JPH02153818A - ゼオライト成形体の製造法 - Google Patents

ゼオライト成形体の製造法

Info

Publication number
JPH02153818A
JPH02153818A JP30846188A JP30846188A JPH02153818A JP H02153818 A JPH02153818 A JP H02153818A JP 30846188 A JP30846188 A JP 30846188A JP 30846188 A JP30846188 A JP 30846188A JP H02153818 A JPH02153818 A JP H02153818A
Authority
JP
Japan
Prior art keywords
zeolite
kaolin
molded body
particle size
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30846188A
Other languages
English (en)
Inventor
Tsutomu Takahashi
勉 高橋
Chiaki Marumo
千郷 丸茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP30846188A priority Critical patent/JPH02153818A/ja
Publication of JPH02153818A publication Critical patent/JPH02153818A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • C01B21/0455Physical processing only by adsorption in solids characterised by the adsorbent
    • C01B21/0466Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • C01B13/027Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はゼオライト成形体の製造法に係り、更に詳細に
は、酸素と窒素、水素と一酸化炭素、各種炭化水素混合
ガス、就中、空気中の酸素と窒素とを分離・精製し或い
は高機能性触媒として優れた特性を有するゼオライト成
形体の製造法に関する。
(従来の技術) 近年、分子篩を吸着剤とする圧力スイング吸着(P8A
)法による混合ガスの分離技術の進展は、目覚ましいも
のがある。そして空気中の酸素と窒素を分離するための
吸着剤としては、主としてゼオライトとモレキュラーシ
ービングカーボン(MSo)が利用されている。
PaA法ガス分離装置の性能、ガス製造コストは、吸着
塔の形状、大きさ、充填される吸着剤の性能等に依存し
ており、特に、吸着剤の性能改善のために多くの努力が
払われてきている。
ところで、一般にゼオライトやMSO等の吸着剤は、吸
W@に充填される際に円柱状や球状等に成形されて使用
されている。例えばゼオライトに於ては、円柱状や球状
に成形した後、数百度℃の温度で焼成して吸着剤として
使用されているが、この焼成温度範囲では、ゼオライト
粉末は焼結性に乏しい。そのため成形に際してはバイン
ダーを添加し、焼結することにより、成形体に強度を賦
与しているのが現状である。しかるに、このバインダー
成分は、一般にはガス吸着能力がな(、焼成後のゼオラ
イト成形体ではバインダー添加相当量だけガス吸着能力
が低下してしまうという欠点が生じている。この欠点を
解決するために、バインダー成分をゼオライトに転化さ
せる、所謂バインダーレスゼオライトの製法が種々提案
されているが、未だ満足すべきものがないのが現状であ
る。
(発明が解決しようとする課題〉 本発明者等は既存のゼオライト成形体が有する上記欠点
を改善し、高性能ゼオライト成形体を開発すべく鋭意研
究の結果、本発明を完成したものであって、その目的と
するところは空気中の窒素ガスの選択的吸着特性に優れ
、従って酸素、窒素分離能が高(、且つ十分な強度を備
えたゼオライト成形体の製造法を提供するにある。
(課題を解決するための手段) 上述の目的は、 (4) 80%以との一次粒子が粒径0.1〜6μmの
範囲にある4ム型ゼオライト微粉末と、の) 80%以
上の一次粒子が粒径0.1〜5μmの範囲にあり、且つ
不純物含有量が酸化物に換算して3!量2以下のカオリ
ン微粉末とを、前者(4)に対して後者の)が重量比で
86:15〜40:6Gの比率で混合造粒後、400〜
850°Cで焼成し、引き続いて水酸化ナトリウム水溶
液を施与し、更にカルシウムイオンによりイオン交換を
行うことを特徴とするゼオライト成形体の製造法により
達成される。
本発明に適用されるゼオライトは、その80%以上の一
次粒子が粒径0.1〜5μmの範囲にある4A型ゼオラ
イト微粉末である。本発明に於て、4A型ゼオライトと
は一般式 %式% で示されるゼオライト混合物中Naが80モル%以との
ものを意味する。また、本発明に適用される4A型ゼオ
ライトはその80%以上の一次粒子が粒径0.1〜5μ
mの範囲にある微粉末であり、好ましくは0.1〜1μ
m1更に好ましくは0.1〜0.8μmである。ゼオラ
イトの一次粒子の粒径がと記範囲外の場合、できたゼオ
ライト成形体のガス吸着能が低下する傾向にある。
本発明に適用されるカオリンは80%以上の一次粒子が
粒径0.1〜5μmの範囲、好ましくは0.1〜17J
m%更に好ましくは0.1〜0.8μmの範囲にあり、
且つ不純物含有量が酸化物に換算して5M1%以下、好
ましくは2.5重量1%以下、更に好ましくは2重量%
以下の微粉末である。
カオリンの80%以上の一次粒子が5μm以上、または
不純物含有量がS重量%を超えた場合、ゼオライトへの
転化率が低くガス吸11能が低下する。
本発明に於ては、4A型ゼオライト微粉末とカオリン微
粉末を重量比で好ましくは85:15〜4G:60、よ
り好ましくは80:20〜50:50、更に好ましくは
75:25〜65:45の比率で混合する。カオリンの
混合比率が少な過ぎる場合には、ゼオライト成形体の強
度が低く、使用時に摩耗、粉化しやすい。又、カオリン
の比率が多過ぎる場合番ζはゼオライトへの転化効率が
悪(なり、ゼオライト成形体のガス吸着能が低下する。
更に必要に応じバインダーと適量の水及び界面活性剤を
加えて、ニーダ−等の混合機により十分撹拌混合するこ
とができる。バインダーとしては例えばメチルセルロー
ス、ポリビニルアルコール、澱粉等の有機バインダーが
用いられ、その量は4ム型ゼオライトとカオリンを合わ
せた重量の1〜5重量%が好ましい。有機物バインダー
が多過ぎる場合には、ゼオライト成形体の強度が低(な
り耐久性がな(なる。
これら有機物バインダーは、保水剤としての機能も備え
ており、成形時には作業性の向上につながり、更に焼成
後は、分解、消失することにより、ガス拡散の通路とな
るマクロ孔の形成に寄与する。
上述の如き方法で得られた混合物は、単軸あるいは二軸
の湿式押し出し造粒機、バスケットリエーザーの如き竪
型造粒機、半乾式のディスクペレッター等で粒状体に成
形される。就中、湿式の押出造粒機により造粒された粒
状体は粒子の強度が大きく、後処理後の吸着特性も良好
で好適である。
本発明の造粒法により得られる成形体の大きさは特に制
限されるものではないが、例えば円柱では直径0.5〜
6mm、長さ1〜11) mm程度、球状の場合には直
径0.5〜16mm程度が好ましい。
これら粒状成形体は、好ましくは乾燥型中で60〜20
0“C程度の温度範囲で数時間〜数十時間乾燥された後
、電気炉、ガス炉等の焼成炉に入れ、酸化性雰囲気下で
焼成される。焼成a度は好ましくは450〜600℃、
より好ましくは500〜600℃である。焼成温度が高
くなると、ゼオライトの結晶形態がくずれて非晶質とな
り、吸着能が著しく低下する。また、焼成温度が低い場
合には粒状体の焼結が十分に進まず、粒子強度が低いう
えに粒状成形体中の水分が完全に除去できず、粒子の活
性化が不完全でガス吸t1!ilが低くなる。
焼成時の昇温速度は、特に制限されるものではないが、
通常10〜b 〜20 G ”C/hrである。
次に、焼成した成形体を水酸化ナトリウム水溶液に浸漬
し、カオリンを4A型ゼオライトに転換する。水酸化ナ
トリウム水溶液の濃度は好ましくは0.1〜20重j1
1%、より好ましくは0.3〜15重量%、更に好まし
くは0.5〜10重量%である。
また、成形体と水酸化ナトリウム水溶液の浴比は、重量
比で成形体1重量部に対し、水酸化ナトリウム水1!l
[2〜10重量部が好ましい。又、水酸化ナトリウム量
は、理論1カオリンを4A型ゼオライトへ転化するのに
必要な量の好ましくは1〜5倍、より好ましくは1〜2
倍、更に好ましくは1.1〜1.5倍である。水酸化ナ
トリウム水溶液による処理温度は、特に制限されないが
、例えば80〜90℃に保持した場合、カオリンのゼオ
ライトへの転化速度が速く好ましい。また、処理時間は
、通常数時間〜数十時間で良く、80〜90℃に加熱し
た場合には24時間以内で十分である。
水酸化ナトリウム水溶液処理の終了した粒状成形体は、
更に塩化カルシウム水溶液でナトリウムイオンをカルシ
ウムイオンにイオン交換し、4A型ゼオライトを5A型
ゼオライトに転換する。ここで、6A型ゼオライトとは
、一般式 %式% で示されるゼオライト混合物中Oaが10モル%以上の
ものを意味する。
塩化カルシウム水溶液の濃度は好ましくは2〜30%、
より好ましくは3〜20%、更に好ましくは5〜10%
である。また、成形体と塩化カルシウム水溶液の浴比は
重量比で1:2〜1:10が好ましい。更に、塩化カル
シウム水溶液によるイオン交換処理の温度には、特に制
限はないが、例えば60〜90゛Cに保持した場合効率
がよく好ましい。また、その処理時間は通常数時間〜数
十時間であり、イオン交換の効率をとげるためには、数
時間おきに浴を新しくして、2〜3回イオン交換を繰り
返すのが好適である。
上述のイオン交換処理によりどの程度のナトリウムイオ
ンがカルシウムイオンに交換したかを示すイオン交換率
は、好ましくは80%以とであり、より好ましくは85
%以丘である。但し、本発明におけるイオン交換率とは
、後述の測定法の項で定義する如きものである。
(発明の効果) 本発明法によるゼオライト成形体は、従来のゼオライト
成形体に比べ、窒素ガスの吸着容態が太き(、且つ選択
的吸着特注に優れ、少ない吸着剤量で多量の酸素を効率
よく製造することができる。
係るゼオライト成形体を用いれば、PEA装置の小型化
、省エネルギー化が可能であり、装置の動力源単位を低
減し、安価に製品ガスを得ることができる。更に、本発
明法によるゼオライト成形体は、機械的強度に優れ、微
粉化も少なく耐久性に優れ、吸着塔に於て長時間の使用
が可能である。
本発明法によるゼオライト成形体を用いてPaA法によ
り製造された酸素ガスの濃度は通常90〜96%と高く
、且つ酸素の製造コストが安酒で、各種焼成炉の支燃用
、排水処理での曝気、バイオリアクターへの酸素の吹き
込み、更に溶接、溶断用あるいは医療用酸素等、広範囲
に利用することが可能である。
以下、実施例により本発明を詳述する。尚、その前に本
明細書における種々の特性値の測定法を記述する。
〔測定法〕
(1)  窒素、酸素平衡吸着量 窒素、酸素平衡吸着量は、第1図に示す吸着量測定装置
により測定した。第1図に於いて、(1)は測定試料が
収容されている試料名、(2)は調整塔であり、それぞ
れはニードル弁(5)を備えたパイプ(12月とよって
連通状態になっている。また(3) (4)は圧力セン
サーであり、試料名及び調整塔内の圧力を測定する。(
9)は真空ポンプであり、ニードル弁(8)を備えた吸
引路パイプ(13)によって上記試料名及び調整塔と連
結されている。(10)(11)はそれぞれ窒素ボンベ
、酸素ボンベであり、ニードル弁(6)(7)を備えた
流入路パイプ(14)によって上記試料名及び調整塔と
連結されている。
この装置に於いて、窒素あるいは酸素の平衡吸着量は、
次のようにして測定される。すなわち、まず試料名に試
料5fを充填し、ニードル弁(5) (6)(8)を開
状態にし、試料名及び調整塔内をl Q mmHf程度
にまで減圧させ、さらに試料名を500“Cに加熱し、
2時間試料を乾燥させる。試料乾燥後、冷却し、ニード
ル弁(5) (8)を閉、(6) (7)を開状態にし
て、(1G)または(11)の窒素または酸素ボンベよ
り、窒素ガスまたは酸素ガスを流入路パイプ(14)を
経由して調整塔(2)に所定圧だけ導入する。その後、
ニードル弁(6)を閉じ、(6)を開け、試料名にガス
を導入し、吸着を起こさせる。そして、系内の圧力変化
を圧力センサー(3)、または(4)で測定し、吸着量
を算出する。本発明では吸着量測定開始後、30分以上
経過後の値を平衡吸着量とし、平衡圧力を3気圧とした
。但し、3気圧における平衡吸着量は、平衡到達時の圧
力が、5気圧を挾んで前後それぞれ2点以上の測定点を
なめらかな曲線で結ぶことにより導出した。ここで平衡
吸着量は、次式によって与えられる。
1                  Mq =−x
(plv!−plvl )X−W−X 1000T q:試料1f当りの平衡吸着量(my/f)Pl:平衡
状態の圧力 P!:調整塔に導入したガスの初期圧(atm)V1=
0.351(試料名(1)、調整塔(2)、パイプ(1
2)の容積和) Vt=0.17A’1!整塔(2)、ニードル弁(5)
カラ調整塔(2)までのパイプ(12)の容積和)T=
298IC R= 0.082 (1−atm/mo14)W=6f M:窒素または酸素の分子屋 (2)  カオリンのゼライトへの転化率カオリンのゼ
ライトへの転化率は、次の式により定義した。すなわち
、 ここで、aは転化率(%)、81.S、はそれぞれデイ
フラクトメーター(理学電機工業■製、ガイガーフレッ
クス)で、0u−Kn線によるX線回折パターンを得、
その2θ=7.1°、10.1°、12.4°、18.
0’、21.6°、23.9°、27.0’、29.8
°、34.1゜(但し、いずれも±0.1°程度の幅で
変化し得る)の各回折ピークのピーク面積の総和であり
、slが4A型ゼオライト粉末の値、s!がカオリンよ
り転化させた試料の値である。
(5)  イオン交換率 本発明では、イオン交換率を以下の如(定義する。すな
わち、 ()a!+ :ゼオライト成形体中に存在するカルシウ
ムイオンのモル数 Na  、ゼオライト成形体中に存在するナトリウムイ
オンのモル数 但し、各イオンの定量は螢光X線分析装置(理学電機工
業■製、3063P型)により行なった。
(4)  粒径分布 本発明で使用した4A型ゼオライト微粉末の粒径分布は
、走査型電子顕微鏡写真の20視野について各100個
の粒子径を測定し、集計することにより得た。
また、カオリン微粉末については、遠心沈降式%式%) により測定した。
(5)二基式PSA試験装置による製品酸素取り出し量
と酸素濃度の関係 製品酸素の取り出し量と酸素濃度の関係は、第2図に示
した二塔式ps人試験装置により測定した。第2図に於
て(1)は空気圧縮機、(2)はエアドライヤーである
。(5)(3a)は内部に吸着剤が充填されている吸着
塔であり、それぞれその入口が第1の開閉弁(4)(4
a)を備えた流入路パイプ(5)(5a)にょうて上記
エアドライヤー(2)の出口と連通状態になっている。
(6)は真空ポンプであり、弁(7)(7a)を備えた
吸引路パイプ(8)によって1記吸着塔(り(3a)の
入口と連結されている。(9)(9a月よ吸着塔(3)
(3a)の出口からそれぞれ延びる取出路パイプであっ
て、第2の開閉弁(10)(10a)を備えており、メ
インパイプ(11)に連結されている。(12)は弁(
13)(13&)を備えた均圧用パイプであり、吸着塔
(3)(3a)の出口に連通状態になっている。メイン
パイプ(11)は、リザーバータンク(14)に連結さ
れており、ニードル弁(15)を備えた製品ガス取り出
しパイプ(16)から製品を取り出すようになっている
この装置に於いて、原料空気中の酸素、窒素の分離は次
のようにして行われる。まず、原料空気を空気圧縮機(
1)で圧縮して、エアドライヤー(2)で乾燥させ、そ
の状態で一方の吸着塔(5)に流入路パイプ(5)を経
由させて送入する。この時、他方の吸着塔(3a)の流
入路パイプ(6a)の弁(4a)は閉状態になっている
。次に、吸着塔(5)に入った圧縮空気は、吸着塔内を
通過中に、ゼオライト成形体により窒素分子を吸着・除
去され、吸着塔(3)の出口では高濃度酸素ガスとなる
。この高濃度酸素ガスは、取出路パイプ(8)からメイ
ンパイプ(11)を経由し、リザーバータンク(14)
内に一括貯蔵され、そこから製品ガス取出パイプ(16
)を経由して取り出される。
この時、他方の吸着塔(3a)の取出路パイプ(9&)
の弁(10a)及び均圧用パイプ(12)の弁(13ン
(13a)はいずれも閉状態となっている。
吸着塔(3)が上記のような吸着動作を行なっている間
、他方の吸着塔(3a)では排気により内蔵吸着剤の再
生が行われている。すなわち、吸着塔(3a)の出口側
は、弁(10a) (13a)で閉じられた状態になっ
ており、吸引路パイプ(8)の弁(7)とパイプ(12
)の弁(13)を閉じ、弁(7a)(17)を開いた状
態で真空ポンプ(6)を駆動させることにより、吸着塔
(3a)内が同流で減圧排気され、吸着剤の再生がなさ
れる。
吸着工程終了後の吸着塔(3)と再生工程終了後の吸着
塔(3a)はパイプ(12)、弁(15)、弁(1a)
により連通され均圧化される。すなわち、吸着塔(3)
の出口側の弁(15)及び吸着塔(3a)の入口側の弁
(1a)だけが開状態で、その他の弁は全て閉状態とな
り、高圧側の吸着塔(3)内のガスが吸着塔(3a)に
入り均圧化が行なわれる。
その後弁(1i$X7a)が閉じ、弁(4a)が開いて
吸着塔(3a)が昇圧吸着工程に入る。一方、吸着塔(
3)では弁(4) (10)が閉じ、弁(7)が開いて
再生工程に移る。
本実施例に於いては吸着圧力がゲージ圧で3kf f/
Cm”で、真空排気は、数十torrとした。また昇圧
をsO秒、吸着を60秒、均圧を10秒、排気を90秒
として測定した。
実施例1〜6 第1表の如き粒径分布のゼオライト(D、 (1)と、
第2表の如き粒径分布で且つ第3表の如き不純物含汀量
を有するカオリン(1)〜■を用意する。ここで、ゼオ
ライト中とカオリン(1)、 (I)が本発明に係るも
のである。ゼオライトとカオリンを第4表に示す如く選
択して、それぞれを2.1 kl、OJJ採取し、メチ
ルセルロース0.08kFを加えミキサーで混合する。
更に、分散剤(サンノブコ■製、商品名: 5N−EX
5468 )0.08 kp及び水1.1kfを加え、
ミキサーで撹拌混合した。
上述の如くして得られた混合物を押し出し造粒機にて成
形後、整粒して直径2mm、長さ2〜6mmの円柱状ペ
レットとした後、80℃で24時間乾燥した。こうして
得られた成形体を電気炉で酸化性雰囲気下、100℃/
hrの昇温速度で560℃まで昇温し、550℃にて1
0時間焼成した。
次に該ゼオライト成形体2 klを3%水酸化ナトリウ
ム水溶液104’に80°Cで24時間浸漬した後、過
剰の水酸化ナトリウムを洗浄除去後、10%塩化カルシ
ウム水溶液101に80℃で5時間浸漬し、イオン交換
処理を行なった。この試料を水洗浄後、もう−度同じ条
件でイオン交換処理を繰り返した。
こうして得られたゼオライト成形体を80゛Cで24時
間乾燥し、さらに400°Cで5時間保持して活性化処
理した。得られたゼオライト成形体の特性評価結果を第
4表に示す。また該ゼオライト成形体200Iを第2図
に示す二基弐P8ム試験装置に充填し、製品酸累取り出
し量と酸素濃度との関係を調べた。その結果を第5図に
示す。比較例として、市販の5A型ゼオライト(東ソー
■製:ゼオラムA−6SA )に於ける測定結果も合わ
せて第3図に示す。第4表および第3図より、市販品に
比べ実施例1.2の窒累・酸素平衡吸着量が大きく、且
つPSA評価も高く、本発明法に係るゼオライト、カオ
リンが好適であることが分る。
第1表 ゼオライトの粒子径分布 第2表 カオリンの粒子径分布 第8表 カオリンの組成分析値 (1111%)強度が
低く 耐久性に乏しい。
実施例7〜134A型ゼオライトとカオリンの組成比の
影響 第1表に示す4A型ゼオライト(1)と第2.@3表に
示すカオリン(1)をW55表に示す如き割合で混合し
、ゼオライトとカオリンの合計100重量部に対して、
メチルセルロース3重量部、分散剤2.6重量部、水3
6重量部の割合で混合し、ミキサーで撹拌し均一な混合
物を得た。各割合の混合物をS klずつ準備し、以下
実施例1〜6と全く同様の操作を行ないゼオライト成形
体を得た。得られたゼオライト成形体の特性評価結果を
第5表に示す。また、第2図に示した二基弐PSA装置
で、実施例1〜6と同様にして評価した製品酸素取り出
し量と酸素濃度との関係を第4図に示す。
第5表及び第4図より、実施例8〜12で良好な結果が
得られ、特に実施9.10が優れており、4A型ゼオラ
イト微粉末とカオリンの組成比は、好ましくは85二1
5〜40:60.より好ましくは70:iSO〜60 
:40である。組成比が90:1Gの場合は、PSA評
価は高いが、圧縮実施例14〜18 第1表に示す4A型ゼオライト(1) 2.1 ky 
、  第2及び第5表に示すカオリン(1) 0.9 
kyを混合し、さらに分散剤(サンノブコ■製:8N−
EX6486)0.08に/、  水1.11Rを加え
、ミキサーで撹拌混合した。次に焼成温度を300,3
50.460.65G、700″Cとした以外は実施例
1〜6と全く同様の操作を行ないゼオライト成形体を得
た。
得られたゼオライト成形体の特性評価結果を第6表に示
し、lI2図に示す如き二基式P8AtA!!で評価し
た製品酸素取り出し量と製品酸素濃度との関係を第5図
1ζ示す。第6表及び第5図より、実施例18と17が
PEA評価が高く且つ圧縮強度も高く良好であり、焼成
温度は400〜850°C実施例19〜25 第1表に示す4A型ゼオライト(1) 2.1 ky、
第2及び第3表に示すカオリン(1) 0.11 kl
と有機物バインダーとして第7表に示す如き量のメチル
セルロース、あるいは澱粉をミキサーで混合し、以下実
施例1〜6と全く同様な操作を行ないゼオライト成形体
を得た。得られたゼオライト成形体の特性評価結果を第
7表に示す。第7表より、実施例18〜22及び実施例
25において、圧縮強度が高く良好であり、有機物バイ
ンダーの添加量はゼオライトとカオリンの合計重量に対
し6重量%以下が好適であった。
【図面の簡単な説明】
第1図は本発明で窒素及び酸素の平衡吸着量の測定に使
用した装置の構成図である。 (1)・・・試料基、     (2)・・・調整塔、
(3) (4)・・・圧力センサー  (5) (6)
 (7) (8)・・・ニードル弁、(9)・・・真空
ポンプ、(10)・・・窒素ボンベ、(11)・・・酸
素ざンベ、(12)・・・パイプ、(13)・・・吸引
路パイプ、(14)・・・流入路パイプ、(15)・・
・加熱炉。 第2図は二基式PSA試験装置図である。 (1)・・・空気圧縮機、(2)・・・エアドライヤー
(3)(3a)・・・吸着塔、   (4)(4a)・
・・第一の開閉弁、(5)(5a)・・・流入路パイプ
、(6)・・・真空ポンプ、(8)・・・吸引路パイプ
、(9)(9a)・・・取出路パイプ、(11)・・・
メインパイプ、(12)・・・パイプ、(14ン・・・
リザーバータンク、 (16)・・・製品ガス取出パイプ。 第3図は実施例1〜6及び市販品に於ける試料を、第2
図に示す如き二基式PEA試験装置に充填し、装置を運
転した際の、製品酸素取り出し量と酸素濃度との関係を
示すグラフであり、同様に第4図は実施例1〜ISに於
ける試料を、第5図は実施例14〜18に於ける試料を
二基式psム装置に充填し、装置を運転した際の、製品
酸素取り出し量と酸素濃度との関係を示すグラフである

Claims (2)

    【特許請求の範囲】
  1. (1)(A)80%以上の一次粒子が粒径0.1〜5μ
    mの範囲にある4A型ゼオライト微粉末と、 (B)80%以上の一次粒子が粒径0.1〜5μmの範
    囲にあり、且つ不純物含有量が酸化物 に換算して3重量%以下のカオリン微粉末 とを、 前者(A)に対して後者(B)が重量比で85:15〜
    40:60の比率で混合造粒後、400〜850℃で焼
    成し、引き続いて水酸化ナトリウム水溶液を施与し、更
    にカルシウムイオンによりイオン交換を行うことを特徴
    とするゼオライト成形体の製造法。
  2. (2)混合造粒時に有機物バインダーを添加することを
    特徴とする特許請求の範囲第1項記載のゼオライト成形
    体の製造法。
JP30846188A 1988-12-05 1988-12-05 ゼオライト成形体の製造法 Pending JPH02153818A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30846188A JPH02153818A (ja) 1988-12-05 1988-12-05 ゼオライト成形体の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30846188A JPH02153818A (ja) 1988-12-05 1988-12-05 ゼオライト成形体の製造法

Publications (1)

Publication Number Publication Date
JPH02153818A true JPH02153818A (ja) 1990-06-13

Family

ID=17981303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30846188A Pending JPH02153818A (ja) 1988-12-05 1988-12-05 ゼオライト成形体の製造法

Country Status (1)

Country Link
JP (1) JPH02153818A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258060A (en) * 1992-09-23 1993-11-02 Air Products And Chemicals, Inc. Adsorptive separation using diluted adsorptive phase
CN1043311C (zh) * 1993-12-16 1999-05-12 中国科学院大连化学物理研究所 高选择性吸附一氧化碳的沸石吸附剂的制备方法
JP2001261330A (ja) * 2000-03-24 2001-09-26 Tosoh Corp ゼオライトビーズ成形体、その製造方法及びこれを用いた吸着除去方法
JP2010529939A (ja) * 2007-06-04 2010-09-02 スサ・エス・アー ゼオライトをベースとする球状アグロメレート、これらのアグロメレートの製造方法および吸着プロセスならびに触媒におけるこれらのアグロメレートの使用
JP2016522740A (ja) * 2013-04-24 2016-08-04 ユーオーピー エルエルシー 吸着分離プロセスに用いるためのゼオライト系吸着剤、およびそれを製造するための方法
JP2017170380A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 二酸化炭素吸着材および真空断熱材、並びにその利用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258060A (en) * 1992-09-23 1993-11-02 Air Products And Chemicals, Inc. Adsorptive separation using diluted adsorptive phase
CN1043311C (zh) * 1993-12-16 1999-05-12 中国科学院大连化学物理研究所 高选择性吸附一氧化碳的沸石吸附剂的制备方法
JP2001261330A (ja) * 2000-03-24 2001-09-26 Tosoh Corp ゼオライトビーズ成形体、その製造方法及びこれを用いた吸着除去方法
JP2010529939A (ja) * 2007-06-04 2010-09-02 スサ・エス・アー ゼオライトをベースとする球状アグロメレート、これらのアグロメレートの製造方法および吸着プロセスならびに触媒におけるこれらのアグロメレートの使用
JP2016522740A (ja) * 2013-04-24 2016-08-04 ユーオーピー エルエルシー 吸着分離プロセスに用いるためのゼオライト系吸着剤、およびそれを製造するための方法
JP2017170380A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 二酸化炭素吸着材および真空断熱材、並びにその利用

Similar Documents

Publication Publication Date Title
Hong et al. Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption
KR102217979B1 (ko) 결합제를 포함하는 아민 기능화 mof 기반의 이산화탄소 흡착제
JP4134031B2 (ja) メソ細孔性ゼオライトの合成方法
JP2578545B2 (ja) 活性複合体及び反応媒体としての該複合体の使用
JP2001526172A (ja) 小さい孔を有する結晶性チタンモレキュラーシーブゼオライトおよびそれを気体分離過程で用いる使用
JP6876609B2 (ja) 大きな外部表面積を有するゼオライト吸着剤および当該ゼオライト吸着剤の使用
KR102194141B1 (ko) 메조다공성 차바자이트 제올라이트 포함 이산화탄소 흡착제 및 그 제조 방법
RU2395451C1 (ru) Способ получения цеолита типа а в качестве адсорбента
KR102267930B1 (ko) 2종 이상의 리간드를 포함하는, 3차원 다공성 구조를 갖는 신규한 알루미늄-기반 금속-유기 골격체, 이의 제조방법 및 용도
CN106622151A (zh) 含有金属有机骨架材料的复合材料及其制备方法与应用
Ma et al. CO 2 adsorption on zeolite X/activated carbon composites
KR20190086000A (ko) 산업용 가스들의 비극저온 분리를 위한 제올라이트 흡착제 재료, 제조 방법 및 용도
Chi et al. Porous molecular sieve polymer composite with high CO2 adsorption efficiency and hydrophobicity
JPH02153818A (ja) ゼオライト成形体の製造法
JP6426213B2 (ja) 非晶質アルミニウムケイ酸塩及びその製造方法
Landström et al. Inducing hierarchical pores in nano-MOFs for efficient gas separation
US3594982A (en) Process for drying unsaturated organic gaseous compounds
JPH0576754A (ja) 成形複合吸着剤及びその製法
JP2003104720A (ja) 分子ふるい炭素およびそれを用いた圧力スイング吸着装置
CN112843766B (zh) 变压吸附分离溶剂水二元共沸物的吸附分离工艺
JPH062575B2 (ja) クリノプチロライト型ゼオライトおよびその製造方法
JP3334664B2 (ja) 気体分離用吸着剤
JP2017077541A (ja) 二酸化炭素吸着剤
JPS6068052A (ja) ゼオライト系組成物からなる酸素と窒素との分離剤
JPH10180091A (ja) 一酸化炭素吸着剤及びその製造方法