RU2046151C1 - Способ получения пенометалла - Google Patents

Способ получения пенометалла Download PDF

Info

Publication number
RU2046151C1
RU2046151C1 SU905011037A SU5011037A RU2046151C1 RU 2046151 C1 RU2046151 C1 RU 2046151C1 SU 905011037 A SU905011037 A SU 905011037A SU 5011037 A SU5011037 A SU 5011037A RU 2046151 C1 RU2046151 C1 RU 2046151C1
Authority
RU
Russia
Prior art keywords
metal
gas
melt
molten
foam
Prior art date
Application number
SU905011037A
Other languages
English (en)
Inventor
Вальтер Рух Вольфганг
Киркеваг Бьерн
Original Assignee
Норск Хюдро А.С.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19892250&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2046151(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Норск Хюдро А.С. filed Critical Норск Хюдро А.С.
Application granted granted Critical
Publication of RU2046151C1 publication Critical patent/RU2046151C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • C22C1/083Foaming process in molten metal other than by powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Использование: для получения упрочненного частицами пенометалла с тонкостенными закрытыми порами. Сущность: непрерывно осуществляют приготовление расплавленного композиционного металлического материала, содержащего металлическую матрицу и тонкоизмельченные упрочняющие частицы, вспенивают расплав для образования пор путем подачи в расплав газа и накапливают полученный пенометалл на поверхности расплава. Расплавленный металлический композиционный материал можно получать расплавлением композиционного материала с металлической матрицей или добавкой и распределением упрочняющих частиц в расплавленном металле или сплаве при помощи активного газа. В качестве активного газа можно использовать двуокись углерода, а в качестве упрочняющих частиц - огнеупорные частицы. Расплавленным композиционным материалом может быть матрица из алюминия или алюминиевого сплава, упрочненная керамическими или интерметаллическими частицами. 4 з. п. ф-лы, 4 ил.

Description

Изобретение относится к способам получения пористого металла, в частности способам получения упрочненного частицами пенометалла с тонкостенными закрытыми порами.
Пористые металлы, а также пористая керамика и пластинки все больше привлекают внимание в качестве конструктивных материалов благодаря их уникальной комбинации свойства и легкого веса. Существует несколько способов получения пенометаллов. Известны различные способы вспенивания, например включение гидридов в расплавленный металл или добавка органических соединений, которые выделяют газы при нагреве. Другими примерами получения металлов ячеистой структуры являются осаждение в паровой фазе на полимерных подложках или литье металла вокруг гранул, которые затем выщелачивают, оставляя металл с пористой структурой.
На способ образования вспененного материала с применением продувочных агентов влияют поверхностное натяжение и вязкость расплава. Вязкость противодействует разрушению стенок пор, когда постепенно увеличивается объем образованных пузырьков, тогда как низкое поверхностное натяжение благоприятно для образования тонкостенных пузырьков. Свойства вспененных материалов, представляющих собой дисперсии газа в твердом теле, определяются по их плотности, но размер пор, структура и распределение пор также является важными параметрами, влияющими на свойства материала. Такие вспененные металлы получают путем добавки соединения, выделяющего газ, с последующим нагревом полученной смеси для разложения соединения и выделения газов для расширения и образования пор. Соединением для вспенивания материала является обычно гидрид металла, например, титана или циркония, причем после стадии вспенивания форму охлаждают для получения пористого материала. Однако из-за трудностей, связанных с равномерным распределением выделяющегося газа через весь объем пористого металла, образуются поры неоднородной структуры и/или нежелательно увеличивается размер пор.
Известен способ получения пенометаллов, включающий использование агента для увеличения вязкости, представляющего инертный газ или газообразный кислородсодержащий материал, в условиях расплава и обработку полученного вязкого расплава вспенивающим агентом. В качестве агентов для увеличения вязкости предпочтительно используют воздух, азот, двуокись углерода, аргона и воду в количестве 1-6 г на 100 г металлического сплава. В качестве вспенивающих агентов применяют гидриды металлов (гидриды гафния, титана или циркония) в количестве 0,5-1,0 г/100 г сплава.
Предпочтительно вязкость увеличивается за счет присутствия металла промотора, например в алюминиевых сплавах применяют 4-7 мас. магния. Необходим хороший способ смешения, причем добавку вспенивающих агентов обычно осуществляют при температуре ниже, чем во время добавки агента для увеличения вязкости в отдельной второй емкости. Раскрытый способ, с которым обеспечивается получение лучших вспененных материалов в отношении равномерного размера и распределения пор и некоторое снижение расхода вспенивающих агентов, является достаточно сложным, трудоемким и дорогостоящим процессом, требующим применение нескольких стадий и установок, и основанным на применении дорогостоящих разлагаемых соединений (гидриды), выделяющих газ при нагреве [1]
Известен способ пористых материалов, основанный на использовании 0,2-8,0 мас. металлического кальция в качестве агента, регулирующего вязкость, и гидрида титана в количестве 1-3% от массы расплавленного металла в качестве вспенивающего агента [2]
Наиболее близким по технической сущности и достигаемому результату является способ получения пеноматериала посредством разложения соединения, выделяющего газ при нагреве, в расплавленном металле [3] Усовершенствование заключается в добавке тонко диспергированного и тонкоизмельченного порошка в металл до разложения соединения (карбонаты или гидриды), выделяющего газ. Стабилизирующими порошками могут быть металлы или неметаллы, элементы или соединения, причем предпочтительно применяют два смачиваемых порошка, из которых один образует твердый сплав с металлом. Обычно газ растворяется при одном давлении, и затем он выделяется при другом, более низком давлении.
Недостатком, общим для этих известных способов, является то, что все они прерывистые и используют дорогостоящие соединения, выделяющие газ, либо растворенные газы в качестве средства образования пор и добавки для увеличения вязкости или стабилизирующие добавки для получения качественных пенометаллов. Известные способы требуют точного контроля условий температуры и давления на различных стадиях процесса.
Таким образом отсутствует способ, который действовал бы на промышленной основе экономичным образом и позволял бы получить дешевый пористый металл, конкурирующий с другими конструкционными материалами.
Цель изобретения создание дешевого способа получения качественных вспененных материалов, а также способа обогащения материала металлического скрапа.
Для достижения поставленной цели в способе получения пеноматериала, упрочненного частицами, непрерывно осуществляют приготовление расплавленного композиционного металлического материала, содержащего металлическую матрицу и тонкоизмельченные упрочняющие частицы, вспенивают расплав для образования пор путем подачи в расплав газа и накапливают полученный пенометалл на поверхности расплава. Расплавленный металлический композиционный материал можно получать путем расплавления композиционного материала с металлической матрицей. Расплавленный металлический композиционный материал можно получать путем добавки и распределения упрочняющих частиц в расплавленный металл или сплав при помощи активного газа. В качестве активного газа можно использовать двуокись углерода, а в качестве упрочняющих частиц огнеупорные частицы. Расплавленным композиционным материалом может быть матрица из алюминия или алюминиевого сплава, упрочненная керамическими или интерметаллическими частицами.
На фиг. 1 показана технологическая схема способов получения пенометалла; на фиг. 2 контактный отпечаток образца пористого металла, полученного согласно изобретению; на фиг. 3 оптический металлографический снимок структуры вспененного материала на основе алюминия с закрытыми порами; на фиг. 4 графические результаты испытания на сжатие образцов пенометалла.
Пенометалл со структурой типа закрытых пор, имеющий равномерную плотность и ячеистую структуру, можно получить просто путем подачи тонко диспергированного газа для образования пор в расплавленный композиционный материал с металлической матрицей, упрочненной частицами (РММС). Не потребовались специальные добавки, регулирующие вязкость расплава или особые меры предосторожности в отношении распределения пузырьков газа через расплав для образования пор. Пузырьки газа поднимаются кверху расплава и образуют вспененный материал, постепенно увеличивающийся в объеме. Тенденция к разрушению пор пенометалла, когда пузырьки достигают поверхности расплава, не отмечается. Это указывает на (высоко) стабилизированную поверхность пузырьков газа. Верхняя часть массы пенометалла отверждается, и ее можно легко удалить. Даже пенометалл, который не полностью отвержден, можно удалить без изменения его ячеистой структуры из-за чрезмерной вязкости полученного пенометалла. Это достаточно важный признак способа согласно изобретению, позволяющий осуществлять способ непрерывно посредством передачи полуотвержденного пенометалла в изложницы. Это также позволяет подвергать на этой стадии вспененный материал определенным операциям формования. Тем самым обеспечивается гибкость в отношении конечной формы полупродуктов пенометалла.
П р и м е р 1. 30 кг эвтектоидного алюминиевого сплава (Si 12 Mg 1 Ni 2,5) расплавляют в открытом тигле. В расплавленный сплав, поддерживаемый при температуре 650оС, добавляют частицы карбида кремния со средним размером 12 мкм и одновременно через расплав пропускают тонко диспергированный газ СО2 посредством ротора, предназначенного для специальной обработки. Во время подачи избыточного количества СО2 в образованный расплавленный композиционный материал пузырьки газа начинают подниматься к верхней части расплава, образуя поднимающийся вверх слой вспененного материала. Верхняя часть пенометалла отверждается без разрушения поверхности. На фиг. 2 показан фотоснимок образца в натуральном размере вспененного материала, удаленного в качестве отвержденной верхней части брикета пенометалла. Поперечный разрез образца показывает, что он имеет равномерное распределение пор диаметром в пределах 1-5 мм. Измеренная плотность образца 0,2 г/см3.
П р и м е р 2. 20 кг материала скрапа РММС (алюминиевый сплав, упрочненный частицами Al2O3) расплавляют в открытом тигле. В этом случае применяют сжатый воздух в качестве источника газа для образования пор, при этом его тонко диспергируют и распределяют, как в примере 1. Образующиеся пузырьки также приводят к образованию пористой структуры, когда пузырьки достигают верхней поверхности расплава в тигле, и затем расплав охлаждают. Полученные поры (ячейки) являются по существу сферическими и закрытыми, образуя вспененный металл с изотропными свойствами во всех направлениях особенно в отношении поглощения энергии. Металлографическое исследование структуры образцов, полученных в примере 1, показывает, что они имеют очень тонкостенную структуру пенометалла (фиг. 3). Толщина стенок на металлографическом снимке, увеличенном в 20 раз, составляет порядка примерно 12 мкм размера упрочняющих частиц карбида кремния.
Механические свойства полученного вспененного материала представлены на фиг. 4, на которой представлены результаты испытания на сжатие образцов из примера 1. Полученная плоская кривая зависимости деформации от напряжения для образцов, имеющих начальную высоту 26 мм при приложении ползуна со скоростью 2 мм/мин, является типичной для этого типа материала, поскольку ячеистая структура не разрушается полностью. Было определено, что поглощение энергии составляет 2 кДж/л вспененного материала, что является очень благоприятной величиной в сравнении с значениями, которые были сообщены в литературе, для изготавливаемых в промышленном масштабе вспененных материалов на основе алюминия. Улучшенные механические свойства полученных вспененных материалов являются результатом благоприятного влияния упрочняющих частиц, включенных в стенки пор.
Новый способ получения вспененных материалов согласно изобретению предлагает несколько преимуществ в отношении экономичности способа и свойств полученных пенометаллов. Первым из них является возможность осуществления способа непрерывной плавки или подачи расплавленного упрочненного металлического материала посредством применения в качестве газа для образования пор, например, N2, Ar, CO2, Не и даже сжатого воздуха, который обычно легко доступен за низкую стоимость. Отсутствуют какие-либо требования к температурам, давлению или равномерному распределению пузырьков газа во время вспенивания и отверждения полученного пенометалла. Плотность и размер пор до некоторой степени просто регулируют посредством рассеяния газа для образования пор через расплав предпочтительно посредством применения специального ротора для обработки, но можно также применять другое средство для обеспечения тонко дисперсных пузырьков. Вспененный материал, накопленный наверху расплава, можно прямо подавать в изложницы для отверждения до заданных форм и размера или подвергать его до определенной степени деформации (повторному формованию полуотвержденного вспененного материала).
Кроме того, даже если можно получить сплав, упрочненный расплавленными частицами, на отдельной стадии процесса с использованием активного газа и добавки упрочняющих частиц до применения газа для образования пор, то самым значительным преимуществом настоящего изобретения является обогащение низкосортного композиционного материала из скрапа. Этот постоянно увеличивающийся объем ломакомпозиционного материала представляет значительную проблему в настоящее время, поскольку его нельзя просто переплавить или включить в рециркулированный вторичный алюминий.

Claims (5)

1. СПОСОБ ПОЛУЧЕНИЯ ПЕНОМЕТАЛЛА, упрочненного частицами, отличающийся тем, что непрерывно осуществляют приготовление расплавленного композиционного металлического материала, содержащего металлическую матрицу и тонкоизмельченные упрочняющие частицы, вспенивают расплав для образования пор путем подачи в расплав газа и накапливают полученный пенометалл на поверхности расплава.
2. Способ по п.1, отличающийся тем, что расплавленный металлический композиционный материал получают путем расплавления композиционного материала с металлической матрицей.
3. Способ по п.1, отличающийся тем, что расплавленный металлический композиционный материал получают путем добавки и распределения упрочняющих частиц в расплавленный металл или сплав при помощи активного газа.
4. Способ по п.3, отличающийся тем, что в качестве активного газа используют двуокись углерода, а в качестве упрочняющих частиц огнеупорные частицы.
5. Способ по пп.1-4, отличающийся тем, что расплавленным композиционным материалом является матрица из алюминия или алюминиевого сплава, упрочненная керамическими или интерметаллическими частицами.
SU905011037A 1989-07-17 1990-07-11 Способ получения пенометалла RU2046151C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO892925 1989-07-17
NO892925A NO172697C (no) 1989-07-17 1989-07-17 Fremgangsmaate ved fremstilling av partikkelforsterket metallskum og resulterende produkt
PCT/NO1990/000115 WO1991001387A1 (en) 1989-07-17 1990-07-11 A process of manufacturing particle reinforced metal foam and product thereof

Publications (1)

Publication Number Publication Date
RU2046151C1 true RU2046151C1 (ru) 1995-10-20

Family

ID=19892250

Family Applications (1)

Application Number Title Priority Date Filing Date
SU905011037A RU2046151C1 (ru) 1989-07-17 1990-07-11 Способ получения пенометалла

Country Status (13)

Country Link
EP (1) EP0483184B1 (ru)
JP (1) JP2635817B2 (ru)
KR (1) KR100186782B1 (ru)
AT (1) ATE100867T1 (ru)
BR (1) BR9007549A (ru)
CA (1) CA2064099A1 (ru)
DE (2) DE483184T1 (ru)
DK (1) DK0483184T3 (ru)
ES (1) ES2049037T3 (ru)
HU (1) HU210524B (ru)
NO (1) NO172697C (ru)
RU (1) RU2046151C1 (ru)
WO (1) WO1991001387A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002115A1 (fr) * 1999-07-06 2001-01-11 Igor Stepanovich Polkin Procede de fabrication d'un metal poreux et d'articles correspondants

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112697A (en) * 1989-09-06 1992-05-12 Alcan International Limited Stabilized metal foam body
WO1992021457A1 (en) * 1991-05-31 1992-12-10 Alcan International Limited Process and apparatus for producing shaped slabs of particle stabilized foamed metal
DE4233695C2 (de) * 1992-10-07 1996-07-11 Wicona Bausysteme Gmbh Verbundplatte für Wandbekleidungen
CA2087791A1 (en) * 1993-01-21 1994-07-22 Martin Thomas Production of particle-stabilized metal foams
DE4318540A1 (de) * 1993-06-04 1994-12-08 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur Herstellung eines Verbundbauteils
DE19501659C1 (de) * 1995-01-20 1996-05-15 Daimler Benz Ag Verfahren zur Herstellung eines Metallschaumteils
NO953858D0 (no) * 1995-09-29 1995-09-29 Norsk Hydro As Laminat
ATE208435T1 (de) * 1997-08-30 2001-11-15 Honsel Gmbh & Co Kg Legierung zum herstellen von metallschaumkörpern unter verwendung eines pulvers mit keimbildenden zusätzen
NO981119L (no) 1998-01-14 1999-07-15 Norsk Hydro As Bilkarosseri
DE19813176C2 (de) * 1998-03-25 2000-08-24 Fraunhofer Ges Forschung Verfahren zur Herstellung von Verbundwerkstoffbauteilen
BR0011544B1 (pt) 1999-05-26 2011-10-18 tubulação de aço com uma espessura de parede projetada para o assentamento em águas profundas e processo para sua fabricação.
DE19948830B4 (de) * 1999-10-06 2005-11-24 Terex-Demag Gmbh & Co. Kg Teleskopausleger für Krane
US6343640B1 (en) * 2000-01-04 2002-02-05 The University Of Alabama Production of metal/refractory composites by bubbling gas through a melt
NO311708B1 (no) 2000-02-25 2002-01-14 Cymat Corp Fremgangsmåte og utstyr for tildannelse av stöpte produkter
US6464933B1 (en) 2000-06-29 2002-10-15 Ford Global Technologies, Inc. Forming metal foam structures
AT410103B (de) * 2001-06-15 2003-02-25 Huette Klein Reichenbach Gmbh Verfahren zur herstellung eines leichtgewichtigen formkörpers und formkörper aus metallschaum
US7175689B2 (en) 2001-06-15 2007-02-13 Huette Klein-Reichenbach Gesellschaft Mbh Process for producing a lightweight molded part and molded part made of metal foam
US6660224B2 (en) 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material
EP1417063B2 (en) 2001-08-17 2012-08-08 Cymat Technologies Ltd. Method for low pressure casting metal foam
US7108828B2 (en) 2001-08-27 2006-09-19 National Research Council Of Canada Method of making open cell material
KR101024308B1 (ko) 2002-03-04 2011-03-31 싸이매트 코프. 금속 폼을 제조하기 위한 시일드 임펠러 및 시스템
US20040126583A1 (en) * 2002-11-19 2004-07-01 Takashi Nakamura Foaming agent for manufacturing a foamed or porous metal
DE102005037069B4 (de) * 2005-08-05 2010-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Poröse Verbundwerkstoffe auf Basis eines Metalls und Verfahren zu deren Herstellung
JP4189401B2 (ja) * 2005-10-05 2008-12-03 本田技研工業株式会社 発泡アルミニウムの製造方法
DE102008000100B4 (de) 2008-01-18 2013-10-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines leichtgewichtigen Grünkörpers, danach hergestellter leichtgewichtiger Grünkörper und Verfahren zur Herstellung eines leichtgewichtigen Formkörpers
CN111434788B (zh) * 2019-01-15 2021-10-19 杨怡虹 一种复合型泡沫铝材的生产制备方法
CN110052594B (zh) * 2019-04-25 2024-01-02 清华大学 泡沫金属制备方法及泡沫金属制备装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1259163A (fr) * 1960-05-24 1961-04-21 Lor Corp Moussage de l'aluminium granulé
US3297431A (en) * 1965-06-02 1967-01-10 Standard Oil Co Cellarized metal and method of producing same
US3816952A (en) * 1969-02-19 1974-06-18 Ethyl Corp Preparation of metal foams with viscosity increasing gases
FR2282479A1 (fr) * 1974-08-19 1976-03-19 Pechiney Aluminium Pieces en alliage d'aluminium poreux et moyen de les preparer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1. Патент Великобритании N 1287994, кл. C 22C 1/08, публ.1976. (56) *
2. Европейская заявка N 0210803, кл. C 22C 1/08, публ. 1986. *
3. Патент США N 3297431, кл.C 22C 1/08, публ. 1967. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002115A1 (fr) * 1999-07-06 2001-01-11 Igor Stepanovich Polkin Procede de fabrication d'un metal poreux et d'articles correspondants

Also Published As

Publication number Publication date
DE69006359T2 (de) 1994-05-11
BR9007549A (pt) 1992-06-30
HUT60791A (en) 1992-10-28
DE69006359D1 (de) 1994-03-10
NO892925L (no) 1991-01-18
ATE100867T1 (de) 1994-02-15
JPH04506835A (ja) 1992-11-26
WO1991001387A1 (en) 1991-02-07
KR920703862A (ko) 1992-12-18
HU210524B (en) 1995-04-28
DE483184T1 (de) 1992-08-13
EP0483184B1 (en) 1994-01-26
HU9200169D0 (en) 1992-06-29
DK0483184T3 (da) 1994-05-30
JP2635817B2 (ja) 1997-07-30
CA2064099A1 (en) 1991-01-18
NO892925D0 (no) 1989-07-17
EP0483184A1 (en) 1992-05-06
NO172697B (no) 1993-05-18
ES2049037T3 (es) 1994-04-01
KR100186782B1 (ko) 1999-05-01
NO172697C (no) 1993-08-25

Similar Documents

Publication Publication Date Title
RU2046151C1 (ru) Способ получения пенометалла
US7452402B2 (en) Method for producing foamed aluminum products by use of selected carbonate decomposition products
JP5398260B2 (ja) 多孔質体の製造方法
US4973358A (en) Method of producing lightweight foamed metal
US5112697A (en) Stabilized metal foam body
JP4235813B2 (ja) 金属多孔質体の製造方法
DE19907855C1 (de) Herstellung von Metallschäumen
CN109837415B (zh) 一种泡沫铝合金的制造方法
Banhart Metallic foams: challenges and opportunities
CN1042494A (zh) 新型金属基质复合体的热成型方法及其由此生产的产品
WO2006119234A2 (en) Method for producing foamed aluminum using carbonates
US7396380B2 (en) Method for producing metal foam bodies
US2974034A (en) Method of foaming granulated metal
KR920006111B1 (ko) 대기용해에 의한 알루미늄-리튬합금의 제조방법
CN114672744B (zh) 一种内生多孔钛增强镁基非晶复合材料及其制备方法
CN112853182B (zh) 一种大尺寸均匀稳定多孔镁合金材料及其制备方法
CA2567013A1 (en) Method for recycling lightweight metal parts
RU2441095C1 (ru) Способ получения отливки из сплавов на металлической основе с мелкодисперсными частицами карбидов
RU2026394C1 (ru) Способ получения вспененного алюминия
CN116926389A (zh) 一种可时效强化型Al-Mg-Yb-Zr合金及其制备工艺
JP2004322143A (ja) 多孔質金属体の製造方法
Ide et al. Fabrication of lotus-type porous copper through thermal decomposition of titanium hydride
JPS62207563A (ja) 分散強化型合金の製造装置
JPH0656598A (ja) TiCウイスカの製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060712