RU2099134C1 - Способ получения фильтрующего материала для селективного отделения органической фазы от неорганической, фильтрующий материал в виде формованных изделий для селективного отделения органических веществ от неорганических - Google Patents

Способ получения фильтрующего материала для селективного отделения органической фазы от неорганической, фильтрующий материал в виде формованных изделий для селективного отделения органических веществ от неорганических Download PDF

Info

Publication number
RU2099134C1
RU2099134C1 RU94033114/25A RU94033114A RU2099134C1 RU 2099134 C1 RU2099134 C1 RU 2099134C1 RU 94033114/25 A RU94033114/25 A RU 94033114/25A RU 94033114 A RU94033114 A RU 94033114A RU 2099134 C1 RU2099134 C1 RU 2099134C1
Authority
RU
Russia
Prior art keywords
activated carbon
distilled water
hours
filter material
alumina
Prior art date
Application number
RU94033114/25A
Other languages
English (en)
Other versions
RU94033114A (ru
Inventor
Ю. Никольска Елена
Ю. Никольская Елена
Ru]
В. Мальцева Наталья
В. Мальцева Наталь
В. Лосева Елена
Б. Королева Евгения
Б. Королева Евгени
Original Assignee
МСТ Микро-Сенсор-Технологи ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by МСТ Микро-Сенсор-Технологи ГмбХ filed Critical МСТ Микро-Сенсор-Технологи ГмбХ
Publication of RU94033114A publication Critical patent/RU94033114A/ru
Application granted granted Critical
Publication of RU2099134C1 publication Critical patent/RU2099134C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/48Processes of making filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Filtering Materials (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

Использование: в сорбционной технологии. Сущность: получение фильтрующего материала из прессованных изделий из активированного угля, с помощью которых возможно избирательное разделение органической и неорганической фазы, осуществляется следующими этапами: а) смешивание до однородности частиц активированного угля размером от 1 до 100 мкм с оксидом алюминия модификации "псевдобемита" в отношении от 1:1 до 5:1; б) добавление дистиллированной воды при хорошем размешивании; в) добавление разведенной уксусной кислоты при хорошем размешивании; г) повторное добавление дистиллированной воды; д) формирование таблеток или подобных изделий в форме под давлением и е) последовательное нагревание таблеток до 1) от 80 до 100oC в течение 6-10 ч; 2) от 140 до 160oC в течение 8-10 ч; 3) от 180 до 200oC в течение 6-10 ч. 2 с. и 6.з.п.ф-лы, 2 табл.

Description

Изобретение относится к способу получения фильтрующего материала из прессованного активированного угля, к самому фильтрующему материалу, а также к его применению для избирательного отделения органических и неорганических фаз.
Из уровня техники известны фильтрующие материалы, которые позволяют удалять из различных сред как неорганические, так и органические загрязнения. В EP OA-0369171 описан состав, состоящий из активированного угля и активированного оксида алюминия (γ -Al2O3), с помощью которого из сточных вод или потоков газа можно удалять неорганические вещества, например, дихромат калия или CO2, а также органические вещества, например, метан или фенол. Для получения состава из активированного угля/активированного оксида алюминия получают смесь из активированного угля, оксида алюминия, пептизирующего средства и воды, затем эту смесь высушивают, причем оксид алюминия активируется.
В патенте [1] описан способ получения состава: активированный уголь/активированный оксид алюминия, причем активированный оксид алюминия (g-Al2O3), активированный уголь и вода перемешиваются и затем смесь нагревается. Полученный состав активированный уголь/активированный оксид алюминия абсорбирует как неорганические соединения, например, CO2, так и органические соединения, например, метан.
Наиболее близким к предложенному способу является способ получения материала для избирательного разделения органической и неорганической фазы, включающий смешивание до однородной массы частиц активного угля со средним размером частиц 0,5-500 мкм с оксидом алюминия модификации "псевдобемит" в весовом отношении от 1:1 до 18:1, добавление пептизирующего агента раствора кислоты, в том числе уксусной кислоты, добавление воды, в том числе в количестве примерно равном весу частиц активированного угля, формование изделий под давлением, в том числе и в заявленном интервале, при этом возможно разжижение водой прессуемой массы и повторное прессование. После прессования предусмотрена сушка изделий при 60-150oC в течение 1-4 ч и термообработка при 425-650oC в течение 30-120 мин [2]
В заявленном способе таблетки последовательно нагреваются до температуры 80-100oC в течение 6-10 ч, затем до 140-160oC в течение 8-10 ч и наконец до 180-200oC в течение 6-10 ч. В то время как в известном способе сначала производят сушку таблеток при температуре 425-600oC.
Как и ранее существует большая потребность в фильтрующих материалах, которые позволяют избирательно разделять органические и неорганические фазы, и изготовление которых было бы простым и дешевым. Технический результат изобретения заключается в создании таких фильтрующих материалов.
Используемая в заявленном способе термообработка позволяет осуществить существенную модификацию окиси алюминия в изготавливаемом фильтрующем материале и соответственно в абсорбционных свойствах полученного материала. В заявленном способе окись алюминия представлена в форме гидрата оксида алюминия (Al2O3•H2O соответствует ALO(OH)) в псевдобемит-модификации. В противоположность этому в публикации, которая выбрана в качестве ближайшего аналога, материал содержит активированную окись алюминия, т.е. безводный g-оксид алюминия (g-Al2O3), которая в патенте США N 4795735 вводится напрямую, а согласно патенту [2] образуется в процессе кальцинирования при T>400oC, причем гидроксид алюминия и гидрат оксида алюминия переходят в безводный набрать g-оксид алюминия.
Эти различные модификации оксида алюминия позволяют получить совершенно различные свойства абсорбции у известного и заявленного фильтров. В EP описан материал из активированного угля/активированного оксида алюминия для удаления как органических, так и неорганических загрязнений из воды и воздуха. Активированный уголь абсорбирует органические загрязнения, а g-оксид алюминия неорганические загрязнения.
В противоположность этому в заявленном изобретении фильтр позволяет отделить органические частички из неорганической фазы, при этом количество неорганических частичек не оказывает существенного влияния. Такие свойства фильтра необходимы, например, для фильтров, которые используются перед электрохимическими датчиками. Электрохимические датчики могут использоваться, например, для измерения концентраций опасных газов в рабочих помещениях. Поскольку электрохимические датчики реагируют на органический растворитель изопропанол, часто используемый для чистки, то пары изопропанола могут заставить сработать электрохимический датчик и вызвать ложную тревогу. С помощью предлагаемого фильтра можно защитить датчик от органического растворителя, например, изопропанола, причем одновременно можно выделять опасные неорганические газы.
Эта задача решается благодаря описанному способу приготовления фильтрующего материала из прессованных частиц активированного угля, с помощью которых возможно избирательное разделение органических и неорганических фаз, со следующими этапами способа:
(а) размешивание до однородной смеси частиц активированного угля размером от 1 до 100 мкм с оксидом алюминия псевдобемитной модификации в отношении от 1:1 до 5:1;
(б) добавление дистиллированной воды при хорошем размешивании;
(в) добавление раствора уксусной кислоты при хорошем размешивании;
(г) повторное добавление дистиллированной воды;
(д) формование таблеток или подобных прессованных изделий в форме под давлением; и
(е) последовательное нагревание таблеток до температуры:
1) от 80 до 100oC в течение 6-10 ч.
2) от 140 до 160oC в течение 8-10 ч.
3) от 180 до 200oC в течение 6-10 ч.
Фильтры с активированным углем по изобретению легки и дешевы в изготовлении и позволяют очень избирательно разделять неорганические и органические фазы. При этом предпочтительно на этапе (а) применять частицы активированного угля размером от 10 до 50 мкм. Также предпочтительно использовать частицы активированного угля к оксиду алюминия в отношении от 2:1 до 3:1. В еще одном предпочтительном варианте выполнения изобретения дистиллированная вода на этапах (б) и (г) добавляется примерно в количестве, которое соответствует весу частиц активированного угля.
Предпочтительно работают с 20-40%-ной уксусной кислотой. При этом можно использовать 85%-ную уксусную кислоту, разведенную примерно в отношении 1:3.
Прессование на этапе (д) производят предпочтительно при давлении от 40 до 60 кг/см2, и особо предпочтительно при давлении 50 кг/см2. При этом не имеет решающего значения, какой формы изготовляют прессованные изделия. Это также зависит от предполагаемого применения. Еще возможность состоит в том, что формовочная масса перед прессование еще раз разжижается дистиллированной водой, а именно предпочтительно количеством воды, которое соответствует примерно от 1/3 до 1/5 используемого количества активированного угля. Затем прессуют под давлением от 5 до 20 кг/см2, и особо предпочтительно при давлении 10 кг/см2. Все операции размешивания проводят очень тщательно.
Еще одним предметом изобретения является фильтрующий материал для избирательного отделения органического материала от неорганической фазы, причем фильтрующий материал по изобретению состоит из прессованных изделий из активированного угля, изготовленных по способу изобретения.
Предметом предлагаемого изобретения является также применение фильтрующих материалов для избирательного разделения неорганических и органических фаз.
Предлагаемое изобретение иллюстрируется следующим примером.
Пример 1. Для изготовления фильтров из активированного угля по изобретению проводят следующие этапы.
1. Смешивают активированный уголь в количестве 20 г с гидроксидом алюминия модификации "псевдобемит" до получения однородной массы. Отношение масс активированного угля к гидроксиду алюминия лежит в пределах от 2:1 до 3: 1. Частицы активированного угля должны иметь размеры в диапазоне от 10 до 50 мкм.
2. Размешивают указанные компоненты с 10 мл дистиллированной воды.
3. Разводят 3 мл 85%-ной уксусной кислоты дистиллированной водой до 10 мл и добавляют этот раствор в смесь в качестве пептизирующего и пластифицирующего средства.
4. Добавляют 10 мл дистиллированной воды к смеси.
5. Изготавливают таблетки с применением формы для таблеток или другой формы. Описанную выше массу прессуют под давлением 50 кг/см2 в таблетки. Если работают с давлением 10 кг/см2, массу предварительно еще раз разжижают 3-5 мл дистиллированной воды. Все операции смешивания проводят очень тщательно до получения совершенно однородной массы.
6. Нагревают таблетки последовательно сначала при температуре от 80 до 100oC в течение 6-10 ч, затем до температуры 150oC в течение 8-10 часов, а также окончательно при температуре от 180 до 200oC в течение 6-10 ч.
Ниже приведены экспериментальные данные, характеризующие разделительную способность фильтров.
1. Равновесная абсорбционная способность фильтрующей таблетки по отношению к бензолу составляет 40 мас. для фильтра толщиной 2,5 мм и 36 мас. для фильтра толщиной 5 мм. Толщина таблетки с учетом надежного функционирования датчика, абсорбционной способности к органическому компоненту, механической прочностью, обеспечивающей возможность установки таблетки в специальный патрон для защиты датчика, лежит в пределах от 1,5 до 5 мм.
2. Данные по разделительной способности фильтра толщиной 2,5 мм, изготовленного прессованием под давлением 10 кг/см2 и предназначенного для защиты датчика обнаружения CO, по отношению к изопропанолу приведены в табл.1.
IPA концентрация (концентрация изопропанола) измерялась за фильтрующей таблеткой методом газовой хроматографии для двух образцов после 14, 100 и 150 ч с момента начала испытаний. IPA концентрация перед таблеткой была постоянной и составляла около 100 частей на миллион (ppm).
Концентрация CO измерялась за фильтрующей таблеткой электрохимическим датчиком в течение 1 мин с момента начала испытаний. Концентрация CO перед таблеткой была постоянной и составляла около 210 ppm.
В качестве характеристики электрохимического датчика использовалась величина t90, то есть период времени, в течение которого сигнал датчика достигал 90% от максимального уровня. Обычно величина t90 для электромеханических датчиков составляет 1-2 мин. Как видно из таблицы, фильтры не увеличивают эту характеристику датчика сверх указанного предела. Таким образом, фильтр обладает длительным защитным эффектом по отношению к изопропанолу для датчика CO и одновременно сохраняет его параметры (чувствительность к CO и t90).
3. Влияние размера частиц активированного угля на разделительную способность фильтрующих таблеток по отношению к водороду/изопропанолу в воздухе (табл. 2).
3.1. Приготовление фильтрующих таблеток:
соотношение масс активированного угля и псевдобемитных порошков 3:1;
размер частиц псевдобемитного порошка менее 100 микрон;
соотношение массы воды и активированного угля в получаемой композиции - 0,97:1;
давление в пресс-форме 10 кг/см2;
режим термообработки: 80-100oC 8 ч; 140-160oC 8 ч; 180-200oC 8 ч.
3.2. Размеры таблеток:
диаметр 18,8±0,2 мм
толщина 2,5±0,1 мм.
3.3. Условия испытаний:
концентрация изопропанола в воздухе 200 мг/м3
концентрация водорода в воздухе 190 ppm
температура +20±2oC.

Claims (7)

1. Способ получения фильтрующего материала для селективного отделения органической фазы от неорганической, включающий смешивание до гомогенного состояния частиц активированного угля с размером 1 100 мкм с гидратом оксида алюминия в "псевдобемитной" модификации при массовом соотношении 1 5 1, добавление дистиллированной воды и разбавленной уксусной кислоты при перемешивании, формование изделий под давлением и их термообработку, отличающийся тем, что дистиллированную воду добавляют в два этапа, вначале после смешивания активированного угля с оксидом алюминия, а затем после добавления разбавленной уксусной кислоты, а термообработку проводят путем последовательного нагрева изделий вначале от 80 до 100oС в течение 6 10 ч, далее от 140 до 160oС в течение 6 10 ч и затем от 180 до 200oС в течение 6 10 ч.
2. Способ по п. 1, отличающийся тем, что используют активированный уголь с размером частиц 10 50 мкм.
3. Способ по п. 1 или 2, отличающийся тем, что смешивание активированного угля с гидратом оксида алюминия проводят в массовом соотношении 2 3 1.
4. Способ по пп. 1 3, отличающийся тем, что общее количество добавляемой дистиллированной воды равно массе частиц активированного угля.
5. Способ по пп. 1 4, отличающийся тем, что добавляют уксусную кислоту в концентрации 20 40%
6. Способ по пп. 1 5, отличающийся тем, что формование ведут путем прессования массы под давлением 40 60 кг/см2.
7. Способ по пп. 1 5, отличающийся тем, что формуемую массу перед прессовкой разжижают дистиллированной водой и прессуют при давлении 10 кг/см2.
8. Фильтрующий материал в виде формованных изделий для селективного отделения органических веществ от неорганической фазы, содержащий активированный уголь, гидрат окиси алюминия в "псевдобемитной" модификации и уксусную кислоту, отличающийся тем, что он получен путем смешения частиц активированного угля размером 1 100 мкм с гидратом оксида алюминия в "псевдобемитной" модификации при их соотношении 1 5 1 с последующим добавлением при перемешивании дистиллированной воды, разведенной уксусной кислоты, вновь дистиллированной воды, формованием изделий под давлением и их термообработкой при последовательном нагревании до 80 100oС в течение 6 10 ч, до 140 160oС в течение 6 10 ч, до 180 200oС в течение 6 10 ч.
RU94033114/25A 1993-09-13 1994-09-12 Способ получения фильтрующего материала для селективного отделения органической фазы от неорганической, фильтрующий материал в виде формованных изделий для селективного отделения органических веществ от неорганических RU2099134C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4330990A DE4330990A1 (de) 1993-09-13 1993-09-13 Selektive Kohlefilter
DEP4330990.9 1993-09-13

Publications (2)

Publication Number Publication Date
RU94033114A RU94033114A (ru) 1996-07-27
RU2099134C1 true RU2099134C1 (ru) 1997-12-20

Family

ID=6497561

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94033114/25A RU2099134C1 (ru) 1993-09-13 1994-09-12 Способ получения фильтрующего материала для селективного отделения органической фазы от неорганической, фильтрующий материал в виде формованных изделий для селективного отделения органических веществ от неорганических

Country Status (6)

Country Link
US (1) US5730918A (ru)
EP (1) EP0642826B1 (ru)
JP (1) JPH07171386A (ru)
AT (1) ATE168286T1 (ru)
DE (2) DE4330990A1 (ru)
RU (1) RU2099134C1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882517A (en) * 1996-09-10 1999-03-16 Cuno Incorporated Porous structures
US6662956B2 (en) 1997-03-18 2003-12-16 Selecto, Inc. Nanocrystal-containing filtration media
EP2216342B1 (en) * 2003-07-31 2015-04-22 Immunomedics, Inc. Anti-CD19 antibodies
US7316736B2 (en) * 2005-06-08 2008-01-08 Oreck Holdings Llc Carbon filter panel for an air cleaner
WO2009020868A2 (en) 2007-08-04 2009-02-12 Rezzorb, Llc Method and apparatus for reducing fertilizer use in agricultural operations
US20120241385A1 (en) * 2009-08-13 2012-09-27 Water Harvesting Technologies Pty Ltd Water filtration sytem with activated carbon and zeolite
CA2776226C (en) * 2009-10-01 2018-01-02 Commonwealth Scientific And Industrial Research Organisation Remediation composition comprising alum sludge
TWI614042B (zh) 2016-12-02 2018-02-11 財團法人工業技術研究院 中子束源產生器及其濾屏

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203962A (en) * 1978-08-24 1980-05-20 Toth Aluminum Corporation Process for consolidation of fine alumina particles
JPS6087853A (ja) * 1983-10-18 1985-05-17 Mazda Motor Corp 耐熱吸着材
US4795735A (en) * 1986-09-25 1989-01-03 Aluminum Company Of America Activated carbon/alumina composite
JPH0620548B2 (ja) * 1988-05-23 1994-03-23 水澤化学工業株式会社 複合吸着剤
DD273780A1 (de) * 1988-07-08 1989-11-29 Akad Wissenschaften Ddr Verfahren zur herstellung aluminiumoxid- oder aluminiumoxidhaltiger kugelfoermiger teilchen
EP0369171B1 (en) * 1988-10-14 1995-08-23 Aluminum Company Of America Peptized activated carbon/alumina composite
JPH0576754A (ja) * 1991-09-21 1993-03-30 Mizusawa Ind Chem Ltd 成形複合吸着剤及びその製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. US, патент, 4795735, кл. B 01 J 20/08, 1989. 2. EP, заявка, 0369171, кл. B 01 J 20/08, 1990. *

Also Published As

Publication number Publication date
DE59406440D1 (de) 1998-08-20
US5730918A (en) 1998-03-24
EP0642826A1 (de) 1995-03-15
JPH07171386A (ja) 1995-07-11
RU94033114A (ru) 1996-07-27
EP0642826B1 (de) 1998-07-15
DE4330990A1 (de) 1995-03-16
ATE168286T1 (de) 1998-08-15

Similar Documents

Publication Publication Date Title
RU2157729C2 (ru) Способ получения носителя для катализаторов
RU2099134C1 (ru) Способ получения фильтрующего материала для селективного отделения органической фазы от неорганической, фильтрующий материал в виде формованных изделий для селективного отделения органических веществ от неорганических
US5851649A (en) Inorganic porous sintered body and filter
JP6286620B2 (ja) 鉄粉並びにそれを用いた発熱体及び温熱用具
CN115448377B (zh) 一种四氧化三钴修饰氧化铟复合材料及制备方法和应用、乙醇气敏检测元件及制备方法
JP3706842B2 (ja) 吸着剤によるリチウム含有水溶液からのリチウムイオンの吸着方法
CN102698716B (zh) 一种金属氧化物颗粒吸附剂及其制备方法
US4482635A (en) Composition, indicator, process and device for detecting carbon monoxide
CN113929905A (zh) 一种亚胺键连接的荧光共价有机框架的制备方法及应用
US5656069A (en) Selective carbon filter
US5451554A (en) Activated carbon bodies having epoxy resin and bentonite binders
JP2004529842A (ja) アルミナ集塊、特に触媒支持体、触媒、吸収剤としての使用、並びにそれらの調製方法
CN114733494B (zh) 一种铯离子吸附剂及其制备方法和应用
RU2101259C1 (ru) Состав для изготовления пористого проницаемого керамического материала с высокой термостойкостью
Steinberg et al. Chromatography on columns packed with a non-polar material
Northcott et al. Synthesis, characterization and evaluation of mesoporous silicates for adsorption of metal ions
JPH10180091A (ja) 一酸化炭素吸着剤及びその製造方法
JPH02153818A (ja) ゼオライト成形体の製造法
RU2232046C1 (ru) Способ получения таблетированного сорбента
CN116351397B (zh) 一种对甲醛具有高效捕集的复合材料制备方法及应用
CN115672278B (zh) 一种甲卡西酮吸附剂及其应用
Pflanz et al. Preparation of spinel ultrafiltration membranes
RU2225757C1 (ru) Способ получения сорбента для очистки газов от сернистых соединений
KR100374691B1 (ko) 황화수소가스 제거용 동시첨착흡착제 및 이의 제조방법
EP3067316A1 (en) Powdered gyro-light-type calcium silicate having high oil absorbency and large particle diameter, and production method therefor

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040913