RU2090771C1 - Способ определения массы воздуха, поступающего в цилиндр двигателя (варианты), устройство для определения массы поступающего воздуха (варианты) и двигатель внутреннего сгорания - Google Patents

Способ определения массы воздуха, поступающего в цилиндр двигателя (варианты), устройство для определения массы поступающего воздуха (варианты) и двигатель внутреннего сгорания Download PDF

Info

Publication number
RU2090771C1
RU2090771C1 RU9293051525A RU93051525A RU2090771C1 RU 2090771 C1 RU2090771 C1 RU 2090771C1 RU 9293051525 A RU9293051525 A RU 9293051525A RU 93051525 A RU93051525 A RU 93051525A RU 2090771 C1 RU2090771 C1 RU 2090771C1
Authority
RU
Russia
Prior art keywords
engine
iacc
iaccwot
load
speed
Prior art date
Application number
RU9293051525A
Other languages
English (en)
Other versions
RU93051525A (ru
Inventor
Росс Эхерн Стивен
Original Assignee
Орбитал Энджин Компани
Аустрэлиа Пти Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Орбитал Энджин Компани, Аустрэлиа Пти Лимитед filed Critical Орбитал Энджин Компани
Publication of RU93051525A publication Critical patent/RU93051525A/ru
Application granted granted Critical
Publication of RU2090771C1 publication Critical patent/RU2090771C1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Использование: системы управления двигателем. Сущность изобретения: осуществляют вычисление массы воздуха, поступающего в цилиндр двигателя при широко открытой заслонке, выбирают хранящийся в памяти процессора коэффициент, относящийся к текущей нагрузке и скорости двигателя, и используют его для определения текущего значения массы воздуха, подаваемого в цилиндр за цикл. 6 с. и 10 з.п.ф-лы, 1 ил.

Description

Изобретение относится к способу определения массы воздуха, подаваемого в цилиндр двигателя внутреннего сгорания, для контроля соотношения воздух/топливо в качестве составной части системы управления двигателем.
Известно использование различных типов датчиков массы потока воздуха в системе снабжения воздухом двигателя для определения степени поступления воздуха в двигатель во всем диапазоне действующих режимов машины. Также используются и другие средства для определения потока воздуха, такие как введение калибровки потока воздуха в памяти ECV в зависимости от скорости двигателя и положения дроссельной заслонки.
Хотя эти известные способы определения массы поступаемого воздуха являются достаточно эффективными, они обладают недостатками, исходящими как из устройства требуемого оборудования, включая стоимость и эффективный срок службы, так и из величины емкости памяти, требуемой для хранения соответствующей информации.
Поэтому целью настоящего изобретения является предложение способа определения массы воздуха, подаваемой в двигатель внутреннего сгорания при действующих условиях, который является эффективным и требует меньшего, оборудования и/или емкости сохраняемой памяти для обеспечения эффективного контроля соотношения воздух/топливо в двигателе при всех режимах работы.
Учитывая это, в соответствии с настоящим изобретением, предлагается способ определения массы воздуха, поступающего в цилиндр за цикл /IACC/ двигателя внутреннего сгорания, состоящий из стадий:
вычисление IACC с широко открытой заслонкой /IACCwot/ для существующей скорости двигателя и условий работы;
выбор из заранее определенных коэффициентов, указывающих соотношение между IACCwot и IACC при ранее выбранной частичной нагрузке, коэффициента, относящегося к текущей нагрузке и скорости;
и применение упомянутого выбранного коэффициента к IAC для определения действующего IACC /IACCld/.
Более конкретно, предложен способ определения массы воздуха, поступаемого в цилиндр за цикл /IACC/, для двигателя внутреннего сгорания, состоящий из:
программирования процессора с алгоритмом определения IACC для двигателя с широко открытой дроссельной заслонкой (WOT) (IACCwot) при выбранном скоростном режиме работы двигателя;
сохранение в памяти коэффициентов отношения IACCwot к IACC при выбранных режимах нагрузки, задаваемых ниже WOT при названном выбранном режиме работы двигателя;
определение во время работы машины скорости двигателя и нагрузочного режима с выбором соответствующих коэффициентов для определенной скорости двигателя и нагрузки;
введение в запрограммируемый алгоритм коэффициента IACC, соответствующего определенной нагрузке на двигатель при определенной скорости двигателя;
вычисление на основе названных введенных коэффициентов коэффициента IACC для существующих условий работы двигателя /IACCcalc/;
расчет из IACCcalc и определенных скорости двигателя и нагрузки необходимой массы топлива на цилиндр за цикл /FPC/.
На основе определенного FPC сигнал вводится в устройство дозировки топлива, чтобы установить подачу в двигатель названного количества топлива FPC за время, соответствующее циклу двигателя.
Обычно процессор программируют так, чтобы алгоритм учитывал IACCwot, исходя из различных условий работы двигателя, таких как температура впускаемого воздуха или давление, или давление выхлопных газов. Условия, определяющие работу двигателя, могут быть связаны с соответствующими значениями данных, предпочтительно то, чтобы значения данных являлись численными величинами для соответствующего условия работы двигателя, существующими в виде калибровки IACC коэффициентов, хранимых в памяти.
Процессор может быть запрограммирован так, что, если одно или более определяемых условий работы двигателя регулярно меняется за относительно короткий промежуток времени, то эффект флуктуации при вычислении массы воздуха будет ограничен. Ограничение эффекта флуктуаций предпочтительно устанавливают внутри выбранного диапазона нагрузочного режима и/или скорости двигателя, лучше, чтобы диапазон был как можно меньше. И наоборот, если желаемый режим работы двигателя может приводить к таким флуктуациям при определенных условиях эксплуатации, то программа процессора может быть адаптирована для ограничения эффекта флуктуации, когда она работает при этих определенных условиях эксплуатации, независимо от того, появляется эта флуктуация или нет. Например, судовой двигатель, работающий на низкой скорости, как во время лова рыбы, может проходить через серию волн, вызывающую почти циклическое изменение давления выхлопных газов. Это, в свою очередь, может привести при стабильном режиме работы к "выстрелу". С помощью снижения эффекта давления выхлопных газов "выстреливание" может быть снижено или устранено.
В предпочтительной форме метод определения массы подаваемого воздуха на цилиндр за цикл /IACC/ отдельного двигателя состоит из:
программирования процессора с алгоритмом определения IACC для скоростного режима работы двигателя, зависящего от атмосферного давления /Pat/, давления выхлопных газов /Pex/ и температуры впускного трубопровода /Tсн/;
сохранение в памяти соответствующих коэффициентов, относящихся к Рат, Рех и Тсн для выбранных скоростей двигателя в диапазоне рабочих скоростей;
сохранение в памяти коэффициентов отношения IACCwot к IACC при выбранных нагрузочных режимах, задаваемых ниже WOT, для каждой выбранной скорости;
определение во время работы двигателя Рат, Рех, Тен, скорости двигателя и нагрузочного режима с выбором соответствующих коэффициентов для каждых из выбранных нагрузок и скоростей двигателя;
введение в программный алгоритм соответствующих сигналов, указывающих существующие Рат, Рех и Тсн;
введение в программный алгоритм коэффициента IACC, соответствующего определяемой нагрузке при определяемой скорости двигателя;
определение на основе упомянутых вводов в алгоритм IACC для существующих условий работы двигателя /IACCld/;
определение из упомянутого IACCld и из определенной скорости двигателя и нагрузки необходимой массы топлива на цилиндр за цикл /FPC/.
Необходимо принять во внимание, что обсуждаемый выше способ определения IACC не требует специфического оборудования для измерения IACC, так как он определяется за счет сигналов с простых датчиков температуры, давления, скорости и режима нагрузки, подаваемых в ECV, соответственно запрограммируемого и хранящего в памяти необходимые коэффициенты.
Представленный способ определения массы подаваемого воздуха основан на открытии, что отношение потока воздуха при выбранной позиции дроссельной заслонки к потоку воздуха при широко открытой заслонке остается почти постоянным для любой заданной скорости двигателя, и в основном не зависит от внешних условий с учетом существования одинаковых условий в выбранном положении и при широко открытом положении дроссельной заслонки.
Соответственно, если известен поток воздуха при широко открытой заслонке для конкретной скорости двигателя при определенной температуре и в условиях действующего давления, то можно легко определить поток воздуха для любого положения дроссельной заслонки при этой скорости. Это осуществляется с помощью программирования ECV, определить поток воздуха при широко открытой заслонке и конкретную скорость двигателя, при определенных условиях работы и с помощью введения соответствующих коэффициентов вычисления потока воздуха при той же скорости для диапазона нагрузочных режимов, которые встречаются при нормальной работе двигателя.
Подходящим алгоритмом для вычисления IACC при широко открытой заслонке /WOT/ является:
Figure 00000001

IACCwot подаваемая в цилиндр за цикл масса воздуха при широко открытой заслонке,
Dсм константа рабочего объема цилиндра,
К1 коэффициент калибровки,
Pat атмосферное давление /кПа/,
P давление выхлопных газов /в установившемся режиме/ (кПа),
К2 коэффициент давления выхлопных газов,
Тст температурный коэффициент /С/,
Tch температура нагнетаемой смеси /С/.
Таким образом, если вычислен IACCwot для конкретной скорости двигателя, атмосферном давлении, температуре нагнетаемой смеси и давлении выхлопных газов, то, используя вышеупомянутый алгоритм, ECV может определить IACC для любой нагрузки, определяемой по положению заслонки, при выбранной скорости двигателя, коэффициенты для которой определены и хранятся в памяти.
Действующий IACC при любой выбранной скорости определяется как:
IACCld IACCwot•Kld,
IACCld подаваемая масса воздуха на цилиндр за цикл при выбранной нагрузке,
Kld выбранный коэффициент нагрузочного режима.
Таким образом видно, что с помощью создания базы величин IACC для существующей скорости, атмосферных условий и условий работы двигателя может быть вычислен IACC для любой комбинации действующих скоростей и нагрузок /положений заслонки/.
Алгоритм может включать учет эффективности захвата на основе карты эффективности захвата, введенной в ECV таким образом, что вычисления могут быть осуществлены на основе действующей массы воздуха, захваченного в цилиндре двигателя за цикл. Это может быть, в частности, подходящим в отношении двухтактового двигателя. Также, в противоположность введению карты, алгоритм может быть модифицирован до фактически прямого вычисления захватываемой массы воздуха на цилиндр за цикл.
Используя скорость и нагрузку в качестве задающих параметров, на основе вычисленного расхода воздуха для конкретных существующих условий работы и для существующих Pat, Pex, Tch определяется требуемая масса топлива на цилиндр за цикл, названная FPCcalc. Эта FPCcalc определяется для однородной подачи топливной смеси так же, как это желательно ниже WOT и для других режимов с обогащенной горючей смесью. Тем не менее, при условиях расслаивания горючей смеси может быть лучше не связывать напрямую топливный расход с вычисленным потоком воздуха.
Предполагается, что карта весовых коэффициентов, снова используя скорость и положение дроссельной заслонки в качестве опрашиваемых параметров, будет такой, что действительная подача топлива /FPCdelv/ находится на уровне между EPCcalib и FPCcalc; FPCcalib является калиброванной FPC, зависящей напрямую от нагрузки на двигатель и от конкретной скорости, т.е. FPCdelv= FPCcalib+Alpha(FPCcalc-FPCcalib).
По определению термин alpha /весовой множитель/ принимает значения в промежутке между нулем и единицей, калибровку можно выбрать так, чтобы удовлетворить желаемому контрольному отрезку или части от каждого контрольного отрезка. Например, может быть выбрано сохранение выражения FPCdelv=FPCcalib, пока сохраняются однородные условия с последующим последовательным изменением множителя alpha до 1, как функция положения заслонки. При условиях WOT величина alpha всегда равна 1, чтобы внести полную коррекцию для изменения внешних условий.
При условиях расслаивания горючей смеси, например при низкой нагрузке, обеспечено то, что подаваемого потока воздуха не так мало для достижения предела отсутствия воспламенения.
Преимуществом этого является то, что результирующий топливный уровень может быть очень стабильным без использования системы фильтрования, что ухудшает текущий режим работы.
Определение различных констант и коэффициентов осуществляется в процессе калибровки и будет индивидуальным для каждой конкретной конфигурации семейства двигателей.
Принципиальными характеристиками конфигурации двигателя, которые будут влиять на константы и коэффициенты, являются система подачи топлива в двигатель и выхлопная система вместе с впуском и выхлопным выходом. Для определения этих констант и коэффициентов двигатель прогоняют в течение дня с известными внешними условиями, а затем вводят изменения в эти условия для определения эффекта воздействия этих изменений на поток воздуха.
Вначале двигатель прогоняют с широко открытой заслонкой при наиболее распространенных внешних условиях и вычисляют действующее количество воздуха на цилиндр за цикл для набора выбранных скоростей во время нормального режима работы двигателя. Дальнейшие измерения подаваемого воздуха в цилиндр за цикл осуществляют с введением изменений во внешнее давление, давление выхлопных газов и в температуру горючей смеси при том же наборе выбранных скоростей во время нормального скоростного режима. На основе этой информации могут быть определены коэффициенты, относящиеся к индивидуальному влиянию атмосферного давления, давления выхлопных газов и температуры горючей смеси. После этого вышеперечисленные измерения повторяются для частично открытых положений дроссельной заслонки и из этих результатов определяется коэффициент отношения между потоком воздуха при широко открытой дроссельной заслонке и потоком воздуха при соответствующем частично открытом положении заслонки.
Коэффициент, определяемый как указывалось раньше, может быть затем применен для всех двигателей той же конструкции, что и конструкция двигателя, используемого для калибровки, даже могут быть созданы соответствующие карты для хранения в памяти с дальнейшим использованием для контроля системы впрыскивания топлива и управления такими двигателями.
Как упоминалось ранее, установленный предпочтительный алгоритм позволяет вычислять поток воздуха через двигатель при широко открытой заслонке и обеспечивает базу для простого способа определения потока воздуха через двигатель без потребности в датчике, предназначенном для измерения потока воздуха. Это стало возможным за счет важного открытия, заключающегося в том, что для одинаковых условий работы Pex, Pat и Tch соотношение потока воздуха при любом конкретном положении заслонки находится в постоянной пропорции к потоку воздуха при WOT для любой заданной скорости. Важно учитывать то, что условия Pat, Pex и Tch должны быть одинаковыми как для частичной нагрузки, так и для состояния с WOT.
Интуитивно ясно, что Pat и Tch будут оставаться практически без изменений для нормальной работы при частичной нагрузке и при WOT. Тем не менее, по мере того, как нагрузка увеличивается с частичной до WOT, то Pex будет также увеличиваться. Это, в частности, справедливо для двухтактовых двигателей и поэтому сохранение Pex константой является искусственным состоянием, которое не будет встречаться на практике. Поэтому при прогонке двигателя на различных нагрузках и скоростях с одинаковыми Pat и Tch должна быть установлена карта Kld, которая учитывает изменения, происходящие из-за влияния нагрузки и скорости на давление выхлопных газов Pex. Соответствующая установленная карта может быть потом введена в память ECV так, чтобы IACCld определялся как:
IACCld=IACCwot•Kld
Температурная константа Tст предпочтительного алгоритма также меняется со скоростью и нагрузкой, и, исходя из алгоритма, показано:
Figure 00000002

Так по набору двух тестов
1/ при обычных внешних условиях,
2/ при повышенной Tch с сохранением в равновесии всех других условий и повторении этих тестов для серии скоростей и комбинаций нагрузок могут быть созданы соответствующие карты опроса и объединены в памяти ECV так, что Tст может быть найдена для любой комбинации нагрузки на двигатель и скорости.
Для определения констант К1 и К2 известно, что при WOT условиях Kld=1; и как это может быть выведено из предпочтительного алгоритма:
Figure 00000003

где:
Figure 00000004

и
Figure 00000005

С помощью двух тестов на двигателе как при WOT, так и по всему диапазону выбранных скоростей двигателя:
1/ при обычных внешних условиях,
2/ при наведенном заднем давлении выхлопа;
повторения этих тестов для серии скоростей двигателя и взятием Tст при WOT с предварительной ссылкой на карты может быть получена соответствующая карта поиска для К1 и К2 при WOT.
Необходимо также получить К1 и К2 для работы при частичной нагрузке, так как чувствительность двигателя к давлению выхлопа меняется с нагрузкой /положением дроссельной заслонки/. Соответственно ранее указанные тесты в отношении К1 и К2 при WOT повторяют для каждой скорости и значения нагрузки.
Используя данные из этих тестов и ранее полученные данные, относящиеся к Tст и Kld, определяют К1 и К2 при частичной нагрузке для нормального скоростного режима по следующей формуле:
Figure 00000006

и
Figure 00000007

С помощью объединения данных К1 и К2 как для WOT, так и для всех значений нагрузки и скоростных рабочих режимов, могут быть составлены соответствующие поисковые карты для К1 и К2 и введены в память ECV так, чтобы во время работы в алгоритме при определении IACCwot для превалирующих условий работы двигателя могли быть использованы соответствующие коэффициенты.
Dст является константой, имеющей отношение к геометрии и к другим физическим характеристикам двигателя.
Эта константа определяется экспериментально и, в частности, имеет отношение к объему цилиндра двигателя в верхней мертвой точке.
Сопроводительный рисунок содержит логическую диаграмму практической работы способа настоящего изобретения.
Приведенная логическая диаграмма относится к использованию ранее обсуждаемых различных карт и выражений. Представленная на логической диаграмме процедура выполняется периодически по мере работы двигателя. Частота считываний может быть соотнесена с периодом цикла двигателя, но желательно, чтобы она была независима по времени от скорости двигателя.
Стадия 1 считать сигнал с датчиков, указывающих соответственно нагрузку на двигатель, скорость двигателя, внешнюю температуру, атмосферное давление и давление выхлопных газов.
Стадия 2 поиск на соответствующих картах величин К1, К2 и Tст для установленной нагрузки на двигатель и скорости и загрузка найденных величин в алгоритм. Также вводятся в алгоритм полученные Pat, Tch и Pex.
Стадия 3 вычисление IACCwot на основе вводов в алгоритм при стадии 2.
Стадия 4 поиск величины K1α для установленной нагрузки на двигатель и скорости, вычисление IACCtp из величины K1α и IACCwot. На этой стадии осуществляются вычисления существующего потока воздуха в двигатель, которые могут быть использованы различными способами для последующего определения требуемого количества топлива на цилиндр двигателя с целью получения необходимого соотношения воздух/топливо в камере сгорания двигателя.
Одним из традиционных путей определения необходимого двигателю РС является:
стадия 5 поиск необходимого соотношения воздух/топливо по соответствующей карте соотношений для существующей нагрузки и скорости двигателя и применение этого соотношения для вычисляемого IACCtp и вычисляемого FPCcalc.
Как ранее обсуждалось в описании, в случае расслоения горючей смеси двигателя, т. е. при низких нагрузках и, следовательно, высоком соотношении воздух/топливо, существует переизбыток воздуха, способствующего сгоранию всего топлива, поэтому расход топлива в соответствии с FPCcalc является соответствующим и приемлемым. Однако при условиях, когда смесь воздух/топливо является существенно однородной, как при WOT, то становится разумным изменить расход топлива на FPCcalib в соответствии с ранее приведенной формулой:
FPCdelv=FPCcalib+Alpha(FPCcalc-FPCcalib)
С целью улучшения эффективности этой коррекции FPC на стадии 6 устанавливаются карты поиска для FPCcalib и Alpha, соответствующие нагрузке на двигатель и скорости, для замены FPCdelv в соответствии с вышеприведенной формулой на FPCdelv.
На основе вновь вычисленной величины FPCdelv на стадии 7 подается соответствующий сигнал в систему топливной подачи, чтобы обеспечить соответствующие цилиндры двигателя необходимым количеством топлива.
При реализации изобретения для обеспечения ввода данных в ECV, как правило, используются обычные датчики атмосферного давления и температуры, давления выхлопных газов и уровня нагрузки на двигатель, последний обычно является индикатором положения дроссельной заслонки. Все эти компоненты для этих целей хорошо известны и общедоступны, поэтому не приводится их специальное описание.

Claims (15)

1. Способ определения массы воздуха (IАСС), подаваемого в цилиндр двигателя внутреннего сгорания за цикл, заключающийся в вычислении упомянутой массы воздуха на основе данных, характеризующих режим работы двигателя, отличающийся тем, что осуществляют вычисление IАСС с широко открытой заслонкой (IАССwot) для существующей скорости двигателя и условий работы, выбор из заранее определенных коэффициентов, указывающих соотношение между IАСС wot и IACC при ранее выбранной частичной нагрузке, коэффициента, относящегося к текущей нагрузке и скорости, и применение упомянутого выбранного коэффициента к IАССwot для определения действующего IАСС (IАССld).
2. Способ по п. 1, отличающийся тем, что при вычислении IАССwot факторы, относящиеся к существующему атмосферному давлению и давлению выхлопных газов, включают как функции.
3. Способ по п. 2, отличающийся тем, что фактор, относящийся к по крайней мере одному из существующих значений атмосферного давления, атмосферных температур и давлений выхлопных газов, модулируют, чтобы ограничить его влияние при предопределенных рабочих условиях.
4. Способ по п. 1, отличающийся тем, что определение IACC осуществляют с помощью процессора, запрограммированного на вычисление IАССwot, поиск коэффициента, указывающего соотношение между IАССwot и IАСС и вычисление IАССld.
5. Способ по п. 4, отличающийся тем, что упомянутый процессор запрограммирован на прием сигналов, соответствующих атмосферному давлению и давлению выхлопных газов, и включение в упомянутое вычисление IАССwot факторов, соответствующих значениям атмосферного давления и давления выхлопных газов.
6. Способ определения массы воздуха (IАСС), подаваемого в цилиндр двигателя внутреннего сгорания за цикл, заключающийся в вычислении упомянутой массы воздуха на основе данных, характеризующих режим работы двигателя, отличающийся тем, что осуществляют программирование процессора на алгоритм определения IАССwot для двигателя при широко открытой дроссельной заслонке (WOT) при выбранном скоростном режиме работы двигателя, хранение в памяти коэффициентов отношения IАССwot к IАСС при выбранных режимах нагрузки, задаваемых ниже WOT, при выбранном скоростном режиме, определение во время работы двигателя его скорости и нагрузочного режима с выбором соответствующих коэффициентов для определяемой скорости двигателя и нагрузки, введение в запрограммированный алгоритм коэффициента отношения IАССwot и IАСС, соответствующего определенной нагрузке на двигатель при определенной скорости двигателя, вычисление на основе названных коэффициентов значения IАССld для существующих условий работы двигателя.
7. Способ по п. 6, отличающийся тем, что процессор программируют так, чтобы алгоритм устанавливал IАССwot в ответ на изменения по меньшей мере в одном из вводимых значений атмосферного давления (Pat), давления выхлопных газов (Pex) и температуры воздуха (Tch) из соответствующих данных величин, причем Pat, Pех и Tch определяют в процессе paбoты двигателя.
8. Способ по п. 7, отличающийся тем, что фактор, относящийся к по крайней мере одному из значений Pat, Pех и Tch, модулируют, чтобы ограничить его влияние при предопределенных рабочих условиях.
9. Способ определения массы воздуха (IАСС), подаваемого в цилиндр двигателя внутреннего сгорания за цикл, заключающийся в вычислении упомянутой массы воздуха на основе данных, характеризующих режим работы конкретного двигателя, отличающийся тем, что осуществляют программирование процессора с алгоритмом определения IАСС для двигателя с широко открытой дроссельной заслонкой (WOT) (IACCwot) при выбранном скоростном режиме работы двигателя в зависимости от атмосферного давления (Pat), давления выхлопных газов (Pex) и температуры впускного трубопровода (Tch), сохранение в памяти соответствующих коэффициентов, относящихся к Pat, Pex и Tch для выбранных скоростей двигателя в диапазоне рабочих скоростей, сохранение в памяти коэффициентов отношения IACCwot к IACC при выбранных нагрузочных режимах, задаваемых ниже WOT, для каждой выбранной скорости, определение во время работы двигателя при Pat, Pex и Tch скорости двигателя и нагрузочного режима с выбором соответствующих коэффициентов для каждых из выбранных нагрузок и скоростей двигателя, введение в программный алгоритм соответствующих сигналов, указывающих существующие Pat, Pex и Tch, введение в программный алгоритм коэффициента отношения IАССwot к IАCС, соответствующего определенной нагрузке при определенной скорости двигателя, определение на основе упомянутых вводов в алгоритм IАСС для существующих условий работы двигателя IАССld, определение из упомянутого IАССld и из определенной скорости двигателя и нагрузки необходимой массы топлива и на цилиндр за цикл (FPC cale)
10. Способ по п. 9, отличающийся тем, что осуществляют прямое определение на основе измеренной нагрузки и скорости необходимой подачи топлива за цикл (FPC calib) определение с помощью дальнейшего программирования алгоритма в процессоре, количества топлива на цилиндр, которое действительно подается (FPC delv), причем Pc delv является функцией FPC calib и FPC саle.
11. Способ по п. 10, отличающийся тем, что FPC delv меняется от FPC calib при скорости двигателя в режиме малого газа до FPC саle при WOT.
12. Способ по любому из пп. 6 10, отличающийся тем, что алгоритмом является
Figure 00000008

где IACCwot подаваемая в цилиндр за цикл масса воздуха при широко открытой заслонке;
К1 коэффициент калибровки;
Dcm константа рабочего объема цилиндра;
Pat атмосферное давление, кПа;
Рех давление выхлопных газов в установившемся режиме, кПа;
К2 коэффициент давления выхлопных газов;
Tcm температурный коэффициент, oС;
Tch температура нагнетаемой смеси, oС.
13. Двигатель внутреннего сгорания, имеющий систему управления двигателем с дополнением определения массы подаваемого воздуха на цилиндр за цикл в соответствии со способом, заявленным в п. 1.
14. Устройство для определения массы воздуха (IACC), подаваемого в цилиндр двигателя внутреннего сгорания за цикл, содержащее устройство вычисления упомянутой массы воздуха на основе данных, характеризующих режим работы двигателя, отличающееся тем, что устройство вычисления содержит средство для вычисления IАСС при широко открытой заслонке (IACCwot) для существующей скорости и условий работы, средство для выбора из предопределенных коэффициентов, указывающих соотношение между IACCwot и IАСС при заранее выбранной нагрузке, коэффициента, относящегося к текущей нагрузке и скорости, средство для применения выбранного коэффициента к названному IACCwot для определения текущего IАСС (IАССld).
15. Устройство по п. 14, отличающееся тем, что средство для вычисления IACCwot содержит средство для получения сигнала, соответствующего существующему атмосферному давлению и давлению выхлопных газов, и включения данного сигнала в упомянутое вычисление IACCwot.
16. Устройство для определения массы воздуха (IACC), подаваемого в цилиндр двигателя внутреннего сгорания за цикл, содержащее устройство вычисления упомянутой массы воздуха на основе данных, характеризующих режим работы двигателя, отличающееся тем, что устройство вычисления содержит процессор, программированный с алгоритмом определения IACC для двигателя при широко открытой дроссельной заслонке (WOT) при выбранном скоростном режиме работы двигателя, память для хранения коэффициентов отношения IACC при WOT (IACCwot) к IACC при выбранных режимах нагрузки, задаваемых ниже WOT при названном выбранном режиме работы двигателя, средство для определения во время работы двигателя его скорости и нагрузочного режима с выбором соответствующих коэффициентов для установленной скорости двигателя и нагрузки, средство для ввода в программный алгоритм коэффициента отношения IACCwot к IACC, соответствующего определенной нагрузке на двигатель при определенной скорости, средство для вычисления на основе названных коэффициентов значения IACC для существующих условий работы двигателя (IACCld).
RU9293051525A 1991-01-14 1992-01-14 Способ определения массы воздуха, поступающего в цилиндр двигателя (варианты), устройство для определения массы поступающего воздуха (варианты) и двигатель внутреннего сгорания RU2090771C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPK417791 1991-01-14
AUPK4177 1991-01-14
PCT/AU1992/000014 WO1992012339A1 (en) 1991-01-14 1992-01-14 Engine management system

Publications (2)

Publication Number Publication Date
RU93051525A RU93051525A (ru) 1996-09-10
RU2090771C1 true RU2090771C1 (ru) 1997-09-20

Family

ID=3775176

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9293051525A RU2090771C1 (ru) 1991-01-14 1992-01-14 Способ определения массы воздуха, поступающего в цилиндр двигателя (варианты), устройство для определения массы поступающего воздуха (варианты) и двигатель внутреннего сгорания

Country Status (12)

Country Link
US (2) US5427083A (ru)
EP (1) EP0567525B1 (ru)
JP (1) JPH06504349A (ru)
KR (1) KR0169503B1 (ru)
AT (1) ATE166430T1 (ru)
AU (1) AU665344B2 (ru)
BR (1) BR9205424A (ru)
CA (1) CA2099983C (ru)
CZ (1) CZ285395B6 (ru)
DE (1) DE69225582T2 (ru)
RU (1) RU2090771C1 (ru)
WO (1) WO1992012339A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488011C2 (ru) * 2007-10-31 2013-07-20 ФИАТ ГРУП АУТОМОБИЛЕС С.п.А. Способ определения расхода воздуха на входе в двигатель внутреннего сгорания и двигатель внутреннего сгорания
RU2525862C2 (ru) * 2009-02-23 2014-08-20 Пежо Ситроен Отомобиль Са Способ и устройство для оценки массы свежего воздуха в камере сгорания, способ оценки полного заполнения, блок записи для этих способов и автомобиль, оборудованный устройством для оценки
RU2616727C2 (ru) * 2011-12-15 2017-04-18 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ работы двигателя (варианты) и система управления двигателем

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ285395B6 (cs) * 1991-01-14 1999-08-11 Orbital Engine Company (Australia) Pty Limited Způsob řízení spalovacího motoru
JP2755018B2 (ja) * 1992-02-28 1998-05-20 三菱自動車工業株式会社 吸排気弁停止機構付きエンジンの吸気量算出装置
US5622158A (en) * 1994-03-10 1997-04-22 Sanshin Kogyo Kabushiki Kaisha Feedback control system for marine propulsion engine
US5520161A (en) * 1995-07-17 1996-05-28 Alternative Fuel Sytems Inc. Exhaust gas recirculation system for a compression ignition engine and a method of controlling exhaust gas recirculation in a compression ignition engine
JPH0968094A (ja) * 1995-08-30 1997-03-11 Unisia Jecs Corp 内燃機関の空燃比制御装置
DE19618691A1 (de) * 1996-05-09 1997-11-13 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
AUPO430796A0 (en) * 1996-12-20 1997-01-23 Aubert Electronics Pty. Limited Mass flow determination
US6405715B2 (en) * 1996-12-20 2002-06-18 Aubert Electronics Limited Mass flow determination
SE522112C2 (sv) * 1997-09-22 2004-01-13 Volvo Car Corp Förfarande och anordning för bestämning av temperaturvärden hos materialet i åtminstone en temperaturkritisk komponent
US6343596B1 (en) 1997-10-22 2002-02-05 Pc/Rc Products, Llc Fuel delivery regulator
US6390082B1 (en) 2000-07-13 2002-05-21 Caterpillar Inc. Method and apparatus for controlling the current level of a fuel injector signal during sudden acceleration
US6363314B1 (en) 2000-07-13 2002-03-26 Caterpillar Inc. Method and apparatus for trimming a fuel injector
US6386176B1 (en) 2000-07-13 2002-05-14 Caterpillar Inc. Method and apparatus for determining a start angle for a fuel injection associated with a fuel injection signal
US6705277B1 (en) 2000-07-13 2004-03-16 Caterpillar Inc Method and apparatus for delivering multiple fuel injections to the cylinder of an engine wherein the pilot fuel injection occurs during the intake stroke
US6450149B1 (en) 2000-07-13 2002-09-17 Caterpillar Inc. Method and apparatus for controlling overlap of two fuel shots in multi-shot fuel injection events
US6480781B1 (en) 2000-07-13 2002-11-12 Caterpillar Inc. Method and apparatus for trimming an internal combustion engine
US6453874B1 (en) 2000-07-13 2002-09-24 Caterpillar Inc. Apparatus and method for controlling fuel injection signals during engine acceleration and deceleration
US6606974B1 (en) 2000-07-13 2003-08-19 Caterpillar Inc Partitioning of a governor fuel output into three separate fuel quantities in a stable manner
US6363315B1 (en) 2000-07-13 2002-03-26 Caterpillar Inc. Apparatus and method for protecting engine electronic circuitry from thermal damage
US6415762B1 (en) 2000-07-13 2002-07-09 Caterpillar Inc. Accurate deliver of total fuel when two injection events are closely coupled
US6467452B1 (en) 2000-07-13 2002-10-22 Caterpillar Inc Method and apparatus for delivering multiple fuel injections to the cylinder of an internal combustion engine
US6371077B1 (en) 2000-07-13 2002-04-16 Caterpillar Inc. Waveform transitioning method and apparatus for multi-shot fuel systems
US6402057B1 (en) 2000-08-24 2002-06-11 Synerject, Llc Air assist fuel injectors and method of assembling air assist fuel injectors
US6484700B1 (en) 2000-08-24 2002-11-26 Synerject, Llc Air assist fuel injectors
US6302337B1 (en) 2000-08-24 2001-10-16 Synerject, Llc Sealing arrangement for air assist fuel injectors
JP3938670B2 (ja) * 2000-09-14 2007-06-27 本田技研工業株式会社 燃料噴射制御装置
US6516773B2 (en) 2001-05-03 2003-02-11 Caterpillar Inc Method and apparatus for adjusting the injection current duration of each fuel shot in a multiple fuel injection event to compensate for inherent injector delay
US6516783B2 (en) 2001-05-15 2003-02-11 Caterpillar Inc Camshaft apparatus and method for compensating for inherent injector delay in a multiple fuel injection event
EP1671027A4 (en) * 2003-09-10 2014-12-10 Pcrc Products DEVICE AND METHOD FOR CONTROLLING THE OPERATIONS OF AN INTERNAL COMBUSTION ENGINE EQUIPPED WITH AN ELECTRONIC INJECTION SYSTEM
US20070084444A1 (en) * 2003-09-10 2007-04-19 Bellistri James T Electronic fuel regulation system for small engines
GB0704377D0 (en) * 2007-03-06 2007-04-11 Lysanda Ltd Calibration tool
US7644574B2 (en) * 2006-08-15 2010-01-12 General Electric Company Methods and systems for gas turbine engine control
US7856967B2 (en) * 2008-07-17 2010-12-28 Honda Motor Co., Ltd. Method of determining ambient pressure for fuel injection
US11280258B2 (en) 2018-12-07 2022-03-22 Polaris Industries Inc. Exhaust gas bypass valve system for a turbocharged engine
US11639684B2 (en) 2018-12-07 2023-05-02 Polaris Industries Inc. Exhaust gas bypass valve control for a turbocharger for a two-stroke engine
US11131235B2 (en) 2018-12-07 2021-09-28 Polaris Industries Inc. System and method for bypassing a turbocharger of a two stroke engine
US20200182164A1 (en) 2018-12-07 2020-06-11 Polaris Industries Inc. Method And System For Predicting Trapped Air Mass In A Two-Stroke Engine
US11828239B2 (en) 2018-12-07 2023-11-28 Polaris Industries Inc. Method and system for controlling a turbocharged two stroke engine based on boost error
US11236668B2 (en) 2018-12-07 2022-02-01 Polaris Industries Inc. Method and system for controlling pressure in a tuned pipe of a two stroke engine
US11352935B2 (en) 2018-12-07 2022-06-07 Polaris Industries Inc. Exhaust system for a vehicle
US11725573B2 (en) 2018-12-07 2023-08-15 Polaris Industries Inc. Two-passage exhaust system for an engine
US11174779B2 (en) 2018-12-07 2021-11-16 Polaris Industries Inc. Turbocharger system for a two-stroke engine
US11788432B2 (en) 2020-01-13 2023-10-17 Polaris Industries Inc. Turbocharger lubrication system for a two-stroke engine
CA3105239C (en) 2020-01-13 2023-08-01 Polaris Industries Inc. Turbocharger system for a two-stroke engine having selectable boost modes
US11434834B2 (en) 2020-01-13 2022-09-06 Polaris Industries Inc. Turbocharger system for a two-stroke engine having selectable boost modes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2457436C2 (de) * 1974-12-05 1984-09-06 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffzumeßeinrichtung für Brennkraftmaschinen
US4404946A (en) * 1979-09-27 1983-09-20 Ford Motor Company Method for improving fuel control in an internal combustion engine
US4408585A (en) * 1979-10-29 1983-10-11 Teledyne Industries, Inc. Fuel control system
US4452207A (en) * 1982-07-19 1984-06-05 The Bendix Corporation Fuel/air ratio control apparatus for a reciprocating aircraft engine
JPH02104930A (ja) * 1988-10-13 1990-04-17 Fuji Heavy Ind Ltd 内燃機関の燃料噴射制御装置
US4920790A (en) * 1989-07-10 1990-05-01 General Motors Corporation Method and means for determining air mass in a crankcase scavenged two-stroke engine
DE3929746A1 (de) * 1989-09-07 1991-03-14 Bosch Gmbh Robert Verfahren und einrichtung zum steuern und regeln einer selbstzuendenden brennkraftmaschine
JP2518717B2 (ja) * 1990-04-24 1996-07-31 株式会社ユニシアジェックス 内燃機関の冷却装置
US5029569A (en) * 1990-09-12 1991-07-09 Ford Motor Company Method and apparatus for controlling an internal combustion engine
JPH04234542A (ja) * 1990-12-28 1992-08-24 Honda Motor Co Ltd 内燃エンジンの空燃比制御方法
CZ285395B6 (cs) * 1991-01-14 1999-08-11 Orbital Engine Company (Australia) Pty Limited Způsob řízení spalovacího motoru
JP2841921B2 (ja) * 1991-05-30 1998-12-24 トヨタ自動車株式会社 内燃機関の電子制御燃料噴射装置
US5239971A (en) * 1991-08-03 1993-08-31 Mitsubishi Denki K.K. Trouble diagnosis device for exhaust gas recirculation system
JP2881075B2 (ja) * 1992-08-05 1999-04-12 三菱電機株式会社 排気還流制御装置の故障診断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент США N 4404946, кл. F 02 Д 5/00, 1983. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488011C2 (ru) * 2007-10-31 2013-07-20 ФИАТ ГРУП АУТОМОБИЛЕС С.п.А. Способ определения расхода воздуха на входе в двигатель внутреннего сгорания и двигатель внутреннего сгорания
RU2525862C2 (ru) * 2009-02-23 2014-08-20 Пежо Ситроен Отомобиль Са Способ и устройство для оценки массы свежего воздуха в камере сгорания, способ оценки полного заполнения, блок записи для этих способов и автомобиль, оборудованный устройством для оценки
RU2616727C2 (ru) * 2011-12-15 2017-04-18 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ работы двигателя (варианты) и система управления двигателем

Also Published As

Publication number Publication date
JPH06504349A (ja) 1994-05-19
US5588415A (en) 1996-12-31
AU665344B2 (en) 1996-01-04
KR0169503B1 (ko) 1999-01-15
US5427083A (en) 1995-06-27
CZ135393A3 (cs) 1999-04-14
WO1992012339A1 (en) 1992-07-23
EP0567525A4 (en) 1996-12-11
CA2099983C (en) 2000-05-30
BR9205424A (pt) 1994-03-15
DE69225582D1 (de) 1998-06-25
CZ285395B6 (cs) 1999-08-11
DE69225582T2 (de) 1998-10-22
EP0567525B1 (en) 1998-05-20
EP0567525A1 (en) 1993-11-03
CA2099983A1 (en) 1992-07-15
KR930703533A (ko) 1993-11-30
AU1170092A (en) 1992-08-17
ATE166430T1 (de) 1998-06-15

Similar Documents

Publication Publication Date Title
RU2090771C1 (ru) Способ определения массы воздуха, поступающего в цилиндр двигателя (варианты), устройство для определения массы поступающего воздуха (варианты) и двигатель внутреннего сгорания
US7877195B2 (en) Method for the estimation of combustion parameters
US5331936A (en) Method and apparatus for inferring the actual air charge in an internal combustion engine during transient conditions
US4942848A (en) Air-fuel ratio control system for automotive internal combustion engine or the like with fuel type discrimination capabilities
US4449501A (en) Device for adjusting engine timing
US5029569A (en) Method and apparatus for controlling an internal combustion engine
US4517948A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engines
US4481929A (en) Method and device for atmospheric pressure-dependent correction of air/fuel ratio for internal combustion engines
US4593666A (en) Adaptive process for controlling fuel injection in an engine
JP2001289092A (ja) 圧縮自己着火式内燃機関
US4582035A (en) Fuel supply control method for multicylinder internal combustion engines
US4593665A (en) Fuel supply control method for multicylinder internal combustion engines
US4545355A (en) Closed-loop mixture controlled fuel injection system
US4509485A (en) Method and device for back pressure-dependent correction of air/fuel ratio for internal combustion engines
US4492206A (en) Device for intake air temperature-dependent correction of air/fuel ratio for internal combustion engines
CA1172731A (en) Method for improving fuel control in an internal combustion engine
JPH02241948A (ja) 内燃機関の吸入空気状態量検出装置
JP3095326B2 (ja) 電子制御燃料噴射システム
JP2548476Y2 (ja) 内燃機関の燃料噴射装置
JP3621731B2 (ja) エンジンの空燃比制御方法
JP2914973B2 (ja) 電子式エンジン制御装置
JPH01106945A (ja) 内燃機関の学習制御装置
JPH01106943A (ja) 内燃機関の学習制御装置
JPH01106941A (ja) 内燃機関の学習制御装置
JPH01106951A (ja) 内燃機関の学習制御装置