RU2088520C1 - Способ доочистки "хвостовых" газов процесса клауса - Google Patents
Способ доочистки "хвостовых" газов процесса клауса Download PDFInfo
- Publication number
- RU2088520C1 RU2088520C1 RU9595118366A RU95118366A RU2088520C1 RU 2088520 C1 RU2088520 C1 RU 2088520C1 RU 9595118366 A RU9595118366 A RU 9595118366A RU 95118366 A RU95118366 A RU 95118366A RU 2088520 C1 RU2088520 C1 RU 2088520C1
- Authority
- RU
- Russia
- Prior art keywords
- sulfur
- catalyst
- bed
- reactor
- adsorbent
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Изобретение относится к процессам производства серы из кислых газов и может быть использовано в нефтяной, газовой, нефтехимической и других отраслях промышленности. Изобретение направлено на снижение потери серы и повышение таким образом достигаемой степени ее извлечения за счет дополнительного слоя ультрамикропористого адсорбента паров серы, размещенного последним по ходу газа. При этом в качестве адсорбента паров серы применяют активированный уголь при следующем соотношении объемов слоев в реакторе: катализатор основного слоя 1,0 - активированный уголь 0,2-0,3. Кроме того, в качестве адсорбента применяют кислотостойкие молекулярные сита с отношением SiO2: Al2O3 = 6,0 - 1,0 при следующем соотношении объемов слоев в реакторе: катализатор основного слоя 1,0 - молекулярные сита 0,2 - 0,3. 2 з.п.ф-лы, 2 табл.
Description
Изобретение относится к процессам производства серы из кислых газов, в частности к способам доочистки "хвостовых" газов производства серы по методу Клауса, и может быть использовано в нефтяной, газовой, нефтехимической, металлургической и др. отраслях промышленности.
Наиболее распространенной технологией получения серы из кислых газов является процесс Клауса [1] заключающийся в сжигании сероводорода при недостатке воздуха до серы и диоксида серы и последующем контактировании в двух или трех каталитических ступенях непревращенных H2S и SO2:
2H2S + SO2 3/x Sx + 2H2O
Эта реакция равновесная, поэтому степень извлечения серы из газов на установках Клауса ограничивается константой равновесия и при температуре в последней каталитической ступени 200-220oC не превышает 96-98% Для повышения степени извлечения серы в промышленности широко применяют доочистку "хвостовых" газов.
2H2S + SO2 3/x Sx + 2H2O
Эта реакция равновесная, поэтому степень извлечения серы из газов на установках Клауса ограничивается константой равновесия и при температуре в последней каталитической ступени 200-220oC не превышает 96-98% Для повышения степени извлечения серы в промышленности широко применяют доочистку "хвостовых" газов.
Известно много различных технологий доочистки "хвостовых" газов, однако наибольшее распространение, благодаря простоте реализации и дешевизне, получили процессы, осуществимые при температуре ниже точки росы серы. Среди них более всего известны процессы Сульфрен, СВА (адсорбция в холодном слое) [2] и MCRC [3] По существу в этих процессах используется реакция Клауса при температуре 130-150oC, когда сера конденсируется в порах катализатора и последний периодически необходимо подвергать регенерации. В качестве катализатора во всех процессах используют активный оксид алюминия, а сами процессы отличаются числом используемых реакторов и методом регенерации катализатора.
Наиболее близким к изобретению является способ доочистки "хвостовых" газов процесса Клауса, заключающийся в контактировании сероводорода и диоксида серы в присутствии алюмооксидного катализатора при 130-150oC с последующей регенерацией катализатора от серы при 300-350oC [4]
Основным недостатком известного способа являются высокие потери серы с паровой фазой и, как следствие, невозможность достижения общей степени извлечения серы на установках Клауса и доочистки "хвостовых" газов более 99,6%
В процессе поглощения H2S и SO2 из "хвостовых" газов сера заполняет поры все большего диаметра, при этом парциальное давление паров серы над катализатором постоянно возрастает в соответствии с законом Кельвина. Например, в катализаторе французской фирмы "Рон-Пуленк" А2/5, широко используемом в известном способе, к концу периода поглощения оказываются заполненными поры радиусом 30 , при этом парциальное давление паров над слоем катализатора возрастает с 0,05 mbar до 0,056 mbar. Эта сера покидает реактор вместе с потоком газа и попадает в печь дожига, где сгорает до SO2 и таким образом увеличивает объем вредных выбросов в атмосферу.
Основным недостатком известного способа являются высокие потери серы с паровой фазой и, как следствие, невозможность достижения общей степени извлечения серы на установках Клауса и доочистки "хвостовых" газов более 99,6%
В процессе поглощения H2S и SO2 из "хвостовых" газов сера заполняет поры все большего диаметра, при этом парциальное давление паров серы над катализатором постоянно возрастает в соответствии с законом Кельвина. Например, в катализаторе французской фирмы "Рон-Пуленк" А2/5, широко используемом в известном способе, к концу периода поглощения оказываются заполненными поры радиусом 30 , при этом парциальное давление паров над слоем катализатора возрастает с 0,05 mbar до 0,056 mbar. Эта сера покидает реактор вместе с потоком газа и попадает в печь дожига, где сгорает до SO2 и таким образом увеличивает объем вредных выбросов в атмосферу.
Задачей изобретения является снижение потерь серы и повышение таким образом достигаемой степени ее извлечения за счет дополнительного слоя ультрамикропористого адсорбента паров серы, размещенного последним по ходу газа.
В качестве адсорбентов паров серы применяют активированный уголь или кислотостойкие молекулярные сита с отношением SiO2:Al2O3=6-10 при следующем соотношении объемов слоев в реакторе:
Катализатор основного слоя 1,0
Дополнительный слой 0,2-0,3
Объем слоя адсорбента определяется достигаемым положительным эффектом: ниже нижнего предела и выше верхнего предела повышение степени извлечения серы несущественно и дальнейшее увеличение дополнительного слоя не оправдано экономически.
Катализатор основного слоя 1,0
Дополнительный слой 0,2-0,3
Объем слоя адсорбента определяется достигаемым положительным эффектом: ниже нижнего предела и выше верхнего предела повышение степени извлечения серы несущественно и дальнейшее увеличение дополнительного слоя не оправдано экономически.
Полезность предлагаемого изобретения иллюстрируется табл.1 и 2.
Как видно, применение дополнительного слоя позволяет увеличить степень извлечения серы от 90 (прототип) до 93,7-94,4% Причем, при объеме слоя адсорбента ниже предлагаемой величины это увеличение незначительно: 0,6% на активированном угле и 0,2% на молекулярных ситах. Повышение объема дополнительного слоя внутри заявляемого интервала позволяет повысить степень извлечения серы до 92,4-94,1% Дальнейшее увеличение дополнительного слоя приводит к незначительному росту этого показателя (0,2-0,3%) и поэтому не оправдано.
Сущность действия изобретения состоит в том, что "хвостовые" газы, содержащие на выходе из установки Клауса 0,5-0,1% H2S и 0,25-0,5% SO2, поступают в реактор доочистки "хвостовых" газов, где на известном катализаторе сернистые компоненты воздействуют между собой с образованием серы, конденсирующейся в порах катализатора. Пары серы, находящиеся в фазовом равновесии с серой, заполнившей поры известного катализатора вследствие капиллярной конденсации, попадают на выходе из реактора в дополнительный слой адсорбента, где физически поглощаются так, что парциальное давление паров серы в газе, выходящем из реактора, снижается с 0,05-0,1 mbar до 0,005-0,01 mbar. В результате снижаются потери серы, а общая степень извлечения серы из газа повышается дополнительно на 0,1-0,15%
Claims (2)
1. Способ доочистки "хвостовых" газов процесса Клауса, заключающийся в контактировании сероводорода и диоксида серы в присутствии алюмооксидного катализатора при 130 150oС с последующей регенерацией катализатора от серы при 300 350oС, отличающийся тем, что в реакторах дополнительно размещают последним по ходу газа слой ультрамикропористого адсорбента паров серы.
2. Способ по п.1, отличающийся тем, что в качестве адсорбента паров серы применяют активированный уголь при следующем соотношении объемов слоев в реакторе:
Катализатор основного слоя 1
Активированный уголь 0,2 0,3
3. Способ по п.1, отличающийся тем, что в качестве адсорбента паров серы применяют кислотостойкие молекулярные сита с отношением SiO2 Al2O3 6,0 10 при следующем соотношении объемов слоев в реакторе:
Катализатор основного слоя 1
Молекулярные сита 0,2 0,3а
Катализатор основного слоя 1
Активированный уголь 0,2 0,3
3. Способ по п.1, отличающийся тем, что в качестве адсорбента паров серы применяют кислотостойкие молекулярные сита с отношением SiO2 Al2O3 6,0 10 при следующем соотношении объемов слоев в реакторе:
Катализатор основного слоя 1
Молекулярные сита 0,2 0,3а
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU9595118366A RU2088520C1 (ru) | 1995-10-25 | 1995-10-25 | Способ доочистки "хвостовых" газов процесса клауса |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU9595118366A RU2088520C1 (ru) | 1995-10-25 | 1995-10-25 | Способ доочистки "хвостовых" газов процесса клауса |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2088520C1 true RU2088520C1 (ru) | 1997-08-27 |
RU95118366A RU95118366A (ru) | 1997-12-27 |
Family
ID=20173275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU9595118366A RU2088520C1 (ru) | 1995-10-25 | 1995-10-25 | Способ доочистки "хвостовых" газов процесса клауса |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2088520C1 (ru) |
-
1995
- 1995-10-25 RU RU9595118366A patent/RU2088520C1/ru active
Non-Patent Citations (1)
Title |
---|
1. Грунвальд В.Р. Технология газовой серы. - М.: Химия, 1992, с. 272. 2. Фишер Г. Сера. Диоксид серы. Серная кислота. - Франкфурт-на-Майне, Лурги, с. 3 - 21. 3. Heigold R.E., Berkerley E. Oil and Gas I., 1983, v. 81, N 36, p. 156 - 158, 160. 4. Патент Франции N 2319532, кл. C 01 B 17/04, 1972. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK168614B1 (da) | Katalysator og fremgangsmåde til selektiv oxidering af svovlholdige forbindelser til svovl som grundstof | |
EP1115471B1 (en) | Process and catalyst/sorber for treating sulfur compound containing effluent | |
CA1197973A (en) | Process for the reduction of the sulfur content in a gaseous stream | |
JP3634115B2 (ja) | ガス精製方法及び装置 | |
US6610264B1 (en) | Process and system for desulfurizing a gas stream | |
US7311891B2 (en) | Process for the recovery of sulfur from Claus tail gas streams | |
NO302020B1 (no) | Katalysator for selektiv oksydasjon av svovelforbindelser til elementært svovel, fremgangsmåte for fremstilling av katalysatoren og fremgangsmåte for selektiv oksydasjon av svovelforbindelser til elementært svovel | |
KR101301805B1 (ko) | 가스로부터 불순물을 제거하는 방법 | |
KR920021442A (ko) | 불활성 기체의 정제 방법 | |
JPS5837010B2 (ja) | 窒素酸化物の除去を行うためのガス混合物処理方法 | |
SE408758B (sv) | Forfarande for att samtidigt avlegsna kveveoxider noÿx och svaveloxider soÿx fran en gasstrom | |
KR19990083426A (ko) | 이산화탄소정제시스템 | |
JPS6268527A (ja) | 硫化水素との反応によつて再生しうる吸収物質を用いる、ガスからの硫黄酸化物の除去方法 | |
US3862295A (en) | Method for sorptive removal of sulfur gases | |
EA017772B1 (ru) | Способ снижения количества сернистых соединений, цианистого водорода и муравьиной кислоты в синтез-газе | |
RU2088520C1 (ru) | Способ доочистки "хвостовых" газов процесса клауса | |
JPH08283007A (ja) | 複合ガス中に含まれる不純物の除去方法 | |
US4842843A (en) | Removal of water vapor diluent after regeneration of metal oxide absorbent to reduce recycle stream | |
US20030124041A1 (en) | Process for removing nitrogen oxides from gases | |
SU1582975A3 (ru) | Способ очистки газов от меркаптанов | |
FR2486513A1 (fr) | Procede de traitement d'un courant gazeux contenant des oxydes d'azote et de l'oxygene | |
KR19990014226A (ko) | 고순도의 비활성 가스를 제조하는 방법 및 장치 | |
JP2000211904A (ja) | ガスの精製方法 | |
SU679228A1 (ru) | Способ адсорбционной очистки газовых смесей от окиси углерода | |
RU2040464C1 (ru) | Способ получения серы из сероводородсодержащего газа |