RU2017104514A - Кодер, декодер, система и способы кодирования и декодирования - Google Patents

Кодер, декодер, система и способы кодирования и декодирования Download PDF

Info

Publication number
RU2017104514A
RU2017104514A RU2017104514A RU2017104514A RU2017104514A RU 2017104514 A RU2017104514 A RU 2017104514A RU 2017104514 A RU2017104514 A RU 2017104514A RU 2017104514 A RU2017104514 A RU 2017104514A RU 2017104514 A RU2017104514 A RU 2017104514A
Authority
RU
Russia
Prior art keywords
quantized
value
residual
inverse quantization
values
Prior art date
Application number
RU2017104514A
Other languages
English (en)
Other versions
RU2017104514A3 (ru
RU2678168C2 (ru
Inventor
Гийом ФУКС
Беньямин ШУБЕРТ
Гжегош ПЕТШИК
Маркус МУЛЬТРУС
Бернхард ГРИЛЛ
Original Assignee
Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. filed Critical Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф.
Publication of RU2017104514A3 publication Critical patent/RU2017104514A3/ru
Publication of RU2017104514A publication Critical patent/RU2017104514A/ru
Application granted granted Critical
Publication of RU2678168C2 publication Critical patent/RU2678168C2/ru

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • G10L19/038Vector quantisation, e.g. TwinVQ audio
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • G10L19/035Scalar quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding

Claims (82)

1. Кодер (100), содержащий:
секцию (102) квантования, выполненную с возможностью квантования входного сигнала (140) с использованием мертвой зоны для получения множества квантованных значений (142);
энтропийный кодер (104), выполненный с возможностью кодирования множества квантованных значений (142) с использованием схемы энтропийного кодирования для получения множества значений (144) после энтропийного кодирования;
секцию (106) остаточного квантования, выполненную с возможностью квантования остаточного сигнала, образованного секцией (102) квантования, причем секция (106) остаточного квантования выполнена с возможностью определения для ненулевого квантованного значения по меньшей мере одного квантованного остаточного значения (146) в зависимости от ширины мертвой зоны секции (102) квантования; и
блок (108) формирования кодированного сигнала, выполненный с возможностью формирования кодированного сигнала (148) из множества значений (144) после энтропийного кодирования и по меньшей мере одного квантованного остаточного значения (146);
при этом блок (108) формирования кодированного сигнала выполнен с возможностью формирования кодированного сигнала (148) путем присоединения по меньшей мере одного квантованного остаточного значения (146) или множества квантованных остаточных значений (146) ко множеству значений (144) после энтропийного кодирования до тех пор, пока кодированный сигнал (148) не будет содержать максимальную длину, доступную для передачи в декодер;
причем секция (106) остаточного квантования выполнена с возможностью определения упомянутого по меньшей мере одного квантованного остаточного значения (146) таким образом, что квантованное остаточное значение (146) содержит 1 бит для ненулевого квантованного значения, причем секция (106) остаточного квантования выполнена с возможностью определения квантованного остаточного значения (146) на основании сравнения
Figure 00000001
,
причем x[i] является входным сигналом (140), причем x_Q[i] является входным сигналом (152) после обратного квантования, и при этом i является индексом, который увеличивается на 1 для каждого полученного квантованного значения (142);
причем секция (106) остаточного квантования выполнена с возможностью определения упомянутого квантованного остаточного значения (146) таким образом, что квантованное остаточное значение (146) содержит 2 бита для нулевого квантованного значения, причем секция (106) остаточного квантования выполнена с возможностью определения квантованного остаточного значения (146) на основании сравнений
Figure 00000002
и
Figure 00000003
причем С зависит от ширины мертвой зоны секции (102) квантования, причем x[i] является входным сигналом (140), причем x_Q[i] является входным сигналом (152) после обратного квантования, и при этом i является индексом, который увеличивается на 1 для каждого полученного квантованного значения (142);
причем упомянутое по меньшей мере одно квантованное остаточное значение (146) не подвергается энтропийному кодированию.
2. Кодер (100) по п. 1, в котором секция (106) остаточного квантования содержит:
блок (160) обратного квантования, выполненный с возможностью обратного квантования квантованных значений (112) в зависимости от мертвой зоны секции (102) квантования для получения входного сигнала (152) после обратного квантования;
причем секция (106) остаточного квантования выполнена с возможностью определения по меньшей мере одного квантованного остаточного значения (146) таким образом, что квантованное остаточное значение (146) содержит 1 бит для ненулевого квантованного значения; и
причем секция (106) остаточного квантования выполнена с возможностью определения для ненулевого квантованного значения, что квантованное остаточное значение (146) содержит логический 0, если входной сигнал (140) меньше, чем входной сигнал (152) после обратного квантования для ненулевого квантованного значения, и определения для ненулевого квантованного значения, что квантованное остаточное значение (146) в противном случае содержит логическую 1.
3. Кодер (100) по п. 1, в котором секция (106) остаточного квантования содержит:
блок (160) обратного квантования, выполненный с возможностью обратного квантования множества квантованных значений (142) в зависимости от мертвой зоны для получения входного сигнала (152) после обратного квантования; и
блок (162) сравнения, выполненный с возможностью сравнения входного сигнала (140) и входного сигнала (152) после обратного квантования.
4. Кодер (100) по п. 3, в котором блок (162) сравнения выполнен с возможностью сравнения входного сигнала (140) и входного сигнала (152) после обратного квантования для получения остаточного сигнала (154);
причем секция (106) остаточного квантования выполнена с возможностью квантования остаточного сигнала (154) в зависимости от мертвой зоны.
5. Кодер (100) по п. 4, в котором секция (106) остаточного квантования выполнена с возможностью определения упомянутого по меньшей мере одного квантованного остаточного значения (146) таким образом, что квантованное остаточное значение (146) содержит 1 бит для ненулевого квантованного значения; и
при этом секция остаточного квантования выполнена с возможностью определения для ненулевого квантованного значения, что квантованное остаточное значение (146) содержит логический 0, если остаточный сигнал (154) является отрицательным для ненулевого квантованного значения, и определения для ненулевого квантованного значения, что квантованное остаточное значение (146) содержит логическую 1 в противном случае.
6. Кодер (100) по п. 1, в котором секция (106) остаточного квантования выполнена с возможностью определения упомянутого по меньшей мере одного квантованного остаточного значения (146) таким образом, что квантованное остаточное значение (146) содержит 1 бит для ненулевого квантованного значения, причем секция (106) остаточного квантования выполнена с возможностью определения квантованного остаточного значения (146) на основании синтаксиса
Figure 00000004
причем prm - битовый поток, сформированный секцией (106) остаточного квантования с использованием квантованного остаточного значения (146), причем x[i] - входной сигнал (140), причем x_Q[i] - входной сигнал (152) после обратного квантования, причем n - показатель, увеличиваемый на 1 для каждого ненулевого квантованного значения, и при этом i - показатель, увеличиваемый на 1 для каждого полученного квантованного значения (142).
7. Кодер (100) по п. 1, в котором секция (106) остаточного квантования выполнена с возможностью определения квантованного остаточного значения (146) таким образом, что квантованное остаточное значение (146) содержит 2 бита для нулевого квантованного значения, причем секция (106) остаточного квантования выполнена с возможностью определения квантованного остаточного значения на основании синтаксиса
Figure 00000005
Figure 00000006
Figure 00000007
причем C зависит от мертвой зоны секции (102) квантования, причем prm - битовый поток, сформированный секцией (106) остаточного квантования с использованием квантованного остаточного значения (146), причем x[i] - входной сигнал (140), причем x_Q[i] - входной сигнал (152) после квантования, причем n - показатель, увеличиваемый на 1 для каждого нулевого квантованного значения, которое повторно квантовано в нулевое квантованное значение, и увеличиваемый на 2 для каждого нулевого квантованного значения, которое повторно квантовано в ненулевое квантованное значение, и при этом i - показатель, увеличиваемый на 1 для каждого полученного квантованного значения (142).
8. Кодер (100) по п. 1, в котором блок (108) формирования кодированного сигнала выполнен с возможностью обеспечения битового потока в виде кодированного сигнала (148), причем блок (108) формирования кодированного сигнала выполнен с возможностью формирования битового потока из множества значений (144) после энтропийного кодирования и множества квантованных остаточных значений (146),
при этом блок (108) формирования кодированного сигнала выполнен с возможностью присоединения квантованных остаточных значений (146) к значениям (144) после энтропийного кодирования, причем секция (106) остаточного квантования содержит:
блок (106ʹ) остаточного квантования; и
блок (164) регулирования, выполненный с возможностью управления блоком (106ʹ) остаточного квантования для квантования остаточного сигнала в зависимости от ширины мертвой зоны, используемой в секции (102) квантования для получения множества квантованных значений (142);
при этом блок (164) регулирования выполнен с возможностью получения количества целевых битов и количества израсходованных битов; и
при этом блок (164) регулирования выполнен с возможностью управления секцией остаточного квантования для прекращения определения квантованных остаточных значений, когда битовый поток содержит упомянутое количество целевых битов.
9. Декодер (120), содержащий:
блок (122) синтаксического анализа кодированного сигнала, выполненный с возможностью синтаксического анализа кодированного сигнала (148) для получения множества значений (144) после энтропийного кодирования и по меньшей мере одного квантованного остаточного значения (146);
энтропийный декодер (124), выполненный с возможностью декодирования множества значений (144) после энтропийного кодирования с использованием схемы энтропийного декодирования для получения множества квантованных значений (142); и
секцию (126) обратного квантования, выполненную с возможностью обратного квантования множества квантованных значений (142) для получения выходного сигнала (150);
причем секция (126) обратного квантования выполнена с возможностью уточнения уровня (172) обратного квантования, используемого для получения выходного сигнала (150), в зависимости от квантованного остаточного значения (146);
причем секция (126) обратного квантования выполнена с возможностью уточнения уровня (172) обратного квантования для ненулевого квантованного значения в зависимости от квантованного остаточного значения (146) и ширины мертвой зоны.
10. Декодер (120) по п. 9, в котором секция (126) обратного квантования выполнена с возможностью уточнения уровня (172) обратного квантования путем определения уточненного уровня (174, 176) обратного квантования в зависимости от мертвой зоны.
11. Декодер (120) по п. 10, в котором секция (126) обратного квантования выполнена с возможностью определения двух уточненных уровней (174, 176) обратного квантования для ненулевого квантованного значения, причем секция (126) обратного квантования выполнена с возможностью получения выходного сигнала (150) путем использования одного из двух уточненных уровней (174, 176) обратного квантования, указанных квантованным остаточным значением.
12. Декодер (120) по п. 11, в котором секция (126) обратного квантования выполнена с возможностью увеличения нормализованного абсолютного значения уровня (172) обратного квантования на значение увеличения для получения первого из двух уточненных уровней (174) обратного квантования;
причем секция (126) обратного квантования выполнена с возможностью уменьшения нормализованного абсолютного значения уровня (172) обратного квантования на значение уменьшения для получения второго из двух уточненных уровней (174) обратного квантования; и
при этом значение увеличения и значение уменьшения отличны друг от друга.
13. Декодер (120) по п. 11, в котором секция (126) обратного квантования выполнена с возможностью определения упомянутых двух уточненных уровней (174, 176) обратного квантования для ненулевого квантованного значения на основании двух коэффициентов:
fac_p=0,25 * dz
fac_m=0,5 * (1-0,5 * dz)
причем fac_p указывает на нормализованное абсолютное значение, на которое должен быть увеличено нормализованное абсолютное значение уровня (172) обратного квантования для получения первого из двух уточненных уровней (174) обратного квантования, причем fac_m указывает на нормализованное абсолютное значение, на которое должно быть уменьшено нормализованное абсолютное значение уровня (172) обратного квантования для получения второго из двух уточненных уровней (176) обратного квантования, и при этом dz - нормализованная ширина мертвой зоны.
14. Декодер (120) по п. 9, в котором секция (126) обратного квантования выполнена с возможностью определения двух уточненных уровней (174, 176) обратного квантования для нулевого квантованного значения, причем секция (126) обратного квантования выполнена с возможностью получения выходного сигнала (150) путем использования одного из уровня (172) обратного квантования и двух уточненных уровней (174, 176) обратного квантования, указанных квантованным остаточным значением.
15. Декодер (120) по п. 14, в котором секция (126) обратного квантования выполнена с возможностью увеличения нормализованного абсолютного значения уровня (172) обратного квантования на значение увеличения для получения первого из двух уточненных уровней (174) обратного квантования;
причем секция (126) обратного квантования выполнена с возможностью уменьшения нормализованного абсолютного значения уровня (172) обратного квантования на значение уменьшения для получения второго из двух уточненных уровней (174) обратного квантования.
16. Декодер (120) по п. 14, в котором секция (126) обратного квантования выполнена с возможностью определения упомянутых двух уточненных уровней (174, 176) обратного квантования для нулевого квантованного значения на основании коэффициента:
fac_z=dz/3
причем fac_z указывает на нормализованное абсолютное значение, на которое должно быть увеличено нормализованное абсолютное значение уровня (172) обратного квантования для получения первого из двух уточненных уровней (174) обратного квантования, и нормализованное абсолютное значение, на которое должно быть уменьшено нормализованное абсолютное значение уровня (172) обратного квантования для получения второго из двух уточненных уровней (176) обратного квантования, и при этом dz - нормализованная ширина мертвой зоны.
17. Система, содержащая:
кодер (100) по одному из пп. 1-8; и
декодер (120) по одному из пп. 9-16.
18. Способ (200) кодирования, причем способ содержит этапы, на которых:
выполняют (202) квантование входного сигнала для получения множества квантованных значений с использованием мертвой зоны;
кодируют (204) множество квантованных значений с использованием схемы энтропийного кодирования для получения множества значений после энтропийного кодирования;
выполняют (206) квантование остаточного сигнала, образованного квантованием входного сигнала, причем выполнение (206) квантования остаточного сигнала содержит этап, на котором определяют для ненулевого квантованного значения по меньшей мере одно квантованное остаточное значение в зависимости от ширины мертвой зоны секции квантования; и
формируют (208) битовый поток из множества значений после энтропийного кодирования и множества квантованных остаточных значений;
при этом формирование (208) битового потока содержит этап, на котором присоединяют по меньшей мере одно квантованное остаточное значение (146) или множество квантованных остаточных значений (146) ко множеству значений (144) после энтропийного кодирования до тех пор, пока кодированный сигнал (148) не будет содержать максимальную длину, доступную для передачи в декодер;
причем выполнение (206) квантования остаточного сигнала содержит этап, на котором определяют упомянутое по меньшей мере одно квантованное остаточное значение (146) таким образом, что квантованное остаточное значение (146) содержит 1 бит для ненулевого квантованного значения, причем секция (106) остаточного квантования выполнена с возможностью определения квантованного остаточного значения (146) на основании сравнения
Figure 00000008
,
причем x[i] является входным сигналом (140), причем x_Q[i] является входным сигналом (152) после обратного квантования, и при этом i является индексом, который увеличивается на 1 для каждого полученного квантованного значения (142);
причем выполнение (206) квантования остаточного сигнала содержит этап, на котором определяют упомянутое квантованное остаточное значение (146) таким образом, что квантованное остаточное значение (146) содержит 2 бита для нулевого квантованного значения, причем секция (106) остаточного квантования выполнена с возможностью определения квантованного остаточного значения (146) на основании сравнений
Figure 00000002
и
Figure 00000003
причем С зависит от ширины мертвой зоны секции (102) квантования, причем x[i] является входным сигналом (140), причем x_Q[i] является входным сигналом (152) после обратного квантования, и при этом i является индексом, который увеличивается на 1 для каждого полученного квантованного значения (142);
причем упомянутое по меньшей мере одно квантованное остаточное значение (146) не подвергается энтропийному кодированию.
19. Способ (220) декодирования, причем способ содержит этапы, на которых:
выполняют (222) синтаксический анализ кодированного сигнала для получения множества значений после энтропийного кодирования и квантованного остаточного значения;
декодируют (224) множество значений после энтропийного кодирования с использованием схемы энтропийного декодирования для получения множества квантованных значений;
выполняют (226) обратное квантование множества квантованных значений для получения выходного сигнала; и
уточняют (228) уровень обратного квантования, используемый для получения выходного сигнала, в зависимости от ширины мертвой зоны и квантованного остаточного значения,
причем уточнение (228) уровня обратного квантования содержит этап, на котором уточняют уровень (172) обратного квантования для ненулевого квантованного значения в зависимости от квантованного остаточного значения (146) и ширины мертвой зоны.
20. Компьютерная программа для выполнения способа по п. 18 или 19.
RU2017104514A 2014-07-28 2015-07-24 Кодер, декодер, система и способы кодирования и декодирования RU2678168C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14178780.4 2014-07-28
EP14178780.4A EP2980793A1 (en) 2014-07-28 2014-07-28 Encoder, decoder, system and methods for encoding and decoding
PCT/EP2015/067001 WO2016016122A1 (en) 2014-07-28 2015-07-24 Encoder, decoder, system and methods for encoding and decoding

Publications (3)

Publication Number Publication Date
RU2017104514A3 RU2017104514A3 (ru) 2018-08-30
RU2017104514A true RU2017104514A (ru) 2018-08-30
RU2678168C2 RU2678168C2 (ru) 2019-01-23

Family

ID=51224867

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017104514A RU2678168C2 (ru) 2014-07-28 2015-07-24 Кодер, декодер, система и способы кодирования и декодирования

Country Status (19)

Country Link
US (3) US10375394B2 (ru)
EP (2) EP2980793A1 (ru)
JP (4) JP6494741B2 (ru)
KR (3) KR102014295B1 (ru)
CN (2) CN112954323A (ru)
AR (1) AR101547A1 (ru)
AU (2) AU2015295604B2 (ru)
CA (1) CA2956011C (ru)
ES (1) ES2688103T3 (ru)
MX (1) MX366803B (ru)
MY (1) MY178527A (ru)
PL (1) PL3175450T3 (ru)
PT (1) PT3175450T (ru)
RU (1) RU2678168C2 (ru)
SG (1) SG11201700695TA (ru)
TR (1) TR201815373T4 (ru)
TW (1) TWI582757B (ru)
WO (1) WO2016016122A1 (ru)
ZA (1) ZA201700513B (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980793A1 (en) * 2014-07-28 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Encoder, decoder, system and methods for encoding and decoding
KR20230085229A (ko) * 2018-03-29 2023-06-13 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우 종속 양자화
KR20230058546A (ko) * 2018-04-05 2023-05-03 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 컴포트 노이즈 생성 지원
MX2021003343A (es) 2018-09-24 2021-07-02 Fraunhofer Ges Forschung Codificación eficiente de coeficientes de transformacion usando o adecuada para una combinación con cuantización escalar dependiente.
CN113302688A (zh) * 2019-01-13 2021-08-24 华为技术有限公司 高分辨率音频编解码
WO2020253941A1 (en) * 2019-06-17 2020-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder with a signal-dependent number and precision control, audio decoder, and related methods and computer programs
CN114521327A (zh) * 2019-07-05 2022-05-20 威诺瓦国际有限公司 视频译码中的残差的量化
US10984808B2 (en) * 2019-07-09 2021-04-20 Blackberry Limited Method for multi-stage compression in sub-band processing
US11095311B2 (en) * 2019-11-27 2021-08-17 Qualcomm Incorporated Quantization codeword selection for low cost parity checking

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501521B2 (ja) * 1994-11-07 2004-03-02 三菱電機株式会社 ディジタル映像信号再生装置および再生方法
JPH09324397A (ja) 1996-06-03 1997-12-16 Mitsubishi Paper Mills Ltd たばこ用巻紙およびその製造方法
US6269192B1 (en) * 1997-07-11 2001-07-31 Sarnoff Corporation Apparatus and method for multiscale zerotree entropy encoding
JP4300800B2 (ja) * 2000-12-22 2009-07-22 ソニー株式会社 符号化装置および方法、復号装置および方法、並びに記録媒体
CN101448162B (zh) * 2001-12-17 2013-01-02 微软公司 处理视频图像的方法
WO2003073741A2 (en) * 2002-02-21 2003-09-04 The Regents Of The University Of California Scalable compression of audio and other signals
EP1465349A1 (en) * 2003-03-31 2004-10-06 Interuniversitair Microelektronica Centrum Vzw Embedded multiple description scalar quantizers for progressive image transmission
JP4014098B2 (ja) * 2003-06-26 2007-11-28 株式会社Kddi研究所 画像の階層的符号化装置および復号装置
US7602851B2 (en) * 2003-07-18 2009-10-13 Microsoft Corporation Intelligent differential quantization of video coding
US7738554B2 (en) * 2003-07-18 2010-06-15 Microsoft Corporation DC coefficient signaling at small quantization step sizes
KR101320260B1 (ko) 2004-06-18 2013-10-23 톰슨 라이센싱 비디오 신호 데이터를 인코딩 및 디코딩하기 위한 방법 및 장치
US7836506B2 (en) 2004-09-22 2010-11-16 Cyberdefender Corporation Threat protection network
WO2006047795A1 (en) * 2004-10-27 2006-05-04 Geoffrey Charles Wolf Sealable container for drinking and temporarily sealing bottles
WO2006108736A1 (fr) * 2005-04-11 2006-10-19 France Telecom Procédé et dispositif de quantification progressive, procédé et dispositif de quantification inverse, programmes informatiques, signal et support de données correspondants
WO2007011160A1 (en) * 2005-07-19 2007-01-25 Electronics And Telecommunications Research Institute Apparatus and method of embedded quantizaton for the improved snr scalbilty
KR100785855B1 (ko) * 2005-07-19 2007-12-14 한국전자통신연구원 향상된 snr 스케일러빌리티 제공을 위한 양자화 장치 및방법
US20070147497A1 (en) * 2005-07-21 2007-06-28 Nokia Corporation System and method for progressive quantization for scalable image and video coding
US7995649B2 (en) * 2006-04-07 2011-08-09 Microsoft Corporation Quantization adjustment based on texture level
JPWO2008047795A1 (ja) * 2006-10-17 2010-02-25 パナソニック株式会社 ベクトル量子化装置、ベクトル逆量子化装置、およびこれらの方法
WO2008046492A1 (en) * 2006-10-20 2008-04-24 Dolby Sweden Ab Apparatus and method for encoding an information signal
US8498335B2 (en) 2007-03-26 2013-07-30 Microsoft Corporation Adaptive deadzone size adjustment in quantization
JP5618826B2 (ja) * 2007-06-14 2014-11-05 ヴォイスエイジ・コーポレーション Itu.t勧告g.711と相互運用可能なpcmコーデックにおいてフレーム消失を補償する装置および方法
US8902972B2 (en) * 2008-04-11 2014-12-02 Qualcomm Incorporated Rate-distortion quantization for context-adaptive variable length coding (CAVLC)
ATE539433T1 (de) * 2008-07-11 2012-01-15 Fraunhofer Ges Forschung Bereitstellen eines zeitverzerrungsaktivierungssignals und codierung eines audiosignals damit
US8385404B2 (en) * 2008-09-11 2013-02-26 Google Inc. System and method for video encoding using constructed reference frame
US8326075B2 (en) * 2008-09-11 2012-12-04 Google Inc. System and method for video encoding using adaptive loop filter
EP2396969A4 (en) * 2009-02-13 2012-12-12 Research In Motion Ltd MODIFIED ENTROPIC CODING FOR IMAGES AND VIDEOS
CN101710990A (zh) 2009-11-10 2010-05-19 华为技术有限公司 视频图像编码处理、解码处理方法和装置及编解码系统
FR2960335A1 (fr) * 2010-05-18 2011-11-25 France Telecom Codage avec mise en forme du bruit dans un codeur hierarchique
FR2969360A1 (fr) * 2010-12-16 2012-06-22 France Telecom Codage perfectionne d'un etage d'amelioration dans un codeur hierarchique
US9118918B2 (en) * 2012-03-06 2015-08-25 National Taiwan University Method for rate-distortion optimized transform and quantization through a closed-form operation
EP2867892B1 (en) * 2012-06-28 2017-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Linear prediction based audio coding using improved probability distribution estimation
US20140010277A1 (en) * 2012-07-09 2014-01-09 Qualcomm, Incorporated Supplemental enhancement information (sei) messages having a fixed-length coded video parameter set (vps) id
US9549182B2 (en) * 2012-07-11 2017-01-17 Qualcomm Incorporated Repositioning of prediction residual blocks in video coding
US9264713B2 (en) * 2012-07-11 2016-02-16 Qualcomm Incorporated Rotation of prediction residual blocks in video coding with transform skipping
US9648318B2 (en) * 2012-09-30 2017-05-09 Qualcomm Incorporated Performing residual prediction in video coding
US9661340B2 (en) * 2012-10-22 2017-05-23 Microsoft Technology Licensing, Llc Band separation filtering / inverse filtering for frame packing / unpacking higher resolution chroma sampling formats
US10390034B2 (en) * 2014-01-03 2019-08-20 Microsoft Technology Licensing, Llc Innovations in block vector prediction and estimation of reconstructed sample values within an overlap area
US9877035B2 (en) * 2014-03-17 2018-01-23 Qualcomm Incorporated Quantization processes for residue differential pulse code modulation
EP2980793A1 (en) 2014-07-28 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Encoder, decoder, system and methods for encoding and decoding

Also Published As

Publication number Publication date
CA2956011C (en) 2019-06-18
AU2015295604A1 (en) 2017-02-16
US20190313100A1 (en) 2019-10-10
RU2017104514A3 (ru) 2018-08-30
JP2023169294A (ja) 2023-11-29
KR102014295B1 (ko) 2019-08-26
US20170142412A1 (en) 2017-05-18
RU2678168C2 (ru) 2019-01-23
JP2017530585A (ja) 2017-10-12
EP3175450A1 (en) 2017-06-07
CN107079152B (zh) 2021-04-02
CA2956011A1 (en) 2016-02-04
TWI582757B (zh) 2017-05-11
US20200344476A1 (en) 2020-10-29
WO2016016122A1 (en) 2016-02-04
EP2980793A1 (en) 2016-02-03
ES2688103T3 (es) 2018-10-30
JP6892467B2 (ja) 2021-06-23
KR20170041778A (ko) 2017-04-17
CN107079152A (zh) 2017-08-18
JP2021153305A (ja) 2021-09-30
JP6494741B2 (ja) 2019-04-03
PL3175450T3 (pl) 2019-01-31
KR102512937B1 (ko) 2023-03-22
AR101547A1 (es) 2016-12-28
AU2015295604B2 (en) 2018-09-20
TR201815373T4 (tr) 2018-11-21
KR20210144939A (ko) 2021-11-30
EP3175450B1 (en) 2018-07-18
TW201618084A (zh) 2016-05-16
KR20190101483A (ko) 2019-08-30
JP2019165439A (ja) 2019-09-26
MX2017001238A (es) 2017-03-14
MX366803B (es) 2019-07-25
PT3175450T (pt) 2018-10-22
US10735734B2 (en) 2020-08-04
AU2018260836B2 (en) 2020-11-05
ZA201700513B (en) 2019-05-29
AU2018260836A1 (en) 2018-11-22
CN112954323A (zh) 2021-06-11
MY178527A (en) 2020-10-15
SG11201700695TA (en) 2017-02-27
BR112017001518A2 (pt) 2018-01-30
US10375394B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
RU2017104514A (ru) Кодер, декодер, система и способы кодирования и декодирования
RU2014123383A (ru) Контекстная оптимизация для кодирования положения последнего значимого коэффициента
RU2016104528A (ru) Инициализация параметра райса для кодирования на уровне коэффициентов в процессе кодирования видео
MX2016011211A (es) Codificacion de transformada inversa de color-espacio universal.
JP2018532319A5 (ru)
EP3550726B1 (en) Methods and devices for reducing sources in binary entropy coding and decoding
RU2014147481A (ru) Кодирование параметра квантования (qp) при кодировании видео
JP2018530245A5 (ru)
RU2014122321A (ru) Инициализация вероятностей и состояний контекстов для контекстно-адаптивного энтропийного кодирования
RU2017101574A (ru) Системы и способы для оптимизации параметра модели в основанном на трехмерном представлении отображении цветов
UA109312C2 (uk) Імпульсно-кодова модуляція з квантуванням при кодуванні відеоінформації
RU2021139861A (ru) Способ, устройство и система для кодирования и декодирования преобразованного блока выборок видео
RU2014150547A (ru) Устройство и способ обработки изображений
RU2013158385A (ru) Эффективное по памяти моделирование контекста
MY189418A (en) Method for entropy-encoding slice segment and apparatus therefor, and method for entropy-decoding slice segment and apparatus therefor
RU2013145526A (ru) Способ и устройство кодирования и способ и устройство декодирования
JP2013546257A5 (ru)
RU2014123378A (ru) Прогрессивное кодирование позиции последнего значимового коэффициента
MY164378A (en) Indicating intra-prediction mode selection for video coding using cabac
ATE509347T1 (de) Vorrichtung und verfahren zum codieren eines informationssignals
RU2013137765A (ru) Устройство кодирования изображения, способ кодирования изображения и программа, а также устройство декодирования изображения, способ декодирования изображения и программа
RU2018114880A (ru) Устройство кодирования изображения, способ кодирования изображения и программа, а также устройство декодирования изображения, способ декодирования изображения и программа
RU2017143614A (ru) Усовершенствованный квантователь
RU2016152660A (ru) Кодер, декодер и способ
IN2015DN04001A (ru)