RU2038900C1 - Method of continuous casting of metals - Google Patents

Method of continuous casting of metals Download PDF

Info

Publication number
RU2038900C1
RU2038900C1 RU92012851A RU92012851A RU2038900C1 RU 2038900 C1 RU2038900 C1 RU 2038900C1 RU 92012851 A RU92012851 A RU 92012851A RU 92012851 A RU92012851 A RU 92012851A RU 2038900 C1 RU2038900 C1 RU 2038900C1
Authority
RU
Russia
Prior art keywords
mold
ingot
working
temperature
length
Prior art date
Application number
RU92012851A
Other languages
Russian (ru)
Other versions
RU92012851A (en
Inventor
Владимир Ильич Лебедев
Альберт Павлович Щеголев
Владимир Алексеевич Тихановский
Александр Леонидович Кузьминов
Юрий Павлович Бойко
Владимир Сергеевич Луковников
Александр Львович Угодников
Юрий Иванович Жаворонков
Борис Николаевич Николаев
Original Assignee
Производственное объединение "Южуралмаш"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Производственное объединение "Южуралмаш" filed Critical Производственное объединение "Южуралмаш"
Priority to RU92012851A priority Critical patent/RU2038900C1/en
Application granted granted Critical
Publication of RU2038900C1 publication Critical patent/RU2038900C1/en
Publication of RU92012851A publication Critical patent/RU92012851A/en

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

FIELD: foundry engineering. SUBSTANCE: method includes feeding of metals into crystallizer and temperature measuring of crystallizer working walls along ingot length and perimeter with the help of thermocouples. Temperature is measured at least on two levels of ingot length. Space between levels corresponds to 0,7-1,0 and 1,4-2,2 of ingot thickness from metal meniscus. In the process of casting point of working walls temperature increase for 10-25 per cent of working value at the upper measuring level is detected. In a period equal to l/vp point of temperature increase at the lower measuring level is detected. In case of its increase for the same value cooler discharge under crystallizer increases for 5-50 per cent of the working value at the length equal to 0,2-6,0 of the ingot thickness. l is space between temperature measuring levels of crystallizer working walls; vp is working value of ingot drawing speed, m/min. EFFECT: enhanced efficiency. 1 tbl

Description

Изобретение относится к металлургии, а именно к непрерывной разливке металлов. The invention relates to metallurgy, namely to the continuous casting of metals.

Известен способ непрерывной разливки металлов [1] включающий подачу металла в кристаллизатор, вытягивание из него слитка с переменной скоростью, сообщение кристаллизатору возвратно-поступательного движения, подачу на мениск металла в кристаллизаторе шлаковой смеси, охлаждение рабочих стенок кристаллизатора проточной водой, охлаждение поверхности слитка под кристаллизатором охладителем, распыливаемым форсунками, измерение температуры рабочих стенок кристаллизатора, а также отслеживание перемещения элементов поверхности слитка вдоль кристаллизатора. В процессе разливки измеряют расходы и перепады температур охлаждающей воды на входе и выходе из каналов в рабочих стенках кристаллизатора. На основании этих данных определяют момент нарушения сплошности оболочки слитка. A known method of continuous casting of metals [1] comprising supplying metal to the mold, pulling an ingot from it at a variable speed, communicating to the mold reciprocating motion, feeding slag mixture to the metal meniscus, cooling the working walls of the mold with running water, cooling the surface of the ingot under the mold cooler sprayed by nozzles, measuring the temperature of the working walls of the mold, as well as tracking the movement of elements of the surface of the ingot to only crystallizer. During the casting process, the flow rates and temperature differences of the cooling water at the inlet and outlet of the channels in the working walls of the mold are measured. Based on these data, the moment of discontinuity of the ingot shell is determined.

Расход охладителя под кристаллизатором поддерживают постоянным. The flow rate of the cooler under the mold is kept constant.

Недостатком известного способа является неудовлетворительная точность определения момента нарушения сплошности или разрыва оболочки слитка в кристаллизаторе. Это объясняется тем, что при больших расходах охлаждающей воды, протекающей по каналам кристаллизатора снизу вверх, невозможно замерить перепад температуры воды, фиксирующий момент разрыва оболочки слитка. Этот перепад температур незначителен по величине и лежит ниже предела чувствительности существующих измерительных приборов. В результате отсутствует возможность своевременно изменять технологические параметры процесса непрерывной разливки для устранения последствий разрывов оболочки слитка. Сказанное приводит к прорывам металла под кристаллизатором, что снижает производительность и стабильность процесса непрерывной разливки металлов. The disadvantage of this method is the unsatisfactory accuracy of determining the moment of discontinuity or rupture of the shell of the ingot in the mold. This is explained by the fact that, at high flow rates of cooling water flowing through the mold channels from the bottom up, it is impossible to measure the water temperature difference, which fixes the moment of rupture of the ingot shell. This temperature difference is insignificant in magnitude and lies below the sensitivity limit of existing measuring instruments. As a result, it is not possible to timely change the technological parameters of the continuous casting process to eliminate the consequences of ingot shell ruptures. The foregoing leads to breakthroughs of the metal under the mold, which reduces the productivity and stability of the process of continuous casting of metals.

Наиболее близким по технической сущности является способ непрерывной разливки металлов [2] включающий подачу металла в кристаллизатор, вытягивание из него слитка с переменной скоростью, сообщение кристаллизатору возвратно-поступательного движения, подачу на мениск металла в кристаллизаторе шлаковой смеси, охлаждение рабочих стенок кристаллизатора проточной водой, охлаждение поверхности слитка под кристаллизатором охладителем, распыливаемым форсунками, измерение температуры рабочих стенок кристаллизатора, а также отслеживание перемещения элементов поверхности слитка вдоль кристаллизатора. Вдоль и по периметру рабочей полости в медных стенках кристаллизатора устанавливается медь-константановые термопары. В процессе непрерывной разливки фиксируют показания этих термопар и определяют температуру рабочих стенок кристаллизатора. На основании полученных данных рассчитывают толщину оболочки слитка по длине кристаллизатора. The closest in technical essence is a method of continuous casting of metals [2] including supplying metal to the mold, drawing an ingot from it at a variable speed, communicating reciprocating motion to the mold, supplying slag mixture to the metal meniscus, cooling the working walls of the mold with running water, cooling the surface of the ingot under the mold with a cooler sprayed by nozzles, measuring the temperature of the working walls of the mold, as well as tracking displacements of elements along the surface of the ingot mold. Along the perimeter of the working cavity, copper-constantan thermocouples are installed in the copper walls of the mold. In the process of continuous casting, the readings of these thermocouples are recorded and the temperature of the working walls of the mold is determined. Based on the data obtained, the ingot shell thickness is calculated along the length of the mold.

Расход охладителя под кристаллизатором поддерживают постоянным. The flow rate of the cooler under the mold is kept constant.

Недостатком известного способа является неудовлетворительная точность определения момента нарушения сплошности или разрыва оболочки слитка в кристаллизаторе. Это объясняется тем, что в процессе непрерывной разливки не фиксируют последовательность по времени изменения температуры рабочих стенок кристаллизатора по его длине. Вследствие этого отсутствует возможность контролировать момент образования разрыва оболочки слитка и его перемещения по длине кристаллизатора. Сказанное приводит к прорывам металла под кристаллизатором, что снижает производительность и стабильность процесса непрерывной разливки металлов. The disadvantage of this method is the unsatisfactory accuracy of determining the moment of discontinuity or rupture of the shell of the ingot in the mold. This is because in the process of continuous casting do not record the sequence in time of the temperature change of the working walls of the mold along its length. As a result of this, it is not possible to control the moment of formation of the rupture of the shell of the ingot and its movement along the length of the mold. The foregoing leads to breakthroughs of the metal under the mold, which reduces the productivity and stability of the process of continuous casting of metals.

Технический эффект при использовании изобретения заключается в повышении стабильности и производительности процесса непрерывной разливки металлов. The technical effect when using the invention is to increase the stability and productivity of the process of continuous casting of metals.

Указанный технический эффект достигают тем, что в кристаллизатор подают металл, вытягивают из него слиток с переменной скоростью, сообщают кристаллизатору возвратно-поступательное движение, подают на мениск металла в кристаллизаторе шлаковую смесь, охлаждают рабочие стенки кристаллизатора проточной водой, охлаждают поверхность слитка под кристаллизатором охладителем, распыливаемым форсунками, измеряют температуру рабочих стенок кристаллизатора по длине и периметру слитка при помощи термопар, измерение температуры рабочих стенок кристаллизатора производят как минимум на двух уровнях по длине слитка, находящегося в кристаллизаторе, на расстоянии соответственно 0,7-1,0 и 1,4-2,2 толщины слитка от мениска металла, определяют момент повышения температуры рабочих стенок на верхнем уровне измерения на 10-25% от рабочего значения и через время, равное l/Vp, определяют момент повышения температуры на нижнем уровне измерения и в случае ее повышения на ту же относительную величину увеличивают расходы охладителя под кристаллизатором на 5-50% от рабочего значения на длине, равной 0,2-0,6 толщины слитка. Расходы охладителя уменьшают значения через время, равное
τ= [L l (0,7÷1,0)H]/(0,4÷0,9)Vp; где L длина слитка, находящегося в кристаллизаторе, м;
l расстояние между уровнями измерения температуры рабочих стенок кристаллизатора, м;
Vp рабочее значение скорости вытягивания слитка, м/мин;
Н толщина слитка, м;
(0,7÷1,0) эмпирический коэффициент, учитывающий расположение верхнего уровня изменения от мениска металла в кристаллизаторе, безразмерный;
(0,4÷0,9) эмпирический коэффициент, учитывающий величину увеличения расхода охладителя под кристаллизатором, безразмерный.
The specified technical effect is achieved by the fact that metal is fed into the mold, the ingot is pulled out from it at a variable speed, the reciprocating motion is conveyed to the mold, the slag mixture is fed to the metal meniscus in the mold, the mold working walls are cooled with running water, the surface of the ingot is cooled under the mold cooler, sprayed nozzles, measure the temperature of the working walls of the mold along the length and perimeter of the ingot using thermocouples, measuring the temperature of the working walls to the mold is produced at least at two levels along the length of the ingot located in the mold, at a distance of 0.7-1.0 and 1.4-2.2, respectively, of the thickness of the ingot from the meniscus of the metal, the moment of increasing the temperature of the working walls at the upper level of measurement at 10-25% of the operating value and after a time equal to l / V p , determine the moment of temperature increase at the lower level of measurement and if it increases by the same relative value, increase the flow rate of the cooler under the mold by 5-50% of the working value on the length equal to 0.2-0.6 t oysters of the ingot. Cooler flow rates decrease after a time equal to
τ = [L l (0.7 ÷ 1.0) H] / (0.4 ÷ 0.9) V p ; where L is the length of the ingot in the mold, m;
l the distance between the levels of measuring the temperature of the working walls of the mold, m;
V p operating value of the speed of drawing the ingot, m / min;
N ingot thickness, m;
(0.7 ÷ 1.0) empirical coefficient, taking into account the location of the upper level of change from the meniscus of the metal in the mold, dimensionless;
(0.4 ÷ 0.9) empirical coefficient taking into account the magnitude of the increase in the flow rate of the cooler under the mold, dimensionless.

Повышение производительности и стабильности процесса непрерывной разливки металлов будет происходить вследствие своевременного увеличения расхода охладителя под кристаллизатором, что гарантирует повторную кристаллизацию и "залечивание" участка слитка между разрывами оболочки. Последовательное фиксирование как минимум двух и более моментов увеличения значений температуры на последовательно расположенных уровнях измерения температуры рабочих стенок кристаллизатора позволяет гарантированно определять факт разрыва оболочки слитка и своевременно изменять технологические параметры процесса разливки, что позволяет избежать прорывы металла под кристаллизатором. The increase in productivity and stability of the process of continuous casting of metals will occur due to the timely increase in the flow rate of the cooler under the mold, which guarantees repeated crystallization and "healing" of the ingot section between the shell ruptures. Sequential recording of at least two or more points of temperature increase at successively located temperature measurement levels of the mold working walls allows guaranteed determination of the fact of ingot shell rupture and timely change of technological parameters of the casting process, which avoids breakthroughs of the metal under the mold.

Диапазон значений расстояния расположения первого уровня измерения температуры рабочих стенок кристаллизатора в пределах 0,7-1,0 толщины слитка от мениска металла объясняется закономерностями разрыва оболочки слитка в верхней части кристаллизатора. При меньших значениях повышение температуры в случае разрыва оболочки будет незначительным, что делает невозможным его измерение. При больших значениях информация о случае разрыва оболочки слитка будет запоздалой для соответствующего изменения технологических параметров процесса разливки, что приводит к прорывам металла под кристаллизатором. The range of distance values of the location of the first level of measuring the temperature of the working walls of the mold within 0.7-1.0 of the thickness of the ingot from the meniscus of the metal is explained by the patterns of rupture of the shell of the ingot in the upper part of the mold. At lower values, the temperature increase in the event of a shell rupture will be insignificant, which makes it impossible to measure it. For large values, information about the case of rupture of the shell of the ingot will be late for the corresponding change in the technological parameters of the casting process, which leads to breakthroughs of the metal under the mold.

Указанный диапазон устанавливают в прямой пропорциональной зависимости от толщины слитка. The specified range is set in direct proportion to the thickness of the ingot.

Диапазон значений расстояния расположения второго нижнего уровня измерения температуры рабочих стенок кристаллизатора в пределах 1,4-2,2 толщины слитка от мениска металла объясняется закономерностями разрыва и взаимного расположения краев обрывов оболочки по длине кристаллизатора. При меньших значениях разница в результатах измерения температуры стенок кристаллизатора будет незначительной, что делает невозможным ее измерение. При больших значениях информация о повышении температуры стенок кристаллизатора будет запоздалой для соответствующего изменения технологических параметров процесса разливки, что приводит к прорывам металла под кристаллизатором. Указанный диапазон устанавливают в обратной пропорциональной зависимости от толщины слитка. Диапазон значений повышения температуры рабочих стенок кристаллизатора в пределах 10-25% от рабочего значения на обоих уровнях измерения объясняется закономерностями теплоотвода через рабочую стенку в случае ее контакта с целой оболочкой слитка и с жидким металлом в районе разрыва. При меньших значениях повышение температуры рабочих стенок не будет означать факт разрыва оболочки слитка. Большие значения устанавливать не имеет смысла, так как факт разрыва оболочки устанавливается при меньших значениях. Указанный диапазон устанавливают в прямой пропорциональной зависимости от рабочего значения температуры рабочих стенок на обоих уровнях измерения. The range of values of the distance of the second lower level of measuring the temperature of the working walls of the mold within 1.4-2.2 of the ingot thickness from the meniscus of the metal is explained by the laws of rupture and the relative position of the edges of the shell breaks along the length of the mold. At lower values, the difference in the results of measuring the temperature of the walls of the mold will be insignificant, which makes it impossible to measure it. At high values, information about an increase in the temperature of the walls of the mold will be belated for a corresponding change in the technological parameters of the casting process, which leads to breakthroughs of the metal under the mold. The specified range is set in inverse proportion to the thickness of the ingot. The range of temperature rise of the working walls of the mold within 10-25% of the working value at both measurement levels is explained by the laws of heat removal through the working wall in case of contact with the whole shell of the ingot and with liquid metal in the region of the gap. At lower values, an increase in the temperature of the working walls will not mean the fact of rupture of the shell of the ingot. It does not make sense to establish large values, since the fact of a shell rupture is established at lower values. The specified range is set in direct proportion to the operating temperature of the working walls at both levels of measurement.

Диапазон значений увеличения расхода охладителя под кристаллизатором в пределах 5-50% от рабочего значения объясняется закономерностями "залечивания" оболочки слитка. Пpи меньших значениях не будет происходить "залечивание" разрывов оболочки слитка под кристаллизатором. При больших значениях будет происходить переохлаждение поверхности слитка, что приводит к браку слитков по внутренним и наружным трещинам. The range of values for increasing the flow rate of the cooler under the mold within 5-50% of the working value is explained by the laws of "healing" of the shell of the ingot. At lower values, there will be no "healing" of the ruptures of the shell of the ingot under the mold. At high values, supercooling of the surface of the ingot will occur, which leads to the rejection of the ingots by internal and external cracks.

Указанный диапазон устанавливают в прямой пропорциональной зависимости от рабочего значения расхода охладителя под кристаллизатором. The specified range is set in direct proportion to the operating value of the flow rate of the cooler under the mold.

Диапазон значений длины участка слитка под кристаллизатором, на котором увеличивают расходы охладителя, в пределах 0,2-0,6 толщины слитка объясняется закономерностями кристаллизации разрывов оболочки слитка. При меньших значениях не будет происходить "залечивание" оболочки слитка. При больших значениях будет происходить переохлаждение поверхности слитка. The range of values of the length of the section of the ingot under the mold, on which the flow rate of the cooler is increased, in the range of 0.2-0.6 of the thickness of the ingot is explained by the laws of crystallization of breaks of the shell of the ingot. At lower values, "healing" of the shell of the ingot will not occur. At large values, supercooling of the surface of the ingot will occur.

Указанный диапазон устанавливают в обратной пропорциональной зависимости от толщины слитка. The specified range is set in inverse proportion to the thickness of the ingot.

Диапазон значений эмпирического коэффициента в пределах (0,4-0,9) объясняется закономерностями "залечивания" оболочки слитка. При меньших значениях будет нарушаться стабильность формирования оболочки слитка на мениске металла в кристаллизаторе, что приводит к образованию на поверхности слитков затворов, поясов, ужимин и к их браку. При больших значениях разрывы оболочки слитка не будут успевать "залечиваться" или срастаться, что приводит к прорывам металла под кристаллизатором. The range of values of the empirical coefficient in the range (0.4-0.9) is explained by the laws of "healing" of the shell of the ingot. At lower values, the stability of the formation of the shell of the ingot on the meniscus of the metal in the mold will be violated, which leads to the formation on the surface of the ingots of gates, belts, bumps and their marriage. At large values, the ruptures of the shell of the ingot will not have time to "heal" or grow together, which leads to breakthroughs of the metal under the mold.

Указанный диапазон устанавливают в обратной пропорциональной зависимости от рабочего значения скорости вытягивания слитка. The specified range is set in inverse proportion to the operating value of the speed of the ingot.

Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа непрерывной разливки металлов от признаков известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "Изобретательский уровень". The analysis of scientific, technical and patent literature shows the lack of coincidence of the distinctive features of the proposed method of continuous casting of metals from the signs of known technical solutions. Based on this, it is concluded that the claimed technical solution meets the criterion of "Inventive step".

Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения. The following is an embodiment of the invention that does not exclude other variations within the scope of the claims.

Способ непрерывной разливки металлов осуществляют следующим образом. The method of continuous casting of metals is as follows.

П р и м е р. В процессе непрерывной разливки в кристаллизатор подают сталь марки 3сп и вытягивают из него слиток с переменной скоростью, сообщают кристаллизатору возвратно-поступательное движение, подают на мениск металла в кристаллизаторе шлаковую смесь на основе CaO-Si2-Al2O3, охлаждают рабочие стенки кристаллизатора проточной водой, охлаждают поверхность слитка под кристаллизатором водой, распыливаемой форсунками, измеряют температуру рабочих стенок кристаллизатора по длине и периметру слитка при помощи медь-константановых термопар.PRI me R. During continuous casting, 3sp steel is fed into the mold and the ingot is pulled out at a variable speed, the reciprocating motion is conveyed to the mold, a slag mixture based on CaO-Si 2 -Al 2 O 3 is fed to the metal meniscus in the mold, and the working walls of the mold are cooled running water, cool the surface of the ingot under the mold with water sprayed by nozzles, measure the temperature of the working walls of the mold along the length and perimeter of the ingot using copper-constantan thermocouples.

Термопары устанавливают на двух уровнях по высоте и с шагом 200 мм по периметру кристаллизатора. Спаи термопар располагают на расстоянии 2 мм от рабочей поверхности медных стенок кристаллизатора. Сигналы с термопар обрабатывают соответствующим образом в ЭВМ. Thermocouples are installed at two levels in height and in increments of 200 mm around the perimeter of the mold. Thermocouple junctions are placed at a distance of 2 mm from the working surface of the copper walls of the mold. Signals from thermocouples are processed accordingly in a computer.

Измерение температуры рабочих стенок кристаллизатора производят как минимум на двух уровнях по длине слитка, находящегося в кристаллизаторе, на расстоянии соответственно 0,7-1,0 и 1,4-2,2 толщины слитка от мениска металла, определяют момент повышения температуры рабочих стенок на верхнем уровне измерения на 10-25% от рабочего значения и через время равное τ, определяют момент повышения температуры на нижнем уровне изменения и в случае ее повышения на ту же относительную величину увеличивают расходы охладителя под кристаллизатором на 5-50% от рабочего значения по длине, равной 0,2-0,6 толщины слитка. Расходы охладителя уменьшают до рабочего значения через время, равное
τ= [L l (0,7÷1,0)H]/(0,4÷0,9)Vp; где L длина слитка, находящегося в кристаллизаторе, м;
l расстояние между уровнями измерения температуры рабочих стенок кристаллизатора, м;
Vp рабочее значение скорости вытягивания слитка, м/мин;
H толщина слитка, мм;
(0,7÷1,0) эмпирический коэффициент, учитывающий расположение верхнего уровня измерения от мениска металла в кристаллизаторе, безразмерный;
(0,4÷0,9) эмпирический коэффициент, учитывающий величину увеличения расхода охладителя под кристаллизатором, безразмерный.
The temperature of the working walls of the mold is measured at least at two levels along the length of the ingot located in the mold, at a distance of 0.7-1.0 and 1.4-2.2, respectively, of the thickness of the ingot from the meniscus of the metal, the moment of increasing the temperature of the working walls by the upper level of measurement by 10-25% of the operating value and after a time equal to τ, determine the moment of temperature increase at the lower level of change and, if it increases by the same relative value, increase the flow rate of the cooler under the mold by 5-50% of the working which value the length equal to 0.2-0.6 times the thickness of the ingot. Cooler costs are reduced to the operating value after a time equal to
τ = [L l (0.7 ÷ 1.0) H] / (0.4 ÷ 0.9) V p ; where L is the length of the ingot in the mold, m;
l the distance between the levels of measuring the temperature of the working walls of the mold, m;
V p operating value of the speed of drawing the ingot, m / min;
H ingot thickness, mm;
(0.7 ÷ 1.0) empirical coefficient, taking into account the location of the upper level of measurement from the meniscus of the metal in the mold, dimensionless;
(0.4 ÷ 0.9) empirical coefficient taking into account the magnitude of the increase in the flow rate of the cooler under the mold, dimensionless.

В таблице приведены примеры осуществления способа непрерывной разливки металлов при различных технологических параметрах процесса разливки. The table shows examples of the method of continuous casting of metals at various technological parameters of the casting process.

В первом примере вследствие большого увеличения расходов воды под кристаллизатором происходит переохлаждение поверхности слитка под кристаллизатором, что приводит к браку слитков по внутренним и наружным трещинам. Кроме того, вследствие близкого расположения первого уровня измерения к мениску металла в кристаллизаторе повышение температуры на этом уровне в случае разрыва оболочки делает невозможным фиксирование этого разрыва. Сказанное приводит к прорывам металла под кристаллизатором. In the first example, due to a large increase in water consumption under the mold, the surface of the ingot under the mold is supercooled, which leads to the rejection of the ingots by internal and external cracks. In addition, due to the close proximity of the first measurement level to the meniscus of the metal in the mold, an increase in temperature at this level in the event of a shell rupture makes it impossible to fix this gap. The foregoing leads to breakthroughs of metal under the mold.

В пятом примере вследствие малого увеличения расходов воды под кристаллизатором не происходит "залечивание" оболочки слитка. Кроме того, вследствие малого расстояния между уровнями измерения делает невозможным фиксирование момента разрыва оболочки слитка. Сказанное приводит к прорывам металла под кристаллизатором. In the fifth example, due to a small increase in water flow under the mold, there is no “healing" of the ingot shell. In addition, due to the small distance between the measurement levels, it makes it impossible to fix the moment of rupture of the shell of the ingot. The foregoing leads to breakthroughs of metal under the mold.

В шестом примере вследствие отсутствия последовательного фиксирования во времени изменения температуры рабочих стенок кристаллизатора по его длине не производится фиксирование момента разрыва оболочки слитка, что делает невозможным изменение соответствующих технологических параметров процесса разливки. Сказанное приводит к прорывам металла под кристаллизатором. In the sixth example, due to the lack of sequential time fixing of changes in the temperature of the working walls of the mold along its length, the moment of rupture of the shell of the ingot is not fixed, which makes it impossible to change the corresponding technological parameters of the casting process. The foregoing leads to breakthroughs of metal under the mold.

В примерах 2-4 вследствие своевременного увеличения расходов воды под кристаллизатором в оптимальных пределах и расстоянии по длине слитка после фиксирования момента разрыва оболочки слитка на двух уровнях измерения устраняются прорывы металла под кристаллизатором, что приводит к повышению производительности и стабильности процесса непрерывной разливки металлов. Применение предлагаемого способа позволяет повысить производительность процесса непрерывной разливки металлов на 1,4% Экономический эффект подсчитан в сравнении с базовым объектом, за который принят способ непрерывной разливки металлов применяемый на Череповецком металлургическом комбинате. In examples 2-4, due to the timely increase in water flow under the mold in the optimal limits and the distance along the length of the ingot after fixing the moment of rupture of the shell of the ingot at two measurement levels, metal breaks under the mold are eliminated, which leads to an increase in productivity and stability of the process of continuous casting of metals. The application of the proposed method allows to increase the productivity of the process of continuous casting of metals by 1.4%. The economic effect is calculated in comparison with the base object, which is the method of continuous casting of metals used at the Cherepovets Metallurgical Plant.

Claims (1)

СПОСОБ НЕПРЕРЫВНОЙ РАЗЛИВКИ МЕТАЛЛОВ, включающий подачу металла в кристаллизатор, вытягивание из него слитка с переменной скоростью, сообщение кристаллизатору возвратно-поступательного движения, подачу на мениск металла в кристаллизаторе шлаковой смеси, охлаждение рабочих стенок кристаллизатора проточной водой, охлаждение поверхности слитка под кристаллизатором охладителем, распыливаемым форсунками, и измерение температуры рабочих стенок кристаллизатора по длине и периметру слитка при помощи термопар, отличающийся тем, что измерение температуры рабочих стенок кристаллизатора производят по меньшей мере на двух уровнях по длине слитка, находящегося в кристаллизаторе, на расстоянии соответственно 0,7 1,0 и 1,4 2,2 толщины слитка от мениска металла, при этом при последовательном повышении температуры рабочих стенок на верхнем и нижнем уровнях на 10 25% рабочего значения в течение времени, равном l/Vр, увеличивают расходы охладителя под кристаллизатором на 5 50% рабочего значения на длине 0,2 6,0 толщины слитка, а затем уменьшают их до рабочего значения через время τ определяемое по зависимости
t = [L-l-(0,7-1,0)H]/(0,4-0,9)Vp,
где L длина слитка, находящегося в кристаллизаторе, м;
l расстояние между уровнями измерения температуры рабочих стенок кристаллизатора, м;
Vр рабочее значение скорости вытягивания слитка, м/мин;
H толщина слитка, м;
(0,7 1,0) эмпирический коэффициент, учитывающий расположение верхнего уровня измерения от мениска металла в кристаллизаторе, безразмерный;
(0,4 0,9) эмпирический коэффициент, учитывающий величину повышения расходов охладителя под кристаллизатором, безразмерный.
METHOD FOR CONTINUOUS METAL Pouring, including supplying metal to the mold, pulling an ingot from it at a variable speed, informing the mold on the reciprocating motion, feeding slag mixture to the metal meniscus, cooling the working walls of the mold with running water, cooling the surface of the ingot underneath the mold cooler nozzles, and measuring the temperature of the working walls of the mold along the length and perimeter of the ingot using thermocouples, characterized in that the measurement the temperature of the working walls of the mold is produced at least at two levels along the length of the ingot located in the mold, at a distance of 0.7 1.0 and 1.4 2.2, respectively, of the thickness of the ingot from the meniscus of the metal, with a sequential increase in the temperature of the working walls at the upper and lower levels, by 10 25% of the working value for a time equal to l / V r , increase the flow rate of the cooler under the mold by 5 50% of the working value along the length of 0.2 6.0 thickness of the ingot, and then reduce them to the working value through time τ determined depending on the
t = [Ll- (0.7-1.0) H] / (0.4-0.9) V p ,
where L is the length of the ingot in the mold, m;
l the distance between the levels of measuring the temperature of the working walls of the mold, m;
V r working value of the speed of drawing the ingot, m / min;
H ingot thickness, m;
(0.7 1.0) an empirical coefficient that takes into account the location of the upper level of measurement from the meniscus of the metal in the mold, dimensionless;
(0.4 0.9) an empirical coefficient that takes into account the magnitude of the increase in the costs of the cooler under the mold, dimensionless.
RU92012851A 1992-12-18 1992-12-18 Method of continuous casting of metals RU2038900C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU92012851A RU2038900C1 (en) 1992-12-18 1992-12-18 Method of continuous casting of metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU92012851A RU2038900C1 (en) 1992-12-18 1992-12-18 Method of continuous casting of metals

Publications (2)

Publication Number Publication Date
RU2038900C1 true RU2038900C1 (en) 1995-07-09
RU92012851A RU92012851A (en) 1996-11-20

Family

ID=20133910

Family Applications (1)

Application Number Title Priority Date Filing Date
RU92012851A RU2038900C1 (en) 1992-12-18 1992-12-18 Method of continuous casting of metals

Country Status (1)

Country Link
RU (1) RU2038900C1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Емельянов В.А., Тепловая работа машин непрерывного литья заготовок, М.: Металлургия, 1988, с.57-58, рис.7. *
2. Бойченко М.С. и др. Непрерывная разливка стали, М.: Металлургиздат, 1961, с.200-203, рис.127. *

Similar Documents

Publication Publication Date Title
US4304290A (en) Method of adjusting the setting speed of the narrow sides of plate molds
RU2038900C1 (en) Method of continuous casting of metals
Bergmann Solidification in continuous casting of aluminum
JPS57127553A (en) Hot top continuous casting method for aluminum
RU2052312C1 (en) Metal continuous casting method
RU2038902C1 (en) Method of continuous casting
RU2038899C1 (en) Method of continuous casting of metals
RU2038901C1 (en) Metal continuous casting method
RU2015806C1 (en) Method of continuous metals casting
RU2021869C1 (en) Method of uninterrupted metal pouring
RU2021868C1 (en) Method of uninterrupted metal pouring
RU2015807C1 (en) Method of continuous casting of metals
RU2015808C1 (en) Method of continuous casting of metals
JPH0790343B2 (en) Breakout prediction method in continuous casting
SU1028418A1 (en) Method of cleaning ingot at continuous casting to electromagnetic mould
JP3151918B2 (en) Continuous casting method
SU1328063A1 (en) Method and apparatus for controlling continuous steel-casting process
RU2021875C1 (en) Continuous metal casting method
SU1284653A1 (en) Method and apparatus for automatic control of operation of open mould of continuous billet-casting machine
SU339099A1 (en) Water-jacketed mould for continuous casting of ingots
SU595058A1 (en) Continuous metal casting method
SU921671A1 (en) Apparatus for horisontal continuous casting
RU2015809C1 (en) Method of continuous metals casting
JPS61226154A (en) Method for predicting breakout in continuous casting
SU1166888A1 (en) Method of cooling continuously cast ingot of small sections