RU2105828C1 - Способ получения электролитического диоксида марганца - Google Patents

Способ получения электролитического диоксида марганца Download PDF

Info

Publication number
RU2105828C1
RU2105828C1 RU96112475A RU96112475A RU2105828C1 RU 2105828 C1 RU2105828 C1 RU 2105828C1 RU 96112475 A RU96112475 A RU 96112475A RU 96112475 A RU96112475 A RU 96112475A RU 2105828 C1 RU2105828 C1 RU 2105828C1
Authority
RU
Russia
Prior art keywords
solution
manganese dioxide
manganese
sulfuric acid
precipitate
Prior art date
Application number
RU96112475A
Other languages
English (en)
Other versions
RU96112475A (ru
Inventor
В.Я. Семенов
В.А. Говорин
А.В. Кашевский
В.Г. Литвиненко
В.А. Горбунов
Original Assignee
Общество с ограниченной ответственностью Научно-технический центр "Эйприл"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Научно-технический центр "Эйприл" filed Critical Общество с ограниченной ответственностью Научно-технический центр "Эйприл"
Priority to RU96112475A priority Critical patent/RU2105828C1/ru
Application granted granted Critical
Publication of RU2105828C1 publication Critical patent/RU2105828C1/ru
Publication of RU96112475A publication Critical patent/RU96112475A/ru

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Использование: изобретение относится к области неорганической химии, в частности к способам получения соединений марганца, и может быть использовано при получении электрохимически активного диоксида марганца. Сущность изобретения: способ включает растворение карбоната марганца серной кислотой, очистку его от примесей и электролитическое осаждение диоксида марганца, при этом в качестве карбоната марганца используют его химический концентрат, причем растворение концентрата серной кислотой ведут при pH 6,0 - 6,5, осадок электролитического диоксида марганца дополнительно активируют обработкой азотной кислотой. 2 з.п.ф-лы.

Description

Изобретение относится к неорганической химии, в частности к способам получения соединений марганца, и может быть использовано при получении электролитического диоксида марганца x-модификации, пригодной для элементной промышленности.
Известен способ получения двуокиси марганца из пиролюзита, включающий восстановление окисной руды твердым углеродистым восстановителем до закиси марганца при температуре 600 800oC, сернокислотное выщелачивание закиси марганца с получением сульфатного марганецсодержащего раствора, очистку раствора от металлов-примесей и его последующее электролитическое окисление с осаждением двуокиси марганца [1]
В известном способе сернокислотное выщелачивание технической закиси марганца ведут отработанным раствором электролита, содержащим 450 г/дм3 серной кислоты при pH 2,0 2,5, температуре 70 80oC и интенсивном перемешивании пульпы.
Полученный раствор сульфата марганца нейтрализуют до pH 6,0 6,5 обработкой известковым молоком. Выпавший осадок металлов-примесей Fe, Ni, Co, Cu отфильтровывают от раствора.
Раствор, содержащий 300 350 г/дм3 MnSO4 и 180 200 г/дм3 H2SO4, подвергают электролитическому окислению при температуре 25oC и плотности тока на свинцовых анодах 500 А/м2, затем отделяют от осадка и возвращают в цикл выщелачивания закиси марганца.
Недостатком известного способа является низкий выход по току (70 75%), высокий расход реагентов, а также наличие в полученном осадке x-модификации MnO2 β фазы, снижающей электрохимическую активность электролитического диоксида марганца.
Известен также способ получения электролитического диоксида марганца из родохрозита, включающий сернокислотное растворение карбонатной руды с получением сульфатного марганецсодержащего раствора, очистку раствора от примесей и его последующее электролитическое окисление с осаждением диоксида марганца на анодах [2]
В известном способе сернокислотное растворение карбонатной руды проводят при температуре 80 90oC в избытке серной кислоты, на 10% превышающем стехиометрическое. Полученный раствор гидролитически очищают от металлов-примесей, в частности от двухвалентного железа. Для этого в раствор предварительно вводят окислитель, в качестве которого используют диоксид марганца (пиролюзит), а затем добавлением гидроксида или карбоната кальция раствор нейтрализуют до pH 4 6. Выпавшие в осадок в виде гидроксидов, примеси Fe, Ca, Mg, а также сульфат кальция отделяют от раствора. Полученный раствор сульфата марганца, содержащий 75 180 г/дм3 MnSO4 и 50 100 г/дм3 H2SO4, подают на электролиз.
Электролиз проводят при температуре 88 98oC, обеспечивающей образование g MnO2 при плотности тока на титановых анодах 70 120 А/м2.
Полученный осадок диоксида марганца снимают с анодом и направляют на дальнейшую обработку, а раствор (отработанный электролит) возвращают в цикл растворения руды.
Известный способ является наиболее близким к предлагаемому и выбран в качестве прототипа.
К недостаткам прототипа относятся высокий расход реагентов из-за необходимости перевода двухвалентного железа в трехвалентное пиролюзитом и корректировки pH раствора гидроксидом или карбонатом кальция для гидролитического осаждения металлов-примесей, а также значительные энерго- и трудозатраты на охлаждение раствора для выкристаллизации сульфата кальция и его нагрев перед электролизом.
Кроме того, недостатком прототипа является высокое содержание в образующемся осадке x-модификации диоксида марганца примеси трехвалентного оксида марганца (Mn2O2), снижающей электрохимическую активность и тем самым качество готового продукта.
Задача изобретения устранение указанных недостатков, а именно снижение расхода реагентов, энерго- и трудозатрат, а также повышение качества готового продукта.
Достигается это тем, что предложен способ получения электролитического диоксида марганца, включающий растворение карбоната марганца серной кислотой с получением сульфатного марганецсодержащего раствора, его очистку от металлов-примесей и последующее электролитическое осаждение диоксида марганца, в котором в качестве карбоната марганца используют его химический концентрат, а сернокислотное растворение концентрата ведут при pH 6,0 6,5.
При этом в предпочтительном варианте выполнения изобретения осадок электролитического диоксида марганца дополнительно активируют обработкой азотной кислотой.
Причем азотнокислотную обработку осадка проводят 45 47%-ным раствором азотной кислоты при температуре 80 90oC в течение 2 3 ч.
Сущность предлагаемого способа заключается в том, что сернокислотное растворение химического концентрата карбоната марганца при pH 6,0 6,5 обеспечивает высокую до 95 99% степень растворения марганца и одновременное осаждение из сульфатного марганецсодержащего раствора металлов-примесей, а том числе примеси железа, наиболее отрицательно влияющей на показатели электрохимического окисления ионов Mn+2 до Mn+4 и на повышение его содержания в осадке электролитического диоксида марганца x-модификации MnO2.
В результате достигается снижение расхода серной кислоты и исключается необходимость использования пиролюзита для перевода ионов Fe+2 в Fe+3 и извести или карбоната кальция на нейтрализацию раствора для гидролитического осаждения металлов-примесей. Кроме того, снижаются трудоемкость процесса и энергозатраты на выкристаллизацию сульфата кальция из раствора.
В свою очередь обработка осадка электролитического диоксида марганца 45
47% -ным раствором азотной кислоты обеспечивает доокисление в осадке ионов Mn+3 до Mn+4, чем достигается повышение электрохимической активности осадка электролитического диоксида марганца, и, следовательно, качества готового продукта.
Пример 1 (по прототипу). Навеску родохрозита массой 100 г растворяли в сернокислом растворе, содержащем 165 г/дм3 H2SO4 при отношении Ж: Т=4,8:1,0, температуре 90oC и pH 2. Одновременно в пульпу, содержащую 179 г/дм3 MnSO4 и до 4,6 г/дм3 Fe, вводили 2,5 г MnO2 для перевода ионов Fe+2 в Fe+3. Затем для осаждения металлов-примесей в виде гидроксидов пульпу нейтрализовали до pH 6 введением 95 г CaCO3. Далее для осаждения сульфата кальция пульпу охлаждали до комнатной температуры. Выпавшую в осадок твердую фазу отфильтровывали от раствора.
Раствор сульфата марганца подкисляли серной кислотой до концентрации H2SO4 55 г/дм.
Полученный электролит подвергали электрохимическому окислению с осаждением диоксида марганца на анодах при температуре 90oC и плотности тока на титановых анодах 80 А/м2. Выход по току составил 88% Отработанный электролит возвращали на сернокислотное растворение родохрозита. Осадок диоксида марганца отделяли от анодов и анализировали.
Содержание в осадке электролитического диоксида марганца x-модификации MnO2 составило 90,5% Mn2O3 7,5% Расход реагентов составил, кг/т: серной кислоты 790; пиролюзита 25; известняка 950.
Пример 2 (по предлагаемому способу). Навеску химического концентрата карбоната марганца массой 100 г растворяли в сернокислом растворе, содержащем 140 г/дм3 H2SO4 при отношении Ж:Т=5:1, температуре 80oC и pH 6.
Из полученной пульпы отфильтровывали нерастворившийся остаток и выпавшие в осадок металлы-примеси Fe, Ca, Mg. Осадок промывали водой. Промывочный раствор и раствор сульфата марганца, содержащий 200 г/дм3 MnSO4, подкисляли серной кислотой до концентрации H2SO4 20 г/дм. Полученный электролит подвергали электрохимическому окислению при температуре 90oC и плотности тока на титановых анодах 100 А/м2 с осаждением диоксида марганца в виде порошка, самоомывающегося с анодов. Выход по току составил 89%
Отработанный электролит возвращали на сернокислотное растворение концентрата карбоната марганца, а осадок электролитического диоксида марганца подвергали активации азотнокислотной обработкой.
Азотнокислотную обработку осадка проводили 45%-ным раствором азотной кислоты при отношении Ж:Т=1:1, температуре 90oC в течение 2 ч. Отработанный азотнокислый раствор фильтровали и направляли в оборот на обработку новой порции осадка.
Полученный активированный осадок электролитического диоксида марганца анализировали. Содержание в активированном осадке x-модификации MnO2 составило 94,6% Mn2O3 3,4%
Расход реагентов на 1 т концентрата, кг: серной кислоты 700; азотной кислоты 10.
Экспериментально установлено, что наиболее полно реакция сернокислотного растворения химического концентрата карбоната марганца с образованием сульфатного марганецсодержащего раствора и одновременным окислением примеси двухвалентного железа до трехвалентного с осаждением его в виде гидроксида из раствора протекает при pH 6,0 6,5.
Превышение верхнего предела pH раствора снижает степень растворения марганца, что приводит к увеличению расхода концентрата и реагентов.
Уменьшение pH раствора ниже нижнего предела не обеспечивает очистку раствора сульфата марганца от металлов-примесей.
Установлено также, что обработка осадка электролитического диоксида марганца азотной кислотой концентрацией менее 45% не обеспечивает снижения содержания примеси Mn2O3 в осадке ниже 8% регламентируемых ГОСТом.
Увеличение концентрации азотной кислоты в растворе азотнокислотной обработки осадка нецелесообразно, так как это способствует увеличению расхода реагентов.
При этом уменьшение температуры азотнокислотной обработки осадка электролитического диоксида марганца увеличивает продолжительность обработки, а повышение ее температуры более 90oC приводит к повышению энергозатрат.
Таким образом, предлагаемый способ обеспечивает получение электролитического диоксида марганца с содержанием электрохимическактивной x-модификации MnO2 ≈ 95% а также снижение расхода реагентов и трудозатрат.

Claims (3)

1. Способ получения электролитического диоксида марганца, включающий растворение карбоната марганца серной кислотой с очисткой раствора от примесей, подкисление полученного раствора серной кислотой и последующее электролитическое осаждение из него диоксида марганца, отличающийся тем, что в качестве карбоната марганца используют химический концентрат карбоната марганца, а растворение концентрата серной кислотой с одновременной очисткой раствора от примесей ведут при рН 5,0 6,5.
2. Способ по п.1, отличающийся тем, что осадок электролитического диоксида марганца дополнительно активируют обработкой азотной кислотой.
3. Способ по п.2, отличающийся тем, что азотнокислотную обработку осадка проводят 45 47% -ный раствором азотной кислоты при температуре 80 90oС в течение 2 3 ч.
RU96112475A 1996-06-18 1996-06-18 Способ получения электролитического диоксида марганца RU2105828C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96112475A RU2105828C1 (ru) 1996-06-18 1996-06-18 Способ получения электролитического диоксида марганца

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96112475A RU2105828C1 (ru) 1996-06-18 1996-06-18 Способ получения электролитического диоксида марганца

Publications (2)

Publication Number Publication Date
RU2105828C1 true RU2105828C1 (ru) 1998-02-27
RU96112475A RU96112475A (ru) 1998-09-20

Family

ID=20182196

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96112475A RU2105828C1 (ru) 1996-06-18 1996-06-18 Способ получения электролитического диоксида марганца

Country Status (1)

Country Link
RU (1) RU2105828C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Позин М.Е. Технология минеральных солей. Ч. 1, Л.: Химия, 1976, с. 767 - 771. 2. Фиошин М.Я. и др. Электросинтез окислителей и восстановителей. Л.: Химия, 1981, с. 174 - 175. *

Similar Documents

Publication Publication Date Title
US5453111A (en) Method for separation of metals from waste stream
CA2634878C (en) Process for producing scorodite and recycling the post-scorodite-synthesis solution
AU2007216890B2 (en) Process for treating electrolytically precipitated copper
CA1083780A (en) Brine purification process
CN112981104A (zh) 一种处理含镉废渣并回收金属镉的方法
CA1074727A (en) Process for recovering electrolytic copper of high purity by means of reduction electrolysis
US4485073A (en) Process of producing manganese sulfate solutions
SU1447273A3 (ru) Способ получени раствора сульфата марганца
JPH10509212A (ja) 金属及び化学的価値の回収方法
CN114107697A (zh) 一种氯化镍溶液的除铅方法
RU2105828C1 (ru) Способ получения электролитического диоксида марганца
WO2018138917A1 (ja) ビスマスの精製方法
JPH06173052A (ja) クロム酸の製造方法
EP0997436B9 (en) Process for preparing usable products from an impure ferric sulfate solution
JP3294181B2 (ja) 砒酸カルシウムの製造方法
CN87103814A (zh) 电解法从镀镍废渣中精制硫酸镍
CN100378233C (zh) 一种镍电解液净化除铜方法
FI66920C (fi) Framstaellning av klorfria koboltelektrolyter
RU2075524C1 (ru) Способ переработки цинксодержащих растворов
US4061551A (en) Process for extraction of gallium from alkaline gallium-containing solutions
US4152227A (en) Method for extraction of gallium from aluminate-alkaline solutions in the production of alumina from aluminum-containing ores
US4274930A (en) Process for recovering cobalt electrolytically
CN115893507B (zh) 一种用含高镁、锰、钛杂质的绿矾渣制备高纯硫酸亚铁的方法
JP4049886B2 (ja) 高純度コバルトの製造方法
RU2172791C1 (ru) Способ получения диоксида марганца