RU2072894C1 - Многоканальная завихрительная насадка - Google Patents

Многоканальная завихрительная насадка Download PDF

Info

Publication number
RU2072894C1
RU2072894C1 SU904831491A SU4831491A RU2072894C1 RU 2072894 C1 RU2072894 C1 RU 2072894C1 SU 904831491 A SU904831491 A SU 904831491A SU 4831491 A SU4831491 A SU 4831491A RU 2072894 C1 RU2072894 C1 RU 2072894C1
Authority
RU
Russia
Prior art keywords
pyramids
nozzle
pyramid
layers
grid
Prior art date
Application number
SU904831491A
Other languages
English (en)
Inventor
Вильхельм Герд
Original Assignee
Гебрюдер Зульцер АГ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Гебрюдер Зульцер АГ filed Critical Гебрюдер Зульцер АГ
Application granted granted Critical
Publication of RU2072894C1 publication Critical patent/RU2072894C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4315Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being deformed flat pieces of material
    • B01F25/43151Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being deformed flat pieces of material composed of consecutive sections of deformed flat pieces of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32206Flat sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32213Plurality of essentially parallel sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32224Sheets characterised by the orientation of the sheet
    • B01J2219/32231Horizontal orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32237Sheets comprising apertures or perforations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32255Other details of the sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32286Grids or lattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32408Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32425Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32483Plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/72Packing elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Nozzles (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Basic Packing Technique (AREA)

Abstract

Изобретение относится к насадкам теплообменных колонн. Насадка включает слои равносторонних пирамид, сформированных на плоской квадратной координатной сетке, боковые поверхности пирамид выполнены попеременно открытыми и закрытыми, под каждым элементом на сетке установлены подобные пирамиды, при этом закрытые боковые поверхности, стоящие на основной стороне сетки, относящиеся соответственно к разным пирамидам, образуют плоскую поверхность, и сформированные таким образом слои накладывают друг на друга вершинами пирамид так, что стыкующиеся у вершин пирамид поверхности не образуют друг с другом плоскости. 1 з. п. ф-лы, 5 ил.

Description

Изобретение касается структурированных насадок, которые могут применяться в качестве вставок в устройствах термической разделительной технологии, например, при ректификационных процессах, экстрагировании, сорбционных процессах, а также в технологии смешения.
Известна завихрительная многоканальная насадка, включающая слои равносторонних пирамид, сформированных на плоской квадратной координатной сетке.
Недостатки устройства: с повышением нагрузки газом или паром начинается усиленное протекание более легкой фазы через прямые каналы насадки, при этом снижается желательное смешение в поперечном направлении в особенности в газе или паре.
Образованные гофрами каналы, находящиеся на одной оси, предоставляют потоку газа или пара для соответствующего блока упаковки предпочтительные направления, которые, например, могут быть спроектированы в виде параллельных прямых на плоскость поперечного сечения канала потока или колонны, окружающей насадку. С точки зрения достаточного поперечного смешения в более легкой протекающей фазе было бы желательным вместо этого равномерное распределение компонентов скорости по поперечному сечению проекции.
Чтобы скомпенсировать этот недостаток, возникающий как следствие упрощенного изготовления насадки, ставится задача при сохранении вентиляторообразных лопастных элементов, проявивших себя очень эффективными, по крайней мере, для равномерного распределения по поперечному сечению потока жидкости, спускающегося вниз, найти структуру насадки, которую можно изготовлять также с небольшими затратами из изогнутых листов, т.е. так называемых гофрированных блоков, которая, однако, выделяет пару или газу для протекания через насадку более, чем одно предпочтительное направление, видимое на проекции поперечного сечения, и благодаря этому способствует поперечному смешению в газовой фазе.
Решение этой задачи удается, если равномерно распределенные вентиляторообразные лопастные элементы сформировать на плоской квадратной основной координатной сетке из равносторонних пирамид, боковые стороны которых попеременно открыты или закрыты, если далее над каждым элементом основной координатной сетки установить две пирамиды с каждой стороны по одной таким образом, чтобы обе боковые поверхности, стоящие на основной стороне элемента растра, принадлежащие соответственно разным пирамидам, образовали плоскую поверхность, и если затем структурированные таким образом слои наложить друг на друга своими вершинами так, чтобы стыкующиеся у вершин пирамид поверхности не образовали друг с другом плоскостей.
На фиг.1 показана основная структура насадки. Точки A, B, C и D являются угловыми точками квадратного основного растра. Пирамида с вершиной S1 имеет закрытые боковые поверхности A,D,S1 и CBS1. Вершина пирамиды S2 расположена на перпендикуляре под S1, пирамиде с вершиной S2 принадлежит боковые поверхности ABS2 и CDS2. Названная последней боковая поверхность соединяется с боковой поверхностью DCS3, которая принадлежит обращенной вверх соседней пирамиде с вершиной S3. Обе стороны пирамиды образуют друг с другом плоскую поверхность, а именно ромб DS3CS2. Точка ε является центром установленной жестко вентиляторообразной лопасти, образованной четырьмя ромбообразными поверхностями и выделенной частой штриховкой на фиг.1.
У каждой точки основания внутри структуры по фиг.1 следует образовать неподвижную лопасть вентилятора. Лопасти вентилятора, относящейся к точке основания F, следует сообщить направление вращения, противоположное направлению вращения лопасти вентилятора у основания Е.
На фиг. 2 показан блок насадки, состоящий из наложенных друг на друга слоев по фиг. 1. Верхний и нижний слой на фиг.2 состоит соответственно из половины слоя по фиг. 1, причем сечение проведено по плоскости растра (координатной сетки). Буквами S1 и S2 на фиг.2 обозначены соответственно состыкованные друг с другом вершины пирамид (в качестве примера). Поперечное сечение блока насадки, обозначенное на фиг.2 углами A, B, C, D, в своей перпендикулярной проекции уже через две половины слоя по фиг.1 является плотным.
Особенность структуры насадки по фиг.2 примечательна в двух отношениях.
Во-первых, насадку можно составить не только послойно, как описано выше, но также из гофрированных блоков. Если теперь представить, что насадка разделяется вдоль диагонали поперечного сечения ПС в перпендикулярном направлении в сторону Е, то параллельные ему сечения ведут вправо и влево, а именно: через точки F, x, H и I к изогнутым зигзагообразно и снабженным высечками в форме ромбов листам. Таким образом, например, гофрированный блок, возникший с помощью указанных параллельных сечений через точки A и F по фиг. 2, создают для потока пара именно лишь в треугольных каналах, по отдельности заключенных в оболочки, прямое направление, которое проходит параллельно указанным плоскостям сечений и от "cзади-внизу" к "спереди-вверху". Соответственно направление потока пара в листовых блоках, обозначенных в параллельных сечениях с помощью A и x, также параллельно указанным поверхностям сечений, направление потока теперь, разумеется, из-за обрамления треугольных каналов в некоторой степени обозначают в основном от "спереди-внизу" (примерно точка Е) к "сзади-вверху" (примерно точка А).
Во-вторых, на описанную структуру насадки по изобретению возлагается задача, чтобы для потока пара имело место другое, ранее не видимое на фиг.2 образование коридоров, которые проходят поперек упомянутой выше поверхности сечения через точки A, C, E по фиг.2, т.е. параллельно перпендикулярному сечению через плоскость с точками D, B, K, L. Если блок насадки по фиг.2 повернуть теперь на 90o вокруг его вертикальной центральной оси влево, то можно также увидеть образование коридоров, которое проходит параллельно перпендикулярной плоскости сечения.
На фиг.3 представлено повернутое на 90o тело насадки, у которого известные из фиг. 2 точки сохранили свои буквенные обозначения. Так, например, с помощью описанного поворота точка В из фиг.2 на фиг.3 оказывается в том месте, в котором на фиг.2 находится точка А. Для поворота других точек по фиг. 2 и, таким образом, для взаимосвязи между фиг.2 и фиг.3 закономерность соответствующая. На фиг.3 теперь также можно увидеть параллельные перпендикулярному сечению через точки B,D,L коридоры для прохождения потока фаз в форме, аналогичной фиг.2.
Фактически, таким образом, в блоках насадки по изобретению по фиг.2 и 3 имеют место смещенные относительно друг друга ряды каналов, а именно, во-первых, такие ряды, которые проходят параллельно поверхности сечения через точки B, D, L, а во-вторых, смешенные относительно них ряды, проходящие параллельно поверхности сечения через точки A, C, E фиг.2 и 3. Таким образом осуществляется специально усиленное смешение в поперечном направлении в потоке более легкой фазы.
С точки зрения технологии изготовления примечательно, что представленный на фиг.2 и 3 блок насадки можно построить двумя способами, а именно, во-первых, с помощью гофрированных матов, размещенных слоями параллельно плоскости сечения с точками A,C,E или же параллельно плоскости сечения с точками B,D,E фиг.2 и 3.
Блок насадки как по фиг.2, так и по фиг.3 представлен в идеальной форме, которую трудно осуществить с точки зрения технологии изготовления, так как окончания поверхностей пирамид соприкасаются лишь точками. Для обеспечения стабильности тела насадки при практическом ее осуществлении можно в местах контакта поверхностей пирамид предусмотреть перекрытия.
На фиг.4 показана панель из листа, высеченная в незаштрихованных местах в форме ромбов. С помощью перекрытий
Figure 00000002
на фиг.4 достигают стабильности матов, изготовленных из листовых панелей. Зигзагообразной формы блоков достигают с помощью отгибов вдоль штрихпунктирной линии f-f.
На фиг.5 представлена другая форма гофрированной листовой панели по изобретению. Штрих-пунктирные прямые f-f снова означают кромки гофров. Сами по себе ромбообразные высечки у острых углов уплощены с помощью коротких перемычек n и вытянуты с помощью другой перемычки n. Благодаря таким мероприятиям можно достигнуть также требуемой стабильности насадки.
Насадка работает следующим образом. Происходит контакт газа/пара с жидкостью.
Насадка, кроме названных до этого треугольных каналов, которые позволяют в каждом случае одну компоненту скорости потоков в направлении оси колонны, также содержит два смешанных относительно друг друга ряда каналов, проходящих параллельно поперечному сечению колонны. Большое число рядов каналов, имеющих различную ориентацию, т.е. "многоканальность" насадки способствует, в дополнение к имеющимся лопастным элементам, смешению в поперечном направлении, прежде всего, в более легкой фазе. В случае работы в противопотоке, например, жидкости и пара, пределе допускаемой нагрузки, замеренный при максимально возможной скорости пара, значительно повышается, по сравнению с другими насадками, при прочих сравнимых условиях.
Для дальнейшего улучшения распределения фаз по поперечному сечению колонны в поверхности насадки можно выдавить поперечные канавки или высечь отверстия. В этих же целях насадку изготовляют из металлической или текстильной ткани.
Для насадки, наряду с металлами и текстилем, могут, например, из соображений стоимости или коррозионной стойкости, применяться также другие материалы как, например, пластмасса или керамика.

Claims (2)

1. Многоканальная завихрительная насадка, в частности для технологии разделения или смешения, включающая слои равносторонних пирамид, сформированных на плоской квадратной координатной сетке, отличающаяся тем, что боковые поверхности пирамид выполнены попеременно открытыми или закрытыми, под каждым элементом на координатной сетке установлены подобные пирамиды, при этом закрытые боковые поверхности, стоящие на основной стороне элемента квадратной сетки, относящиеся соответственно к разным пирамидам, образуют плоскую поверхность, и сформированные таким образом слои накладываются друг на друга вершинами своих пирамид так, что стыкующиеся у вершин пирамид поверхности не образуют одна с другой плоскостей.
2. Насадка по п. 1, отличающаяся тем, что стороны пирамиды имеют одно или несколько небольших отверстий.
SU904831491A 1989-03-09 1990-02-09 Многоканальная завихрительная насадка RU2072894C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3907573A DE3907573A1 (de) 1989-03-09 1989-03-09 Mehrzuegige wirbelpackung
DEP3907573.7 1989-03-09
PCT/CH1990/000026 WO1990010497A1 (de) 1989-03-09 1990-02-09 Mehrzügige wirbelpackung

Publications (1)

Publication Number Publication Date
RU2072894C1 true RU2072894C1 (ru) 1997-02-10

Family

ID=6375888

Family Applications (1)

Application Number Title Priority Date Filing Date
SU904831491A RU2072894C1 (ru) 1989-03-09 1990-02-09 Многоканальная завихрительная насадка

Country Status (12)

Country Link
US (1) US5158712A (ru)
EP (1) EP0418338B1 (ru)
JP (1) JP2931666B2 (ru)
CN (1) CN1022736C (ru)
AU (1) AU637348B2 (ru)
BR (1) BR9005768A (ru)
CA (1) CA2028837C (ru)
DE (2) DE3907573A1 (ru)
ES (1) ES2077059T3 (ru)
MX (1) MX172689B (ru)
RU (1) RU2072894C1 (ru)
WO (1) WO1990010497A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063620A1 (en) * 2013-11-01 2015-05-07 Vladimir Fedorov Device and method for heat and mass exchange between gas and liquid

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4123161A1 (de) * 1991-07-12 1993-01-14 Siemens Ag Statischer mischer
DE59310026D1 (de) * 1993-07-26 2000-06-08 Sulzer Chemtech Ag Winterthur Wirbelpackung für Stoffaustauschkolonnen und statische Mischer
EP0638711B1 (de) * 1993-08-05 1997-06-04 Sulzer Chemtech AG Abgaskatalysator, insbesondere für Automobile
US5407607A (en) * 1993-11-09 1995-04-18 Mix; Thomas W. Structured packing elements
JP3426675B2 (ja) * 1993-12-24 2003-07-14 関西電力株式会社 整流装置
EP0671207B1 (de) * 1994-03-09 2000-05-03 Sulzer Chemtech AG Flächiges Struckturelement und daraus gebildete Packung
CN1091646C (zh) * 1994-10-04 2002-10-02 普莱克斯技术有限公司 用于精炼系统的高容量结构填料
US5996974A (en) * 1996-11-28 1999-12-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Device for material and heat exchange
FR2763519B1 (fr) * 1997-05-22 1999-07-02 Air Liquide Dispositif d'echange de matiere et de chaleur
US5901575A (en) * 1997-08-25 1999-05-11 Air Products And Chemicals, Inc. Stackable structured packing with controlled symmetry
US6119481A (en) * 1998-01-19 2000-09-19 Air Products And Chemicals, Inc. Horizontal structured packing
FR2777533B1 (fr) 1998-04-17 2000-05-19 Air Liquide Structure maritime flottante perfectionnee
FR2806325B1 (fr) * 2000-03-17 2002-10-18 Air Liquide Module de garnissage, son procede de fabrication, et appareil de traitement de fluide(s) comportant un garnissage correspondant
US6585237B2 (en) 2000-10-16 2003-07-01 Pradeep Khasherao Pagade Fluid contacting device used as structured packing and static mixer
US7972707B2 (en) * 2003-09-04 2011-07-05 Havco Wood Products, LLC. Trailer flooring with hotmelt coating
DE102006011890A1 (de) * 2006-03-15 2007-09-20 Robert Bosch Gmbh Verfahren zur Herstellung einer Mischvorrichtung für eine Abgasnachbehandlungsvorrichtung, Mischvorrichtung für eine Abgasnachbehandlungsvorrichtung sowie Anordnung mit einer solchen Mischvorrichtung
FR2929532B1 (fr) 2008-04-07 2010-12-31 Air Liquide Colonne a garnissage d'echange de chaleur et/ou matiere
JP5523807B2 (ja) * 2009-08-05 2014-06-18 三菱重工業株式会社 排ガス処理装置
WO2013036859A1 (en) 2011-09-07 2013-03-14 Carbon Engineering Limited Partnership Target gas capture
US20150048528A1 (en) * 2013-08-19 2015-02-19 Sean Anderson Barton Fill material for direct-contact heat/mass exchangers
CN103480321B (zh) * 2013-08-30 2016-03-30 北京泽华化学工程有限公司 填料体及其层件、塔器和混合器
FR3059913B1 (fr) * 2016-12-14 2020-12-11 Ifp Energies Now Nouveau garnissage a structure tridimensionnelle pour ameliorer le contact entre une phase gaz et une phase solide dispersee s'ecoulant a contre courant
CN106925149B (zh) * 2017-04-24 2019-12-10 苏州纳磐新材料科技有限公司 静态混合器及混合装置
US10913044B2 (en) * 2017-07-14 2021-02-09 Technip Process Technology, Inc. Device for gas solids fluidized system to enhance stripping
CN110479136A (zh) * 2019-07-03 2019-11-22 马鞍山市华东耐磨合金有限公司 一种高耐磨增厚的搅拌叶片

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1100597B (de) * 1952-11-29 1961-03-02 Atomic Energy Authority Uk Packung fuer Dampf-Fluessigkeits- und Gas-Fluessigkeits-Gegenstrom-kontaktsaeulen
US3295840A (en) * 1962-06-27 1967-01-03 Dow Chemical Co Tower packing
US4022596A (en) * 1975-08-27 1977-05-10 Pedersen George C Porous packing and separator medium
US4107241A (en) * 1976-10-12 1978-08-15 Raschig G.M.B.H. Contacting arrangement for mass transfer operations
DE3266166D1 (en) * 1981-07-08 1985-10-17 Kuehni Ag Packing for material exchange columns, and process for producing the packing
EP0070915A1 (de) * 1981-07-30 1983-02-09 GebràœDer Sulzer Aktiengesellschaft Einbauelement für eine Vorrichtung für Stoff- und direkten Wärmeaustausch und Mischen
SU1292816A1 (ru) * 1985-01-28 1987-02-28 Всесоюзный Научно-Исследовательский И Проектный Институт По Переработке Газа Насадка дл массообменных аппаратов
DE3515300A1 (de) * 1985-04-27 1986-10-30 Gerd Dr Wilhelm Pyramidenpackung fuer die verfahrenstechnik

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент ФРГ N 3515300, кл. В 01 D 53/20, 1986. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063620A1 (en) * 2013-11-01 2015-05-07 Vladimir Fedorov Device and method for heat and mass exchange between gas and liquid
RU2658395C2 (ru) * 2013-11-01 2018-06-21 Савин Павел Алексеевич Устройство и метод применения для тепломассообмена между газом и жидкостью
US10207247B2 (en) 2013-11-01 2019-02-19 Vladimir V. Fedorov Device and method for heat and mass-exchange between gas and liquid

Also Published As

Publication number Publication date
CA2028837C (en) 2000-04-04
CN1022736C (zh) 1993-11-17
EP0418338A1 (de) 1991-03-27
EP0418338B1 (de) 1995-09-27
AU5032190A (en) 1990-10-09
CA2028837A1 (en) 1990-09-10
JP2931666B2 (ja) 1999-08-09
ES2077059T3 (es) 1995-11-16
DE59009712D1 (de) 1995-11-02
DE3907573A1 (de) 1990-09-20
AU637348B2 (en) 1993-05-27
MX172689B (es) 1994-01-07
US5158712A (en) 1992-10-27
WO1990010497A1 (de) 1990-09-20
JPH03505303A (ja) 1991-11-21
CN1045709A (zh) 1990-10-03
BR9005768A (pt) 1991-08-06

Similar Documents

Publication Publication Date Title
RU2072894C1 (ru) Многоканальная завихрительная насадка
US3450393A (en) Gas and liquid contact apparatus
US3262682A (en) Contact bodies for liquid and gas
US5407607A (en) Structured packing elements
US4296050A (en) Packing element for an exchange column
EP0454179B1 (en) Tower packing grid
CA2295410C (en) Filler body with a cross channel structure
CA1282318C (en) Regular packing element of thin foil-like material for mass transfer and heat exchange columns
US3466019A (en) Gas-liquid contact packing sheets
CA1270751A (en) Structured tower packing
GB1004046A (en) Material exchange columns
JPS5811001A (ja) 物質交換塔用充填物およびその製造方法
US2490080A (en) Contacting apparatus
US4830792A (en) Vortex-inducing packing of pyramid-type elements and process for its assembly
WO1990013354A1 (en) Packing elements
JPH06509862A (ja) 冷却塔に用いるための薄層状のパッキング要素
EP3003550A1 (de) Packungslage für eine strukturierte packung
RU96122497A (ru) Набивка для противоточной колонны высокого давления и колонна высокого давления
EP0033413B1 (en) Vapour-liquid contact apparatus and method of fabricating grid-elements for use in such apparatus
US2594585A (en) Fractionating apparatus
CA1266823A (en) Packing elements for enhancing liquid mixing
EP1029588B1 (de) Füllkörper mit Kreuzkanalstruktur
US5326504A (en) Ordered packing
JPH0780288A (ja) 充填部材
JPS6279801A (ja) 物質および熱交換塔用の充填材