RU2108641C1 - Вертикальный мдп-транзистор интегральной схемы - Google Patents

Вертикальный мдп-транзистор интегральной схемы Download PDF

Info

Publication number
RU2108641C1
RU2108641C1 RU97102282A RU97102282A RU2108641C1 RU 2108641 C1 RU2108641 C1 RU 2108641C1 RU 97102282 A RU97102282 A RU 97102282A RU 97102282 A RU97102282 A RU 97102282A RU 2108641 C1 RU2108641 C1 RU 2108641C1
Authority
RU
Russia
Prior art keywords
region
drain
groove
conductor
gate
Prior art date
Application number
RU97102282A
Other languages
English (en)
Other versions
RU97102282A (ru
Inventor
А.Н. Сауров
Original Assignee
Научно-производственный комплекс "Технологический центр" Московского института электронной техники
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-производственный комплекс "Технологический центр" Московского института электронной техники filed Critical Научно-производственный комплекс "Технологический центр" Московского института электронной техники
Priority to RU97102282A priority Critical patent/RU2108641C1/ru
Application granted granted Critical
Publication of RU2108641C1 publication Critical patent/RU2108641C1/ru
Publication of RU97102282A publication Critical patent/RU97102282A/ru

Links

Images

Abstract

Использование: микроэлектроника, интегральные схемы большой степени интеграции. Сущность изобретения: вертикальный МДП транзистор интегральной схемы содержит полупроводниковую подложку первого типа проводимости со сформированной на ней полупроводниковой структурой, окруженной изолирующей областью и состоящей из верхней и нижней областей второго типа проводимости, являющимися соответственно областями истока и стока, и расположенной между ними подзатворной области первого типа проводимости. В структуре выполнена канавка, дно которой расположено в нижней области второго типа проводимости, на боковой поверхности канавки расположен изолированный затвор, а размеры канавки в плане меньше размеров структуры на удвоенную толщину проводника к области истока. Верхняя поверхность структуры углублена относительно изолирующей области на ведичину, не менее чем в 1,5 превышающую толщину проводника к области истока, проводник к области истока расположен на поверхности изолирующей области и совмещен с областью истока торцевой поверхностью, а проводник к области стока размещен на изолированной диэлектриком поверхности затвора и совмещен с областью стока на дне канавки. Стенки выполнены вертикальными. 2 ил.

Description

Изобретение относится к области микроэлектроники и может быть использовано для создания интегральных схем (ИС) большой степени интеграции.
Для успешного создания таких ИС необходимо уменьшать площадь, занимаемую как активными, так и пассивными компонентами, так как выход годных ИС обратно пропорционален площади ИС.
Известен вертикальный МДП транзистор ИС [1], в котором для уменьшения площади транзистора используются проводники из поликремния либо из силицидов металлов, самосовмещенные с областями стока, истока и затвора МДП транзистора. Уменьшение площади при этом достигается за счет устранения топологического запаса, компенсирующего точность совмещения проводников с контактными окнами.
Известен вертикальный МДП транзистор ИС, который использован в качестве наиболее близкого аналога [2]. Известный транзистор используется для схем большой плотности. Область затвора транзистора располагается на вертикальных стенках канавки, а проводник к области стока размещен на изолирующем затвор слое диэлектрика в канавке и совмещен с областью стока на дне канавки.
Недостатком прототипа является отсутствие третьего проводящего слоя, самосовмещенно присоединенного к области истока транзистора. Поэтому для реализации на такой структуре МДП транзистора требуется дополнительная площадь для контактного окна к этой области структуры.
Техническим результатом изобретения является увеличение плотности упаковки структуры транзистора интегральной схемы, а также увеличение быстродействия и радиационной стойкости. Технический результат изобретения достигается за счет того, что в вертикальном МДП транзисторе интегральной схемы, содержащем полупроводниковую подложку первого типа проводимости со сформированной структурой, окруженной изолирующей областью и состоящей из верхней и нижней областей второго типа проводимости, являющимися, соответственно областями истока и стока, и расположенной между ними подзатворной области первого типа проводимости, в структуре выполнена канавка с вертикальными стенками дно которой расположено в нижней области второго типа проводимости, на боковой поверхности канавки расположен изолированный затвор, а к областям истока и стока сформированы проводники, причем проводник к области стока размещен на изолированной диэлектриком поверхности затвора и совмещен с областью стока на дне канавки, размеры канавки в плане меньше наружных размеров структуры на величину равную удвоенной толщине проводника к области истока, изолирующая область сформирована на глубину превышающую суммарную толщину областей структуры, верхняя поверхность структуры углублена относительно изолирующей области на величину превышающую толщину проводника к области истока не менее чем в 1,5 раза, проводник к области истока расположен на поверхности изолирующей области и совмещен с областью истока его торцевой поверхностью.
Уменьшение площади транзисторной структуры ИС достигается тем, что во-первых, размеры контактов в плане к областям прибора равны размерам торцевых частей проводниковых слоев, во-вторых, проводящие слои присоединены к областям прибора самосовмещенно, т.е. расстояние между ними равно толщинам диэлектрических изолирующих слоев, в- третьих, проводящий слой, являющийся затвором, не имеет горизонтально расположенного участка на дне канавки.
Таким образом, размер транзистора определяется только суммарной толщиной всех изолирующих и проводящих слоев.
Разрез транзисторной структуры интегральной схемы по данному изобретению представлен на фиг.1. Вариант топологии транзистора приведен на фиг.2. В полупроводниковой структуре, окруженной изолирующей областью 1, расположены области стока 2 n-типа проводимости, истока 3 n-типа проводимости и подзатворная область 4 p -типа проводимости. В структуре выполнена канавка, дно которой расположено в области стока. Проводящий слой первого уровня 5 расположен на верхней и боковой поверхности изолирующей области 1 и присоединен к области истока торцевой частью. Диэлектрически изолированный проводящий слой второго уровня 6, являющийся затвором, частично расположен на проводящем слое первого уровня и примыкает к боковой вертикальной поверхности канавки. Слой диэлектрика 7 изолирует проводящий слой второго уровня от проводящего слоя первого уровня, стенок (являясь подзатворным диэлектриком) и дна канавки. Слой диэлектрика 9 изолирует проводящий слой треть его уровня от затвора.
Вертикальный МДП транзистор интегральной схемы выполнен в кремниевой пластине p-типа проводимости, в которой сформирована полупроводниковая структура, окруженная изолирующей областью 1. Верхняя поверхность структуры углублена относительно изолирующей области на 0,5 мкм. Проводник к области истока выполнен из поликристаллического кремния, легированного фосфором, толщиной 0,3 мкм.
Транзистор выполненный на данной структуре является транзистором с индуцированным каналом n-типа и работает следующим образом. Если к затвору не приложено напряжение, то транзистор закрыт. Если к затвору приложить достаточное положительное напряжение, то приповерхностный слой подзатворной области меняет тип проводимости, и, если между истоком и стоком имеется разность напряжений, канал будет проводить ток.
Описанная в данном изобретении транзисторная структура ИС может быть выполнена существующими технологическими методами. Канавка с вертикальными стенками может быть изготовлена методом плазмохимического травления, а изолирующие диэлектрические слои могут быть нанесены методом осаждения из газовой фазы.
Формирование структуры происходит в едином технологическом цикле с формированием трехслойной металлизации. В результате получается транзисторная структура ИС, размер которой определен суммарной толщиной всех изолирующих и проводящих слоев, что позволяет повысить плотность упаковки ИС, повысить радиационную стойкость и увеличить быстродействие.
ПРИМЕР.
Был изготовлен прибор на кремниевой подложке p-типа проводимости (концентрация примеси 1014 см-3, на которой были последовательно сформированы локальный скрытый слой n+-типа проводимости (концентрация примеси 1020 см-3, толщина 1,5 мкм) и эпитаксиальная пленка p-типа проводимости (концентрация примеси 1016 см-3, толщина 1,5 мкм).
С использованием планарной технологии была изготовлена щелевая изоляция активной области транзисторной структуры, глубина которой составила 3,5 мкм. Затем с использованием плазменного травления кремния было выполнено вертикальное углубление в меза-области на глубину 0,5 мкм. Для формирования поликремниевого контакта к области истока МОП транзистора были последовательно выполнены следующие технологические микроциклы:
а) осаждение слоя поликремния легированного мышьяком толщиной около 0,3 мкм с последующим осаждением на него слоя нитрида кремния толщиной 500
Figure 00000002
,
б) нанесение слоя фоторезиста и его плазмохимическая планаризация до вскрытия слоя нитрида кремния, фоторезист при этом остается только в углублении,
в) селективное удаление слоя нитрида кремния с планарной поверхности при маскировании слоев расположенных в канавке оставшимся фоторезистом,
г) удаление фоторезиста и окисление слоя поликремния, немаскированного слоем нитрида на толщину 0,15 мкм,
д) плазменное анизотропное селективное к оксиду кремния удаление слоя нитрида кремния до вскрытия поликремния на дне канавки,
е) анизотропное плазмохимическое травление слоя поликремния, расположенного на дне канавки с последующим вертикальным травлением монокремния на глубину 1,5 мкм селективно к слоям оксида и нитрида кремния, маскирующим поликремний,
ж) формирование разводки первого уровня МОП транзистора выполняется с помощью фотолитографии и травления слоев окисла и поликремния на планарной поверхности структуры вне области канавки,
з) создание изоляции поликремниевой разводки первого уровня, а также подзатворного диэлектрика толщиной 300
Figure 00000003
с помощью низкотемпературного окисления открытых поверхностей монополикремния, при этом формируется кольцевая n+ область истока за счет диффузии мышьяка из первого слоя поликремния выполняющего функцию торцевого контакта к области истока.
Формирование поликремниевого электрода затвора и разводки на основе этого слоя выполняется аналогично созданию контакта к истоку. За исключение того, что после формирования электрода затвора проводится анизотропное травление слоя оксида кремния до вскрытия n+ области стока в канавке без последующего травления монокремния. Затем проводится формирование разводки второго уровня МОП транзистора с помощью фотолитографии и травления слоев окисла и поликремния на планарной поверхности структуры вне области канавки.
Для формирования контакта к области стока n+ типа на дне канавки, проводится конформное осаждение слоя легированного фосфором поликремния n+ типа проводимости с толщиной большей чем половина размера узкой части канавки, которая определяется после формирования электрода затвора.
Так при выбранных толщинах проводников с изоляцией, равных t1=t2=0,45 мкм, при исходном наименьшем размере канавке в плане равном d = 2 мкм, необходимая толщина слоя поликремния третьего уровня t3= (d-2t1- 2t2/2 и составила 0,1-0,15 мкм.
После формирования разводки поликремния третьего уровня, выполняемого аналогично созданию поликремниевой разводки первого и второго уровня, было проведено формирование контактных окон к поликремниевым проводникам и алюминиевая разводка. Эффективная длина канала изготовленного вертикального МОП транзистора составила 0,7 мкм, а площадь его активной области 4 мкм2 при минимальном литографическом размере 2 мкм.

Claims (1)

  1. Вертикальный МДП-транзистор интегральной схемы, содержащий полупроводниковую подложку первого типа проводимости со сформированной структурой, окруженной изолирующей областью и состоящей из верхней и нижней областей второго типа проводимости, являющимися соответственно областями истока и стока, и расположенной между ними подзатворной области первого типа проводимости, в структуре выполнена канавка с вертикальными стенками, дно которой расположено в нижней области второго типа проводимости, на боковой поверхности канавки расположен изолированный затвор, а к областям истока и стока сформированы проводники, причем проводник к области стока размещен на изолированной диэлектриком поверхности затвора и совмещен с областью стока на дне канавки, отличающийся тем, что размеры канавка в плане меньше наружных размеров структуры на величину, равную удвоенной толщине проводника к области истока, изолирующая область сформирована на глубину, превышающую суммарную толщину областей структуры, верхняя поверхность структуры углублена относительно изолирующей области на величину, превышающую толщину проводника к области истока не менее, чем в полтора раза, проводник к области истока расположен на поверхности изолирующей области и совмещен с областью истока его торцевой поверхностью.
RU97102282A 1997-02-17 1997-02-17 Вертикальный мдп-транзистор интегральной схемы RU2108641C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97102282A RU2108641C1 (ru) 1997-02-17 1997-02-17 Вертикальный мдп-транзистор интегральной схемы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97102282A RU2108641C1 (ru) 1997-02-17 1997-02-17 Вертикальный мдп-транзистор интегральной схемы

Publications (2)

Publication Number Publication Date
RU2108641C1 true RU2108641C1 (ru) 1998-04-10
RU97102282A RU97102282A (ru) 1998-09-20

Family

ID=20189921

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97102282A RU2108641C1 (ru) 1997-02-17 1997-02-17 Вертикальный мдп-транзистор интегральной схемы

Country Status (1)

Country Link
RU (1) RU2108641C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052653A1 (fr) * 2000-12-25 2002-07-04 Lev Vasilievich Kozhitov Dispositifs semi-conducteurs non planaires munis d'une couche active close cylindrique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052653A1 (fr) * 2000-12-25 2002-07-04 Lev Vasilievich Kozhitov Dispositifs semi-conducteurs non planaires munis d'une couche active close cylindrique

Similar Documents

Publication Publication Date Title
US6097070A (en) MOSFET structure and process for low gate induced drain leakage (GILD)
KR100898265B1 (ko) 수직 교환형 게이트 트랜지스터와 커패시터가 직접화된 구조체 및 제조 방법
US4677735A (en) Method of providing buried contacts for N and P channel devices in an SOI-CMOS process using a single N+polycrystalline silicon layer
US4577392A (en) Fabrication technique for integrated circuits
KR870006676A (ko) 공유 기판위에 쌍극성 트랜지스터와 상보 mos트랜지스터를 제조하기 위한 공정
KR870006677A (ko) 공유실리콘 기판에 자기정열된 쌍극성 트랜지스터와 상보 mos-트랜지스터를 동시제조하는 공정
US5882966A (en) BiDMOS semiconductor device and method of fabricating the same
JPS6249750B2 (ru)
JP4678875B2 (ja) 低ゲート誘導ドレイン漏れ(gidl)電流を有するmosfetデバイス
US4737831A (en) Semiconductor device with self-aligned gate structure and manufacturing process thereof
KR0175442B1 (ko) 반도체장치 및 그 제조방법
US5045966A (en) Method for forming capacitor using FET process and structure formed by same
US5191397A (en) SOI semiconductor device with a wiring electrode contacts a buried conductor and an impurity region
JPH10209445A (ja) Mosfetおよびその製造方法
US4523368A (en) Semiconductor devices and manufacturing methods
KR100433509B1 (ko) 전계 효과 트랜지스터, 집적 회로, 전계 효과 트랜지스터 형성 방법, 그리고 집적 회로 형성 방법
RU2108641C1 (ru) Вертикальный мдп-транзистор интегральной схемы
KR20050042161A (ko) 수직 게이트 반도체 디바이스를 제조하는 방법
KR950034667A (ko) 반도체 소자 및 그 제조방법
KR950004842B1 (ko) 반도체장치의 제조방법
JPH05291518A (ja) 半導体装置及びその製造方法
JP2004063918A (ja) 横型mosトランジスタ
JP2519541B2 (ja) 半導体装置
KR20050033179A (ko) 쇼트키 장벽 모스 전계 효과 트랜지스터 및 그 제조방법
KR19990051079A (ko) 절연막 경사식각을 이용한 전력소자 제조방법