева 4 до температуры 250oC и подают в каталитическую зону - реактор 6. В реактор загружено 1120 мл катализатора. Объемная скорость по МФК 0,6 ч-1. Расход фракции метилфенилкарбинола 2,6 кг/ч, водяного пара 0,078 кг/ч и метановодородной фракции, содержание водорода в которой составляло 90% об. - 129,42 л/ч.
Состав сырья и катализата приведены в табл. 3.
Конверсия метилфенилкарбинола:
K = (2202,72-217,61)•100/2202,72=90,12%
Выход стирола на пропущенный МФК составил:
K1 = (1664,74-0,52) • 122,17 • 100/2202,72 • 104,15 = 88,62% мол.
Выход стирола на разложенный МФК составил:
K2=(1664,74-0,52)•122,17•100/(2202,72-217,61)• 104,15=98,34% мол.
Расход водяного пара составил:
Pп=78/(1664,74-0,52)=0,047 г/г стирола
Пример 4. Дегидратацию метилфенилкарбинола проводят по предлагаемому способу на катализаторе γ-окиси алюминия. Фракцию метилфенилкарбинола смешивают с водяным паром и метановодородной фракцией в соотношении метилфенилкарбинол : водяной пар : водород, равным 1:0,60:0,0004 по весу, нагревают в одном потоке в зоне нагрева 4 до температуры 350oC и подают в каталитическую зону - реактор 6. В реактор загружено 1300 мл катализатора. Объемная скорость по МФК - 0,6 ч-1. Расход фракции метилфенилкарбинола 3,0 кг/ч, водяного пара 1,8 кг/ч и метановодородной фракции, содержание водорода в которой составляло 90% об. - 14,93 л/ч.
Состав сырья и катализата приведены в табл. 4.
Конверсия метилфенилкарбинола:
K=(2665,68-17,22)•100/2665,68=99,35%
Выход стирола на пропущенный МФК составил:
K1 = (2248,84 - 0,6) • 122,17 • 100/2665,68 • 104,15 = 98,93% мол.
Выход стирола на разложенный МФК составил:
K2 = (2248,84 - 0,6) • 122,17 • 100/(2665,68 - 17,22) • 104,15=99,57% мол.
Расход водяного пара составил:
Pп=90/(2248,84-0,6)=0,04 г/г стирола
Пример 5. Дегидратацию метилфенилкарбинола проводят по предлагаемому способу на катализаторе γ-окиси алюминия. Фракцию метилфенилкарбинола смешивают с водяным паром и метановодородной фракцией в соотношении метилфенилкарбинол : водяной пар : водород, равным 1:0,03:0,001 по весу, нагревают в одном потоке в зоне нагрева 4 до температуры 300oC и подают в каталитическую зону - реактор 6. В реактор загружено 1300 мл катализатора. Объемная скорость по МФК 0,6 ч-1. Расход фракции метилфенилкарбинола 3,0 кг/ч, водяного пара 0,09 кг/ч и метановодородной фракции, содержание водорода в которой составляло 90% об. - 37,33 л/ч.
Состав сырья и катализата приведены в таблице 5.
Конверсия метилфенилкарбинола:
K=(2665,68-5,87)•100/2665,68=99,78%
Выход стирола на пропущенный МФК составил:
K1 = (2318,36 - 0,6) • 122,17 • 100/2665,68 • 104,15 = 101,99% мол.
Выход стирола на разложенный МФК составил:
K2=(2318,36-0,6)•122,17•100/(2665,68-5,87)• 104,15=102,21% мол.
Расход водяного пара составил:
Pп=90/(2318,36-0,6)=0,039 г/г стирола
Так как идет дополнительное образование стирола вследствие разложения тяжелых компонентов, поэтому значение K1 и K2 больше 100%.
Пример 6. Дегидратацию МФК проводят по предлагаемому способу на катализаторе γ-окиси алюминия. Фракцию МФК смешивают с водяным паром и метановодородной фракцией в соотношении 1 : 0,15 : 0,0004 по весу, нагревают в одном потоке в зоне нагрева 4 до температуры 300oC и подают в каталитическую зону - реактор 6. В реактор загружено 1200 мл катализатора. Объемная скорость по МФК 0,6 час.-1. Расход фракции МФК выдерживали 2,6 кг/ч, водяного пара 0,39 кг/ч и метановодородной фракции, содержащей 90% об. водорода, - 12,94 л/час.
Состав сырья и катализата приведены в табл. 6.
Конверсия метилфенилкарбинола:
K=(2202,72-174,6)•100/2202,72=92,07%
Выход стирола на пропущенный МФК составил:
K1 = (1929,59 - 0,52) • 122,17 • 100/2202,72 • 104,15 = 102,73% мол.
Выход стирола на разложенный МФК составил:
K2=(1929,59-0,52)•122,17•100/(2202,72-174,6)• 104,15=111,57% мол.
Расход водяного пара составил:
Pп=390/(1929,59-0,52)=0,202 г/г стирола
Качество стирола-ректификата, получаемого по предлагаемому способу получения стирола дегидратацией метилфенилкарбинола соответствует ГОСТ 10003-90 норма для марки СДМФК высший сорт.
Использование предлагаемого способа получения стирола дегидратацией метилфенилкарбинола позволяет снизить расход водяного пара более чем в 2 раза, увеличить выработку стирола на 3% и снизить расходный коэффициент по метилфенилкарбинолу на 3%. За счет параллельного протекания реакций дегидратации, гидродеалкилирования, гидрирования и разложения тяжелых выход стирола на разложенный метилфенилкарбинол превышает 100%. Такого результата позволяет добиться совокупность всех признаков.

Claims (1)

  1. Способ получения стирола дегидратацией метилфенилкарбинольной фракции, содержащей до 3 мас.% тяжелых, в присутствии водяного пара на катализаторе, содержащем окись алюминия, отличающийся тем, что используют сырье, в которое добавляют водяной пар и водородсодержащий газ в соотношении метилфенилкарбинол : водяной пар : водород, равном 1 : 0,3 oC 0,6 : 0,0004 oC 0,001 по массе, и нагревают в одном потоке до температуры реакции перед подачей в каталитическую зону.
RU96116685A 1996-08-19 1996-08-19 Способ получения стирола RU2120934C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96116685A RU2120934C1 (ru) 1996-08-19 1996-08-19 Способ получения стирола

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96116685A RU2120934C1 (ru) 1996-08-19 1996-08-19 Способ получения стирола

Publications (2)

Publication Number Publication Date
RU2120934C1 true RU2120934C1 (ru) 1998-10-27
RU96116685A RU96116685A (ru) 1998-12-10

Family

ID=20184594

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96116685A RU2120934C1 (ru) 1996-08-19 1996-08-19 Способ получения стирола

Country Status (1)

Country Link
RU (1) RU2120934C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721772C1 (ru) * 2019-12-02 2020-05-22 Общество с ограниченной ответственностью "Научно-производственное объединение ЕВРОХИМ" Способ получения стирола

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721772C1 (ru) * 2019-12-02 2020-05-22 Общество с ограниченной ответственностью "Научно-производственное объединение ЕВРОХИМ" Способ получения стирола

Similar Documents

Publication Publication Date Title
US4433188A (en) Preparation of olefins from methanol and/or dimethyl ether
CN101448767B (zh) 制备烯烃的方法
EP0175399B1 (fr) Procédé d'obtention d'éthylène à partir d'éthanol
Nguyen et al. Conversion of ethanol in aqueous solution over ZSM-5 zeolites: Study of the reaction network
EP0109059A1 (en) Process for converting olefins having 4 to 12 carbon atoms into propylene
CZ554989A3 (en) Process for preparing phenol
MX2010008723A (es) Deshidratacion de alcoholes en silicatos cristalinos.
JPH01213248A (ja) エーテルの製造方法
CN101448764B (zh) 制备烯烃的方法
GB2040924A (en) Process for the simultaneous manufacture of pure methyl t butyl ether and a substantially isobutane-free mixture of c-hydrocarbons
EP2516359B1 (en) Process for preparing ethylbenzene
US4456776A (en) Process for the production of a lower aliphatic alcohol
CN1087654C (zh) 一种由低碳烷烃制低碳烯烃反应过程及其催化剂
US5144086A (en) Ether production
US4616098A (en) Preparation of olefins from methanol/dimethyl ether
RU2120934C1 (ru) Способ получения стирола
Martin et al. Coupled conversion of methanol and C4 hydrocarbons to lower olefins
KR890003927A (ko) C₃지방족 화합물의 촉매적 전환공정
RU2354654C2 (ru) Способ получения алкилен-оксида
KR101173529B1 (ko) 음압력하에서의 저급 올레핀 생산방법
JPH04230226A (ja) 接触的アルケニルベンゼン環化
JPS6270325A (ja) 低級オレフインの製造方法
JPH04225930A (ja) オレフィン系原料の水和によるアルコールまたはエーテルの製造方法
JPS6327332B2 (ru)
KR100290720B1 (ko) 1,1-다이아릴에탄의 제조방법