RU2089611C1 - Штамм сно культивируемых клеток китайского хомячка - продуцент эритропоэтина человека - Google Patents

Штамм сно культивируемых клеток китайского хомячка - продуцент эритропоэтина человека Download PDF

Info

Publication number
RU2089611C1
RU2089611C1 RU95111858A RU95111858A RU2089611C1 RU 2089611 C1 RU2089611 C1 RU 2089611C1 RU 95111858 A RU95111858 A RU 95111858A RU 95111858 A RU95111858 A RU 95111858A RU 2089611 C1 RU2089611 C1 RU 2089611C1
Authority
RU
Russia
Prior art keywords
cells
epo
gene
strain
erythropoietin
Prior art date
Application number
RU95111858A
Other languages
English (en)
Other versions
RU95111858A (ru
Inventor
М.Г. Зеленин
И.А. Крамерова
С.Л. Колобков
Н.С. Филякина
И.А. Филатов
Original Assignee
Зеленин Михаил Гаврилович
Крамерова Ирина Александровна
Колобков Сергей Леонидович
Филякина Наталья Саидовна
Филатов Игорь Александрович
Научно-производственный центр медицинской биотехнологии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зеленин Михаил Гаврилович, Крамерова Ирина Александровна, Колобков Сергей Леонидович, Филякина Наталья Саидовна, Филатов Игорь Александрович, Научно-производственный центр медицинской биотехнологии filed Critical Зеленин Михаил Гаврилович
Priority to RU95111858A priority Critical patent/RU2089611C1/ru
Publication of RU95111858A publication Critical patent/RU95111858A/ru
Application granted granted Critical
Publication of RU2089611C1 publication Critical patent/RU2089611C1/ru

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Использование: биотехнология, а именно промышленное производство эритропоэтина человека. Сущность: методом введения клонированного гена эритропоэтина человека в составе плазмиды PSVdepoL Mo в клетки перевиваемой линии яичника китайского хомячка CHO tk получен штамм ВСКК/П/637Д. Показано, что штамм CHO Epo-2 обладает высокой (1500-1800 ед/мл) и стабильной в неселективных условиях продукцией эритропоэтина человека и может быть использован для промышленного производства. 7 ил.

Description

Изобретение относится к биотехнологии, а именно к промышленному производству эритропоэтина человека, касается создания нового штамма клеток китайского хомячка, продуцирующих эритропоэтин человека, который может быть использован для лечебных и исследовательских целей в медицине и биологии.
Гликопротеид эритропоэтин (ЭПО) является гормоном, регулирующим синтез эритроцитов у млекопитающих. Он продуцируется преимущественно клетками почки в постнатальном периоде, а также эмбриональной печенью. Синтез и секреция ЭПО стимулируется при снижении концентрации кислорода в тканях и/или при уменьшении эритроцитарной массы. Показано, что ЭПО действует на узкую популяцию коммиттированных предшественников эритроидных клеток, локализованных в костном мозге и селезенке, и являются фактором терминальной дифференцировки этого типа клеток. Высокоочищенный гормон не влияет на эритроидные предшественники, миелоидные и стволовые клетки. Однако пролиферация и дифференцировка поздних эритроидных предшественников зависит от ЭПО, поэтому при дефиците гормона развиваются тяжелые формы анемии. Обычно подобная потология связана с поражением паренхимы почек, т.е. при диагнозе "почечная недостаточность".
ЭПО является перспективным терапевтическим средством, однако получение его в достаточных количествах из природных источников (сыворотки крови животных с индуцированной анемией и др.) задача нереальная в связи с крайне низким содержанием гормона в сырье и сложностью технологии очистки. Единственная альтернатива производство ЭПО с помощью генноинженерной технологии. Однако биологическая активность ЭПО зависит не только от правильной последовательности аминокислот в белковой молекуле, но также и от посттрансляционной модификации гликозилирования молекулы ЭПО. На долю углеводной части приходится около 40% молекулярной массы ЭПО, причем особенно важным для сохранения активности in vivo является сиалирование (наличие остатков N-ацетилнейраминовой кислоты) молекулы ЭПО. Адекватная модификация ЭПО с полным сохранением специфической активности достигается созданием продуцента рекомбинантного ЭПО на основе некоторых линий клеток млекопитающих.
Прототипом изобретения является штамм CHO Epo-1 [1] продуцирующий до 50 ЕД ЭПО в 1,0 мл среды.
Известен штамм продуцент эритропоэтина человека с активностью до 1600 ЕД/мл, созданный на основе линии клеток китайского хомячка фирмой AMGEN (США) [2] Этот продуцент получен в результате амплификации интегрированной плазмиды, содержащей гены ЭПО и дигидрофлатредуктазы, методом культивирования клеток в присутствии метатрексата. Копийность гена ЭПО в клетках достигает 1000, соответственно достигается и высокий уровень синтеза гормона. Однако метатрексат является дорогим реактивом (в РФ не производится), а для поддержания высокой степени копийности введенного гена в клетках продуцентах необходимо наличие высокой концентрации этого агента в среде культивирования. Кроме того, метатрексат является сильным цитостатиком, что удорожает очистку и контроль качества конечного продукта. Поэтому только маточные клетки продуцента культивируются в присутствии метатрексата, тогда как клетки, используемые для крупномасштабного культивирования, выращивают на нормальной среде. При этом копийность гена ЭПО уменьшается и уровень синтеза продукта падает в несколько паз. Таким образом, реальная продуктивность клеток при промышленном производстве ниже, чем заявляемого штамма-продуцента.
Кроме того, имеются существенные различия в способе получения штамма-продуцента ЭПО:
AMGEN Зеленин М.Г и др.
1. Ген ЭПО в составе вектора pDSVL-dHuEPO клонирован в виде BstE11/BamH1 фрагмента длиной 4,8 кВ. 1. Ген ЭПО в составе вектора pSVdEpoLMo клонирован в виде BstE11/Bgl11 фрагмента длиной 2,8 кВ.
2. Экспрессия ген ЭПО регулируется промотором поздних генов вируса SV40.
2. Экспрессия гена ЭПО регулируется промотором ранних генов вируса SV40.
3. В гене ЭПО сохранены регуляторные последовательности, содержащие сайты терминации и полиаденилирования. 3. Терминация и полиаденилирование ЭПО-специфического транскрипта обеспечивается за счет регуляторных последовательностей гена Т-антигена вируса SV40.
4. Вектор pDSVL-dHuEPO не содержит гена neor и каких-либо усиливающих транскрипцию последовательности кроме промотора вируса SV40. 4. Вектор pSVDEpoLMo содержит ген neor и LTR вируса MoMuLV.
5. В качестве клеток-реципиентов использованы CHOdgfr-. 5. В качестве клеток-реципиента использованы CHOtk-.
6. При трансфекции клеток-реципиентов использована плазмида, содержащая ген дигидрофолатредуктазы. Последующая амплификация гена ЭПО проводилась в присутствии метатрексата (МТХ). 6. При трансфекции клеток-реципиентов использована плазмида, содержащая ген тимидинкиназы. Последующая амплификация гена ЭПО проводилась в присутствии гипоксантин-аминоптеринтимидин (ГАТ).
7. Копийность гена ЭПО в клетках-продуцентах примерно 1000. 7. Копийность гена ЭПО в клетках-продуцентах примерно 200.
8. Высокий уровень продукции ЭПО стабилен только в селективных условиях.
8. Высокий уровень продукции ЭПО стабилен в неселективных условиях.
Технической задачей изобретения является удешевление процесса получения эритропоэтина человека за счет повышения продуктивности клеточного штамма.
Предлагаемый штамм клеток CHO Epo-2 стабильно продуцирует эритропоэтин в количестве 1500-1800 ЕД/мл среды, адаптирован к средам и сыворотке крупного рогатого скота отечественного производства.
Штамм получен введением рекомбинантной плазмиды pSVdEpoLMo в геном клеток CHO tk-. Клетки CHO tk- представляют собой клон клеток яичника китайского хомячка (CHO), дефектных по гену тимидинкиназы. Клетки CHO tk- не ревертируют к нормальному фенотипу при длительном пассировании в неселективных условиях и культивируются на средах Игла-199 (в отношении 1:1) с добавлением 10% сыворотки крупного рогатого скота и с высокой эффективностью трансфецируются экзогенным ДНК [3]
Условное наименование штамма CHO Epo-2.
Штамм депонирован в специализированной коллекции перевываемых соматических клеток позвоночных Всесоюзной коллекции клеточных культур под номером ВСКК (П)637Д от 26.04.94.
Штамм клеток CHO Epo-2 характеризуется следующими признаками.
Морфологические признаки. Под фазоконтрастным и световым микроскопами культура представлена монослоем эпителио- и фибробластоподобных клеток с овальными ядрами, содержащими мелкие ядрышки. По мере увеличения плотности слоя клетки уменьшаются в размерах и приобретают сферическую форму.
Культуральные свойства. Штамм CHO Epo-2 поддерживается на отечественных средах Игла-199 (в отношении 1:1) с добавлением 10% сыворотки крупного рогатого скота в виде монослойной культуры. Отделение клеток от стекла или пластика проводят смесью 0,25% -ного раствора трипсина и 0,02%-ного раствора Версена (1:10), кратность рассева 1:6-1:8, посевная доза 2•104 - 3•104 клеток на 1 см2 площади сосуда. Плотность монослоя культура достигает к 4-му дню после пассажа.
Криоконсервация. Криоконсервирование проводят на среде Игла-199 (1:1) с 20% сыворотки крупного рогатого скота и 7%-ного диметилсульфоксида в качестве криопротектора. Концентрация клеток 2-3•106 в 1,0 мл. Жизнеспособными после восстановления остаются 75±5% клеток.
Кариологическая характеристика. Кариологический анализ штамма CHO штамма CHO Epo-2 проводили на 8,17 и 36 пассажах. Модальный класс клеточной линии определен подсчетом числа хромосом в 100 метафазных пластинах. Модальное число хромосом 33. Интервал изменчивости 29-34; процент полиплоидии 2. Распределение клеток по числу хромосом следующее: 29 хромосом 6 клеток, 30 хр. 8 клеток, 31 хр. 10 клеток, 32 хр. 32 клетки, 33 хр. 38 клеток, 34 хр. 6 клеток.
На фиг. 1 показан кариотип линии CHO Epo-2. Стрелками отмечены маркеры, несущие амплифицированный ген ЭПО; на фиг. 2 фрагменты метафаз линии CHO Epo-2 с гибридизацией in situ; на фиг. 3 схема структурной организации ДНК рекомбинантного фага, содержащего ген эритропоэтина человека. Ген эритропоэтина человека в составе HindIII-BgIII фрагмента длиной 3 т.п.н. Прямоугольниками обозначены плечи фагового вектора; на фиг. 4 рестриктная карта гена эритропоэтина человека и ее соответствие структуре транскрипционной единице. Цифрами обозначены экзоны; заштрихованы белок кодирующие области. Стрелкой указан сайт локализации последовательности, гомологической олигонуклеотидному зонду N 2. Обозначение рестриктаз: B BgIII; C Sacl; E - BstEII; K KpnI; P PstI; S SmaI; V PruLL; X XbalI; на фиг. 5 - рестриктная карта плазмиды pSVEpo. Плазмида pSVEpo содержит ген эритропоэтина человека под контролем промотора ранних генов вируса SV-40. Длина плазмиды - 6,8 т.п.н; на фиг. 6 плазмида pSvdEpo, несущая ген эритропоэтина человека с делецией 5'-фланкирующей области (HindIII-BgIII-фрагмент). Длина плазмиды - 6,2 т.п.н. на фиг. 7 плазмида pSVdEpoLMo, несущая ген эритропоэтина под контролем промотора ранних генов SV-40 и регуляторных последовательностей длинного концевого повтора вируса лейкоза мышей Молони (LTR MoMuLV). Длина плазмиды 12 т.н.н.
С помощью гибридизации нуклеиновых кислот in situ был проведен анализ линии на наличие в ней маркерных хромосом, несущих трансформированную плазмиду с геном ЭПО. Такой анализ показал, что 100% клеток имеют как обязательный маркер субтелоцентрическую хромосому с районом амплификации гена ЭПО, захватывающим 2/3 длинного плеча (маркер N 6, фиг. 1,2).
При этом 90% клеток в дополнение к этой хромосоме имеют еще маркер N 9, несущий небольшой по степени амплификации участок на дистальном конце длинного плеча субметацентрической хромосомы среднего размера (фиг.2).
Следует отметить, что маркер N 9 можно обнаружить только с помощью метода гибридизации in situ.
Онкогенность клеток линии CHO Epo-2. При введении 10 млн клеток подкожно иммунодефицитным мышам линии nude, образования опухолей не обнаружено при наблюдении в течение 1 месяца.
Контроль штамма CHO Epo-2 на контаминацию. При обследовании клеток штамма на контаминацию (наличие бактерий, грибов, микопаз) были получены отрицательные результаты на уровня 6,18 и 34 пассажей. Цитопатогенные и онкогенные вируса не обнаружены.
Продукция эритропоэтина человека штамм CHO Epo-2. Продукцию эритропоэтина клетками штамма CHO Epo-2 тестировали методом включения 3H-тимидина мышиными эритробластами, иммунобиологическим методом, методом стимуляции образования эритроидных колоний при культивировании клеток костного мозга в метилцеллюлозе, максимальный уровень продукции эритропоэтина клетками штамма CHO Epo-2 достигается на 4-е сутки культивирования и составляет 1500-1800 ЕД на 1 мл культуральной среды.
Характеристика продукта. Синтезируемый клетками штамма CHO Epo-2 эритропоэтин исследован в следующих тестах:
1. Индукция включения 3H-тимидина в эритробласты мышиной селезенки.
2. Индукция образования эритроидных колоний в метилцеллюлозе клетками костного мозга.
3. Индукция ретикулоцитов у мышей.
4. Тест in vivo на полицитемических мышах с использованием радиоактивного железа-59.
Эритропоэтин выделяли из культуральной среды клеток CHO Epo-2 методом ионнообменной и адсорбционной хроматографии. В качестве стандарта использовали как коммерческие препараты Eprex (Cilag) и Recormon (Boehringer Mannheim), так и стандарт ЭПО N 87/684, полученный от World Health Organisation International Laboratory for Biological Standarts (Англия).
Использование штамма CHO Epo-2 иллюстрируется следующими примерами:
Пример 1. Клонирование и характеристика гена эритропоэтина человека.
Для клонирования гена эритропоэтина человека был использован олигонуклеотидный зонд, нуклеотидная последовательность которого соответствует фрагменту гена эритропоэтина человека в начале 4-го экзона. последовательность зонда: GCAGGCCGTAGAAGTCT. Зонд метили с помощью полинуклеотидкиназы и 32P АТФ до удельной активности 1-2х106 имп/мин/мкг и использовали для скрининга библиотеки геномной ДНК человека в фаговом векторе Charon 4A. Фильтры для скрининга готовили, используя метод амплификации in situ (Woo and O'Malley) [4] Рекомбинантные фаги, дающие сигнал гибридизации с олигонуклеотидным зондом, были очищены до индивидуального состояния путем повторного рескрининга и фаговую ДНК анализировали с помощью рестрикционного картирования и блот-гибридизации с олигонуклеотидным зондом. Фаговый клон 7-2, содержащий полноразмерную копию гена эритропоэтина, был детально охарактеризован (фиг. 3).
Методом рестриктного картирования показано, что рекомбинантный фаг 7-2 содержит ген эритропоэтина, полностью соответствующий гену ЭПО, описанному в работе Lin F.K. с соавт. [5] (фиг.4).
Было проведено определение нуклеотидной последовательности гена эритропоэтина из фага 7-2 и показано ее полное соответствие приведенной ранее последовательности (см.схему в конце описания).
Таким образом, рекомбинантный фаговый клон 7-2 содержит полную кодирующую последовательность гена эритропоэтина человека в рамках HindIII-BglII фрагмента.
Пример 2. Получение плазмидных конструкций для экспрессии гена ЭПО.
Фрагмент HindIII-BglII, содержащий ген ЭПО, был реклонирован в вектор pSV2gpt (Berg and Mulligan) [6] по сайтам HindIII и BamHI. Структура полученной плазмиды pSVEpo представлена на фиг.5. Плазмида pSVEpo содержит ген эритропоэтина человека под контролем промотора ранних генов вируса SV 40 и терминирующих сигналов гена большого T антигена SV 40.
У большинства эукариотических генов 5'-фланкирующие последовательности содержат регуляторные элементы транскрипции, которые могут в том числе ингибировать экспрессию гена в непермиссивной клеточной системе.
Для усиления транскрипционной активности гена ЭПО из вектора pSVEpo был делецирован HindIII-BstEII фрагмент длиной приблизительно 600 п.н. В результате был получен вектор pSVdEpo (фиг.6). Промотор ранних генов вируса SV40 был приближен к структурной части гена эритропоэтина, а также удалена собственная 5'-фланкирующая последовательность гена.
Плазмида pSVdEpoLMo (фиг.7) получена на основе плазмиды pSVdEpo, в которую встроен EcoRI-фрагмент, содержащий ген устойчивости к антибиотику G418 (ген "neor") под контролем промотора ранних генов вируса SV40 и длинный концевой повтор вируса лейкоза мышей Молони (MoMuLV), расположенный на расстоянии примерно 3 т.п.н. от начала кодирующей части гена эритропоэтина.
Пример 3. Амплификация гена ЭПО в клетках CHO tk-.
Клетки-реципиенты трансфецировали смесью плазмид pSVdEpoLMo и pTK- (1: 1). Вектор pTK- содержит ген тимидинкиназы (tk) вируса) простого герпеса (HSV) с делецированным промотором. Для получения делеции вектор pAGO, содержащий полный ген tkHSV переваривали смесью рестриктаз BglII и BamHI, и проводили лигирование. При этом элиминировался фрагмент ДНК длиной примерно 2,5 кВ, содержащий промотор гена tk, тогда как структурная часть гена сохранялась в составе плазмиды pTK-. В результате делеции промотора резко уменьшалась транскриционная активность гена tk, что позволило применить полученную плазмиду для селекции трансфектантов с амплификонами в системе ГАТ (гипоксантин-аминопрерин-тимидин).
Схема амплификации плазмид в трансфектантах была следующая:
1. Селекция клеток с фенотипом neor (ген устойчивости к антибиотику G-418).
Через 18 ч после трансфекции среду сливали, клетки промывали средой Игла без сыворотки и заливали ростовой средой (среда Игла-199 (1:) плюс 10% сыворотки крупного рогатого скота), содержащей антибиотик G-418 в конечной концентрации 400 мкг/мл среды. Среду меняли каждые 4 дня. Через 12-14 дней появляются колонии клеток, устойчивые к данному антибиотику. Выделенные клоны клеток размножали до концентрации 104/см2.
2. Амплификация интегрированных плазмид в системе ГАТ.
Чашки Петри с клетками после селекции на среде с G-418 заливали средой, содержащей гипоксантин-аминоптерин-тимидин (10-4M, 2•10-7M и 104M соответственно), т. е. концентрация аминоптерина в этом случае равняется 0,01 от обычно используемой в среде ГАТ. Среда меняется каждые 4 дня. Через 12-16 дней появляются клоны клеток, устойчивые к данной концентрации аминоптерина. Клетки размножали и переводили на среду, содержащую 4х10-7М аминоптерина. Полученные клоны клеток размножали и тестировали иммуноферментным и методом включения 3H-тимидина в спленоциты анемических мышей. Клетки с большей продуктивностью ЭПО переводили в среду, содержащую 2•10-6M аминоптерина (0,1 от обычной концентрации). Полученные клоны также тестировали по продукции ЭПО, клетки отбирали, размножали и переводили в среду, содержащую 2•10-5M аминоптерина. В результате такой селекции в среде, содержащей ступенчатое повышение аминоптерина (от 0,01 → 0,02 → 0,1 → 1, т.е. до обычно используемой концентрации ГАТ), концентрация секретируемого клетками ЭПО возрастает в 100-200 раз.
Пример 4. Культивирование клеток штамма CHO Epo-2 на матрасах.
Клетки штамма CHO Epo-2 засевали в количестве 3•104 клеток/см2 на матрасы (объем 1,5 л), заливали 170 мл ростовой среды и культивировали при 37oC. Каждые 24 ч проводили отбор проб из 5 параллельно ведущихся матрасов (по 0,5 мл среды), аликвоты объединяли и использовали для изучения концентрации эритропоэтина как в примере 3. В качестве контроля использовали клетки CHO tk-, засеянные с такой же плотностью и культивируемые в аналогичных условиях. Результаты определения приведены в табл.1.
Как видно из табл.1, максимальная продукция эритропоэтина клетками штамма CHO Epo-2 достигается на 4-е сутки культивирования и составляет около 1000 ЕД/мл. В дальнейшем происходит истощение питательной среды и клетки начинают гибнуть. Увеличение концентрации эритропоэтина на 6-е сутки можно объяснить разрушением клеток и выходом в среду внутриклеточного эритропоэтина.
Пример 5. Культивирование клеток штамма CHO Epo-2 на роллерных установках.
Для работы использовали роллерные бутыли из стекла (длина 22 см, диаметр 11 см, рабочая поверхность 760 см2). В бутыль заливали 200 мл ростовой среды и добавляли 1,5•107 клеток. Бутыль вращали со скоростью 15 оборотов в 1 ч при 37oC в течение 6 ч для обеспечения равномерного распределения клеток на фазе прикрепления. Затем скорость вращения снижали до 8 оборотов в 1 ч и культивировали в течение 4-5 суток. Через каждые 24 ч проводили отбор проб. Концентрацию ЭПО определяли так же, как в примере 4. Результаты представлены в табл.2.
Пример 6. Культивирование клеток штамма CHO Epo-2 в ферментере на микроносителях "Цитодекс-3" ("Pharmacia", Швеция).
В ростовую среду объемом 100 мл, содержащую микроносители с суммарной площадью 700 см2, добавляли 107 клеток и заливали во флаконы емкостью 300 мл с подвесным эксцентричным магнитом ("Belco" США). Посадка клеток на носитель осуществлялась в течение 4 ч в прерывистом режиме (перемешивание 5 мин, пауза 25 мин) при скорости вращения 30 оборотов в 1 мин. В дальнейшем культивирование проводили при непрерывном перемешивании при скорости вращения 30 оборотов в 1 мин. В течение 4-5 дней концентрация клеток возрастала до 106 клеток на 1 мл среды. Через каждые 24 ч проводили отбор проб. Концентрация ЭПО определялась так же, как в примере 4. Результаты представлены в табл.3.
Источники информации
1. Патент 1555359 A 1 СССР, МКИ 4 C 12 N 5/00. Штамм культивируемых клеток китайского хомячка продуцент эритропоэтина человека/Зеленин М.Г. Крамерова И.А. Колобков С.Л. Филякина Н.С. Егоров Б.Б. (СССР). N 4394247/30-13. Заявл. 17.03.88.
2. WO 86/03520 A1, Int.Cl.4 C 12 P 21/00. Method for the production of erythropoietin. /E. Fritsch, R. M.Hewick, K.Jacobs.-PCT/US85/02405; Filing 03.12.85; Priority 04.12.84 US 677813; Publ. 19.06.86.
3. А.с. 1522745 A1 СССР, МКИ 4 C 12 N 5/00. Штамм культивируемых клеток яичника китайского хомячка для трансфекции плазмидной ДНК/Зеленин М.Г. Колобков С.Л. (СССР). -N 4394066/30-13. Заявл. 17.03.88.
4. Woo S.L.C. and O'Malley B.W.// Proc. Natl. Acad.Sci.USA. 1978, v.75, N 7, p.3688-3691.
5. Lin F.-K. Suggs S. LIn C.-H. Browne J.K. Smalling R. Egrie J.C. Chen K. K. Fox G.M. Martin F. Stabinsky Z. Badrawi S.M. Lai P.-H. Goldwasser E.// Proc. Natl. Acad.Sci. USA. 1985,v.82, N 22, p.7580-7584.
6. Berg R. Mulligan R.C.// Proc. Natl. Acad. Sci. USA.-1981,v.48, N 4, p.2072-2076.

Claims (1)

  1. Штамм СНО культивируемых клеток китайского хомячка ВСКК(П) 637 Д - продуцент эритропоэтина человека.
RU95111858A 1995-07-13 1995-07-13 Штамм сно культивируемых клеток китайского хомячка - продуцент эритропоэтина человека RU2089611C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95111858A RU2089611C1 (ru) 1995-07-13 1995-07-13 Штамм сно культивируемых клеток китайского хомячка - продуцент эритропоэтина человека

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95111858A RU2089611C1 (ru) 1995-07-13 1995-07-13 Штамм сно культивируемых клеток китайского хомячка - продуцент эритропоэтина человека

Publications (2)

Publication Number Publication Date
RU95111858A RU95111858A (ru) 1997-06-20
RU2089611C1 true RU2089611C1 (ru) 1997-09-10

Family

ID=20169949

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95111858A RU2089611C1 (ru) 1995-07-13 1995-07-13 Штамм сно культивируемых клеток китайского хомячка - продуцент эритропоэтина человека

Country Status (1)

Country Link
RU (1) RU2089611C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518329C1 (ru) * 2012-12-07 2014-06-10 Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" (ФБУН ГНЦ ВБ "Вектор") Способ получения субстанции рекомбинантного эритропоэтина человека и нанокапсулированная форма рекомбинантного эритропоэтина человека с использованием субстанции, полученной указанным способом
WO2015163783A1 (ru) * 2014-04-25 2015-10-29 Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Способ получения субстанции рекомбинантного эритропоэтина человека и нанокапсулированная форма рекомбинантного эритропоэтина человека с использованием субстанции, полученной указанным способом

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Заявка WO N 86/03520, кл. C 12 P 21/00, 1986. Патент СССР N 1555359, кл. C 12 N 5/00, 1990. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518329C1 (ru) * 2012-12-07 2014-06-10 Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" (ФБУН ГНЦ ВБ "Вектор") Способ получения субстанции рекомбинантного эритропоэтина человека и нанокапсулированная форма рекомбинантного эритропоэтина человека с использованием субстанции, полученной указанным способом
WO2015163783A1 (ru) * 2014-04-25 2015-10-29 Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Способ получения субстанции рекомбинантного эритропоэтина человека и нанокапсулированная форма рекомбинантного эритропоэтина человека с использованием субстанции, полученной указанным способом

Also Published As

Publication number Publication date
RU95111858A (ru) 1997-06-20

Similar Documents

Publication Publication Date Title
Geisse et al. Eukaryotic expression systems: a comparison
US6432711B1 (en) Embryonic stem cells capable of differentiating into desired cell lines
CA2005016C (en) Dna fragment containing promoter region for human polypeptide chain elongation factor-1.alpha. and expression plasmid containing the dna fragment
JP3733110B2 (ja) 相同組換えによる脊椎動物細胞等のトランスフェクション
JPH05507411A (ja) 哺乳動物によるbmp―2ファミリーの発現
KR100397244B1 (ko) 거핵구분화인자
CN116218864B (zh) 一种重组Ⅲ型人源化胶原蛋白α1及其表达载体和应用
EP0485689B1 (en) Cells growing in protein-free medium, and enhancing replication of exogenous genes
Kapur et al. The presence of novel amino acids in the cytoplasmic domain of stem cell factor results in hematopoietic defects in Steel17H mice
AU761136B2 (en) Transfectacons comprising calcium phosphate and a nucleic acid
RU2089611C1 (ru) Штамм сно культивируемых клеток китайского хомячка - продуцент эритропоэтина человека
AU600481B2 (en) Method of producing peptides, recombinant plasmid for use in the same and animal cells transformed with the same
CA2058971C (en) Efficient method for identifiable expression of non-selectable genes
Xie Differences in the efficiency and stability of gene expression after transfection and nuclear injection: a study with a chick δ-crystallin gene
JPH01120300A (ja) 組換え細胞培養中でのポリペプチド発現の増大法
CN112921052B (zh) 体内细胞增殖标记与示踪系统及其应用
CN109295000B (zh) 一种多能干细胞形成必需蛋白crept在诱导多能干细胞中的应用
CN113025578A (zh) 一种抗凋亡单克隆细胞株及其制备方法
EP0232845A2 (en) Inducible heat shock and amplification system
US5073490A (en) Transhybridomas
RU2548806C1 (ru) Синтетическая днк, кодирующая эритропоэтин человека, содержащий её вектор, способ получения штамма-продуцента эритропоэтина, штамм-продуцент эритропоэтина
US8030537B1 (en) Somatic cloning gene transfer for the production of recombinant proteins, cells and organs
Waterfield et al. [52] Expression and properties of epidermal growth factor receptor expressed from baculovirus vectors
US20020168660A1 (en) Stem cell self-renewal and lineage commitment
Ohta et al. Long-term bone marrow cultures: recent studies with clonal hematopoietic and stromal cell lines

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
QB4A License on use of patent

Effective date: 20100120

MM4A The patent is invalid due to non-payment of fees

Effective date: 20110714

NF4A Reinstatement of patent

Effective date: 20120727