RU2014148760A - Самоочищающийся оптический датчик - Google Patents

Самоочищающийся оптический датчик Download PDF

Info

Publication number
RU2014148760A
RU2014148760A RU2014148760A RU2014148760A RU2014148760A RU 2014148760 A RU2014148760 A RU 2014148760A RU 2014148760 A RU2014148760 A RU 2014148760A RU 2014148760 A RU2014148760 A RU 2014148760A RU 2014148760 A RU2014148760 A RU 2014148760A
Authority
RU
Russia
Prior art keywords
fluid
optical window
optical
nozzle
fluid nozzle
Prior art date
Application number
RU2014148760A
Other languages
English (en)
Other versions
RU2642455C2 (ru
Inventor
Юджин ТОХТУЕВ
Кристофер Дж. ОУЭН
Анатолий СКИРДА
Уилльям М. КРИСТЕНСЕН
Original Assignee
ЭКОЛАБ ЮЭсЭй ИНК.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЭКОЛАБ ЮЭсЭй ИНК. filed Critical ЭКОЛАБ ЮЭсЭй ИНК.
Publication of RU2014148760A publication Critical patent/RU2014148760A/ru
Application granted granted Critical
Publication of RU2642455C2 publication Critical patent/RU2642455C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/151Gas blown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6478Special lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0638Refractive parts
    • G01N2201/0639Sphere lens

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

1. Оптический датчик, содержащий:- головку датчика, которая включает в себя первое оптическое окно, второе оптическое окно, по меньшей мере, один источник света и, по меньшей мере, один детектор, при этом, по меньшей мере, один источник света сконфигурирован с возможностью излучать свет через первое оптическое окно в поток текучей среды, и, по меньшей мере, один детектор сконфигурирован с возможностью обнаруживать флуоресцентные излучения через второе оптическое окно из потока текучей среды;- проточную камеру, которая включает в себя корпус, задающий полость, в которую вставляется головка датчика, впускной порт, сконфигурированный с возможностью передавать поток текучей среды за пределами полости внутрь полости, и выпускной порт, сконфигурированный с возможностью передавать поток текучей среды изнутри полости обратно за пределы полости,- при этом впускной порт задает первое сопло для текучей среды, сконфигурированное с возможностью направлять часть потока текучей среды к первому оптическому окну, и второе сопло для текучей среды, сконфигурированное с возможностью направлять часть потока текучей среды ко второму оптическому окну.2. Оптический датчик по п. 1, в котором первое оптическое окно и второе оптическое окно размещаются в идентичной плоскости, и первое сопло для текучей среды и второе сопло для текучей среды размещаются в плоскости, идентичной плоскости первого оптического окна и второго оптического окна.3. Оптическая система по п. 1, в которой первое сопло для текучей среды задает первую ось протекания текучей среды, протягивающуюся через центр первого сопла для текучей среды, второе сопло для текучей среды задает вторую ось проте

Claims (30)

1. Оптический датчик, содержащий:
- головку датчика, которая включает в себя первое оптическое окно, второе оптическое окно, по меньшей мере, один источник света и, по меньшей мере, один детектор, при этом, по меньшей мере, один источник света сконфигурирован с возможностью излучать свет через первое оптическое окно в поток текучей среды, и, по меньшей мере, один детектор сконфигурирован с возможностью обнаруживать флуоресцентные излучения через второе оптическое окно из потока текучей среды;
- проточную камеру, которая включает в себя корпус, задающий полость, в которую вставляется головка датчика, впускной порт, сконфигурированный с возможностью передавать поток текучей среды за пределами полости внутрь полости, и выпускной порт, сконфигурированный с возможностью передавать поток текучей среды изнутри полости обратно за пределы полости,
- при этом впускной порт задает первое сопло для текучей среды, сконфигурированное с возможностью направлять часть потока текучей среды к первому оптическому окну, и второе сопло для текучей среды, сконфигурированное с возможностью направлять часть потока текучей среды ко второму оптическому окну.
2. Оптический датчик по п. 1, в котором первое оптическое окно и второе оптическое окно размещаются в идентичной плоскости, и первое сопло для текучей среды и второе сопло для текучей среды размещаются в плоскости, идентичной плоскости первого оптического окна и второго оптического окна.
3. Оптическая система по п. 1, в которой первое сопло для текучей среды задает первую ось протекания текучей среды, протягивающуюся через центр первого сопла для текучей среды, второе сопло для текучей среды задает вторую ось протекания текучей среды, протягивающуюся через центр второго сопла для текучей среды, и первая ось протекания текучей среды пересекает приблизительно центр первого оптического окна, а вторая ось протекания текучей среды пересекает приблизительно центр второго оптического окна.
4. Оптический датчик по п. 1, в котором головка датчика
включает в себя корпус датчика, протягивающийся от ближнего конца к дальнему концу, причем корпус датчика включает в себя угловую выемку, заданную посредством первой плоской поверхности, которая пересекает вторую плоскую поверхность, при этом первое оптическое окно размещается на первой плоской поверхности, а второе оптическое окно размещается на второй плоской поверхности.
5. Оптический датчик по п. 4, в котором первая плоская поверхность пересекает вторую плоскую поверхность таким образом, чтобы задавать приблизительно угол в 90 градусов, первое оптическое окно и второе оптическое окно размещаются в идентичной плоскости между ближним концом и дальним концом корпуса датчика, и первое сопло для текучей среды и второе сопло для текучей среды размещаются в плоскости, идентичной плоскости первого оптического окна и второго оптического окна.
6. Оптический датчик по п. 4, в котором первое сопло для текучей среды и второе сопло для текучей среды выступают в направлении от стенки проточной камеры в угловую выемку.
7. Оптический датчик по п. 6, в котором первое оптическое окно сконфигурировано с возможностью проецировать свет, по меньшей мере, из одного источника света в первую область угловой выемки, второе оптическое окно сконфигурировано с возможностью принимать оптическую энергию из второй области угловой выемки и направлять оптическую энергию, по меньшей мере, на одном фотодетекторе, и первое сопло для текучей среды и второе сопло для текучей среды выступают в третью область угловой выемки между первой областью и второй областью.
8. Оптический датчик по п. 7, в котором первое оптическое окно и второе оптическое окно содержат шаровую линзу.
9. Способ, содержащий этапы, на которых:
- направляют текучую среду через первое сопло для текучей среды проточной камеры к первому оптическому окну головки датчика; и
- направляют текучую среду через второе сопло для текучей среды проточной камеры ко второму оптическому окну головки датчика,
- при этом головка датчика включает в себя, по меньшей мере, один источник света, сконфигурированный с возможностью излучать свет через первое оптическое окно в поток текучей среды, и, по меньшей мере, один детектор, сконфигурированный с возможностью принимать оптическую энергию через второе оптическое окно из потока текучей среды.
10. Способ по п. 9, в котором первое оптическое окно и второе оптическое окно размещаются в идентичной плоскости, и направление текучей среды через первое сопло для текучей среды содержит этап, на котором направляют текучую среду в плоскости, идентичной плоскости первого оптического окна, а направление текучей среды через второе сопло для текучей среды содержит этап, на котором направляют текучую среду в плоскости, идентичной плоскости второго оптического окна.
11. Способ по п. 9, в котором первое сопло для текучей среды задает первую ось протекания текучей среды, протягивающуюся через центр первого сопла для текучей среды, второе сопло для текучей среды задает вторую ось протекания текучей среды, протягивающуюся через центр второго сопла для текучей среды, и направление текучей среды через первое сопло для текучей среды содержит этап, на котором направляют текучую среду таким образом, что первая ось протекания текучей среды пересекает приблизительно центр первого оптического окна, а направление текучей среды через второе сопло для текучей среды содержит этап, на котором направляют текучую среду таким образом, что вторая ось протекания текучей среды пересекает приблизительно центр второго оптического окна.
12. Способ по п. 9, в котором головка датчика включает в себя корпус датчика, протягивающийся от ближнего конца к дальнему концу, причем корпус датчика включает в себя угловую выемку, заданную посредством первой плоской поверхности, которая пересекает вторую плоскую поверхность, при этом первое оптическое окно размещается на первой плоской поверхности, а второе оптическое окно размещается на второй плоской поверхности.
13. Способ по п. 12, в котором первое сопло для текучей
среды и второе сопло для текучей среды выступают в направлении от стенки проточной камеры в угловую выемку.
14. Способ по п. 13, дополнительно содержащий этап, на котором направляют свет, по меньшей мере, из одного источника света через первое оптическое окно в первую область угловой выемки и принимают оптическую энергию через второе оптическое окно из второй области угловой выемки, при этом первое сопло для текучей среды и второе сопло для текучей среды выступают в третью область угловой выемки между первой областью и второй областью.
15. Система с оптическим датчиком, содержащая:
- оптический датчик, который содержит:
- головку датчика, которая включает в себя оптическое окно, по меньшей мере, один источник света, сконфигурированный с возможностью излучать свет через оптическое окно в поток текучей среды, и, по меньшей мере, один детектор, сконфигурированный с возможностью обнаруживать флуоресцентные излучения через оптическое окно из потока текучей среды; и проточную камеру, которая включает в себя корпус, задающий полость, в которую вставляется головка датчика, впускной порт, сконфигурированный с возможностью передавать поток текучей среды за пределами полости внутрь полости, и выпускной порт, сконфигурированный с возможностью передавать поток текучей среды изнутри полости обратно за пределы полости, причем впускной порт задает сопло для текучей среды, сконфигурированное с возможностью направлять поток текучей среды к оптическому окну;
- источник жидкости, сконфигурированный с возможностью подавать поток текучей среды, передаваемый через впускной порт;
- источник газа, сконфигурированный с возможностью подавать поток текучей среды, передаваемый через впускной порт; и
- контроллер, сконфигурированный с возможностью управлять источником газа таким образом, чтобы переводить источник газа в состояние поддержки обмена текучей средой с проточной камерой, с тем чтобы откачивать жидкость из проточной камеры, и управлять источником жидкости таким образом, чтобы переводить источник жидкости в состояние поддержки обмена текучей средой с проточной
камерой, с тем чтобы направлять жидкость через сопло для текучей среды, через пространство проточной камеры с откачанной жидкостью и к оптическому окну.
16. Система с оптическим датчиком по п. 15, в которой оптическое окно головки датчика содержит первое оптическое окно и второе оптическое окно, причем, по меньшей мере, один источник света сконфигурирован с возможностью излучать свет через первое оптическое окно, и, по меньшей мере, один детектор сконфигурирован с возможностью обнаруживать флуоресцентные излучения через второе оптическое окно, и сопло для текучей среды проточной камеры содержит первое сопло для текучей среды и второе сопло для текучей среды, причем первое сопло для текучей среды сконфигурировано с возможностью направлять часть потока текучей среды к первому оптическому окну, а второе сопло для текучей среды сконфигурировано с возможностью направлять часть потока текучей среды ко второму оптическому окну.
17. Система с оптическим датчиком по п. 16, в которой первое сопло для текучей среды задает первую ось протекания текучей среды, протягивающуюся через центр первого сопла для текучей среды, второе сопло для текучей среды задает вторую ось протекания текучей среды, протягивающуюся через центр второго сопла для текучей среды, и первая ось протекания текучей среды пересекает приблизительно центр первого оптического окна, а вторая ось протекания текучей среды пересекает приблизительно центр второго оптического окна.
18. Система с оптическим датчиком по п. 16, в которой головка датчика включает в себя корпус датчика, протягивающийся от ближнего конца к дальнему концу, причем корпус датчика включает в себя угловую выемку, заданную посредством первой плоской поверхности, которая пересекает вторую плоскую поверхность, при этом первое оптическое окно размещается на первой плоской поверхности, а второе оптическое окно размещается на второй плоской поверхности.
19. Оптический датчик по п. 18, в котором первая плоская поверхность пересекает вторую плоскую поверхность таким образом, чтобы задавать приблизительно угол в 90 градусов, первое
оптическое окно и второе оптическое окно размещаются в идентичной плоскости между ближним концом и дальним концом корпуса датчика, и первое сопло для текучей среды и второе сопло для текучей среды размещаются в плоскости, идентичной плоскости первого оптического окна и второго оптического окна.
20. Оптический датчик по п. 18, в котором первое сопло для текучей среды и второе сопло для текучей среды выступают в направлении от стенки проточной камеры в угловую выемку.
21. Оптический датчик по п. 15, в котором источник газа является атмосферным воздухом.
22. Оптический датчик по п. 15, дополнительно содержащий первый клапан, размещенный между источником газа и проточной камерой, и второй клапан, размещенный между источником жидкости и проточной камерой, при этом контроллер сконфигурирован с возможностью управлять источником жидкости таким образом, чтобы переводить источник жидкости в состояние поддержки обмена текучей средой с проточной камерой посредством открытия второго клапана, и контроллер дополнительно сконфигурирован с возможностью управлять источником газа таким образом, чтобы переводить источник газа в состояние поддержки обмена текучей средой с проточной камерой посредством открытия первого клапана.
23. Способ, содержащий этапы, на которых:
- откачивают жидкость из проточной камеры оптического датчика, при этом оптический датчик включает в себя головку датчика, имеющую оптическое окно, которое вставляется в проточную камеру, и проточная камера включает в себя впускной порт, задающий сопло для текучей среды, сконфигурированное с возможностью направлять текучую среду к оптическому окну;
- обеспечивают протекание жидкости через впускной порт проточной камеры, с тем чтобы направлять жидкость через сопло для текучей среды, через пространство проточной камеры с откачанной жидкостью и к оптическому окну.
24. Способ по п. 23, в котором откачивание из проточной камеры содержит этап, на котором управляют источником газа таким образом, чтобы переводить источник газа в состояние поддержки обмена текучей средой с проточной камерой, и обеспечение
протекания жидкости через впускной порт содержит этап, на котором управляют источником жидкости таким образом, чтобы переводить источник жидкости в состояние поддержки обмена текучей средой с проточной камерой.
25. Способ по п. 24, в котором источник газа является атмосферным воздухом.
26. Способ по п. 24, в котором управление источником газа содержит этап, на котором управляют первым клапаном, размещенным между источником газа и проточной камерой, и управление источником жидкости содержит этап, на котором управляют вторым клапаном, размещенным между источником жидкости и проточной камерой.
27. Способ по п. 23, в котором оптическое окно головки датчика содержит первое оптическое окно и второе оптическое окно, и оптический датчик дополнительно содержит, по меньшей мере, один источник света, сконфигурированный с возможностью излучать свет через первое оптическое окно, и, по меньшей мере, один детектор, сконфигурированный с возможностью обнаруживать флуоресцентные излучения через второе оптическое окно, при этом сопло для текучей среды проточной камеры содержит первое сопло для текучей среды и второе сопло для текучей среды, причем первое сопло для текучей среды сконфигурировано с возможностью направлять текучую среду к первому оптическому окну, а второе сопло для текучей среды сконфигурировано с возможностью направлять текучую среду ко второму оптическому окну.
28. Способ по п. 27, в котором первое сопло для текучей среды задает первую ось протекания текучей среды, протягивающуюся через центр первого сопла для текучей среды, второе сопло для текучей среды задает вторую ось протекания текучей среды, протягивающуюся через центр второго сопла для текучей среды, и первая ось протекания текучей среды пересекает приблизительно центр первого оптического окна, а вторая ось протекания текучей среды пересекает приблизительно центр второго оптического окна.
29. Способ по п. 27, в котором головка датчика включает в себя корпус датчика, протягивающийся от ближнего конца к
дальнему концу, причем корпус датчика включает в себя угловую выемку, заданную посредством первой плоской поверхности, которая пересекает вторую плоскую поверхность, при этом первое оптическое окно размещается на первой плоской поверхности, а второе оптическое окно размещается на второй плоской поверхности.
30. Способ по п. 29, в котором первая плоская поверхность пересекает вторую плоскую поверхность таким образом, чтобы задавать приблизительно угол в 90 градусов, первое оптическое окно и второе оптическое окно размещаются в идентичной плоскости между ближним концом и дальним концом корпуса датчика, и первое сопло для текучей среды и второе сопло для текучей среды размещаются в плоскости, идентичной плоскости первого оптического окна и второго оптического окна.
RU2014148760A 2012-05-04 2013-04-30 Самоочищающийся оптический датчик RU2642455C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/464,508 2012-05-04
US13/464,508 US9001319B2 (en) 2012-05-04 2012-05-04 Self-cleaning optical sensor
PCT/US2013/038839 WO2013165999A1 (en) 2012-05-04 2013-04-30 Self-cleaning optical sensor

Publications (2)

Publication Number Publication Date
RU2014148760A true RU2014148760A (ru) 2016-06-27
RU2642455C2 RU2642455C2 (ru) 2018-01-25

Family

ID=49512293

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014148760A RU2642455C2 (ru) 2012-05-04 2013-04-30 Самоочищающийся оптический датчик

Country Status (14)

Country Link
US (2) US9001319B2 (ru)
EP (2) EP2844979B1 (ru)
JP (1) JP6346171B2 (ru)
KR (1) KR102080329B1 (ru)
CN (1) CN104755907B (ru)
AU (2) AU2013256467B2 (ru)
BR (1) BR112014026374B1 (ru)
CA (2) CA3107545C (ru)
ES (2) ES2715848T3 (ru)
MX (1) MX337080B (ru)
NZ (2) NZ700126A (ru)
RU (1) RU2642455C2 (ru)
WO (1) WO2013165999A1 (ru)
ZA (1) ZA201406822B (ru)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10350647B2 (en) 2011-03-10 2019-07-16 Dlhbowles, Inc. Integrated automotive system, nozzle assembly and remote control method for cleaning an image sensor's exterior or objective lens surface
WO2012138455A1 (en) 2011-03-10 2012-10-11 Bowles Fluidics Corporation Integrated automotive system, nozzle assembly and remote control method for cleaning an image sensor's lens
US8798825B1 (en) 2012-07-06 2014-08-05 Richard L. Hartman Wakeboat hull control systems and methods
EP2922646A4 (en) * 2012-11-23 2016-08-17 Commw Scient Ind Res Org FLOW COLLECTOR RESISTANT TO ENCRASION
CN106660525B (zh) 2014-04-11 2020-06-02 Dlh鲍尔斯公司 紧凑低轮廓喷嘴组合件和远程控制的图像传感器清洗系统
WO2015161097A1 (en) 2014-04-16 2015-10-22 Bowles Fludics Corporation Integrated multi image sensor and lens washing nozzle assembly and method for simultaneously cleaning multiple image sensors
US10323797B2 (en) * 2014-05-21 2019-06-18 Ecolab Usa Inc. Product yield loss management
US20160201896A1 (en) * 2015-01-14 2016-07-14 Ecolab Usa Inc. Method of Obtaining or Maintaining Optical Transmittance into Boiler Liquid
US10197824B2 (en) * 2015-01-08 2019-02-05 Ecolab Usa Inc. Method of obtaining or maintaining optical transmittance into deaerated liquid
KR20170101935A (ko) * 2015-01-08 2017-09-06 에코랍 유에스에이 인코퍼레이티드 탈기된 액체 내로 광학 투과율을 얻거나 유지하는 방법
US9810676B2 (en) 2015-01-12 2017-11-07 Ecolab Usa Inc. Apparatus for, system for and methods of maintaining sensor accuracy
US9772303B2 (en) 2015-01-12 2017-09-26 Ecolab Usa Inc. Apparatus for, system for and methods of maintaining sensor accuracy
KR20160101221A (ko) * 2015-02-13 2016-08-25 삼성디스플레이 주식회사 유체 갈라짐 감지 장치
JP6976857B2 (ja) * 2015-04-29 2021-12-08 ユニバーシティ オブ メリーランド,ボルチモア デジタル画像を記録する及び体腔の3dモデルを提示するための装置および方法
JP6593743B2 (ja) * 2015-05-13 2019-10-23 パナソニックIpマネジメント株式会社 粉塵検出装置および粉塵検出システム
US20170050226A1 (en) * 2015-08-21 2017-02-23 Parker-Hannifin Corporation Self-cleaning monitoring system for biomass processing
ITUA20161342A1 (it) * 2016-03-04 2017-09-04 Eltek Spa Dispositivo sensore per contenitori di sostanze liquide
ITUA20161345A1 (it) * 2016-03-04 2017-09-04 Eltek Spa Dispositivo sensore per contenitori di sostanze liquide
US10246295B2 (en) 2016-04-06 2019-04-02 Otis Elevator Company Protective device for speed sensing device
KR101795238B1 (ko) * 2016-04-14 2017-11-07 현대자동차주식회사 차량용 먼지 감지센서 장치
US10307803B2 (en) * 2016-07-20 2019-06-04 The United States Of America As Represented By Secretary Of The Navy Transmission window cleanliness for directed energy devices
US10503177B2 (en) * 2016-08-03 2019-12-10 Safe Harbor Associates LLC Additive delivery system with sensors
US11505289B2 (en) 2016-09-09 2022-11-22 Richard L. Hartman Wakeboat bilge measurement assemblies and methods
US11014634B2 (en) 2016-09-09 2021-05-25 Richard L. Hartman Hydraulic power sources for watercraft and methods for providing hydraulic power aboard a watercraft
US10864971B2 (en) 2016-09-09 2020-12-15 Richard L. Hartman Wakeboat hydraulic manifold assemblies and methods
US10611439B2 (en) 2016-09-09 2020-04-07 Richard L. Hartman Wakeboat engine hydraulic pump mounting apparatus and methods
US10829186B2 (en) 2016-09-09 2020-11-10 Richard L. Hartman Wakeboat ballast measurement assemblies and methods
US11254395B2 (en) 2016-09-09 2022-02-22 Richard L. Hartman Aquatic invasive species control apparatuses and methods for watercraft
US11014635B2 (en) 2016-09-09 2021-05-25 Richard L. Hartman Power source assemblies and methods for distributing power aboard a watercraft
CA2978824C (en) 2016-09-09 2021-09-07 Richard L. Hartman Wakeboat engine powered ballasting apparatus and methods
US10435122B2 (en) 2016-09-09 2019-10-08 Richard L. Hartman Wakeboat propulsion apparatuses and methods
US10611440B2 (en) 2016-09-09 2020-04-07 Richard L. Hartman Boat propulsion assemblies and methods
US10329004B2 (en) 2016-09-09 2019-06-25 Richard L. Hartman Wakeboat ballast measurement assemblies and methods
FR3055963B1 (fr) * 2016-09-12 2018-08-24 Pierre Payraud Dispositif de fixation pour la tenue d'un capteur
US10168423B2 (en) * 2017-01-27 2019-01-01 Waymo Llc LIDAR sensor window configuration for improved data integrity
US10302553B2 (en) * 2017-08-30 2019-05-28 Lam Research Corporation Gas exhaust by-product measurement system
US10466173B2 (en) * 2017-10-06 2019-11-05 Wyatt Technology Corporation Optical flow cell assembly incorporating a replaceable transparent flow cell
US20210199069A1 (en) * 2018-06-06 2021-07-01 Wisconsin Alumni Research Foundation Self-Cleaning Combustion Engine Window
DE102018221868B4 (de) * 2018-12-17 2022-09-08 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Kühlung mindestens einer Oberfläche und/oder mindestens eines Volumens eines Sensors eines Fahrzeugs
US10948400B1 (en) * 2019-09-17 2021-03-16 General Electric Company Sensor probe assembly and method of forming
US11353697B2 (en) 2019-10-14 2022-06-07 Ford Global Technologies, Llc Enhanced vehicle sensor cleaning
WO2021091689A1 (en) * 2019-11-06 2021-05-14 Entegris, Inc. Optical sensor window cleaner

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2839963A (en) * 1953-12-18 1958-06-24 Lever Brothers Ltd Light transmission inspection device for liquids
DE1273132B (de) 1965-09-29 1968-07-18 Draegerwerk Ag Regelvorrichtung fuer Beatmungsgeraete
US3515491A (en) * 1966-10-27 1970-06-02 Gilford Instr Labor Inc Fluid sample flow cell
US3628028A (en) * 1968-03-01 1971-12-14 Honeywell Inc Window cleaning apparatus for photometric instruments
US3609048A (en) 1969-11-25 1971-09-28 Beckman Instruments Inc Self cleaning sample cell for radiant energy analyzers
US3734601A (en) 1971-07-08 1973-05-22 Baxter Laboratories Inc Flow cell assembly for colorimetric measurements
US3901656A (en) 1972-08-24 1975-08-26 American Monitor Corp Apparatus and method for preparing and presenting serum chemistries for analyzation
US3861198A (en) * 1972-11-03 1975-01-21 Gam Rad Fluid analyzer with self-cleaning viewing windows
US3895406A (en) * 1973-05-23 1975-07-22 Harsco Corp Automatic window washer
US4108972A (en) 1974-03-15 1978-08-22 Dreyer William J Immunological reagent employing radioactive and other tracers
US3917404A (en) 1974-05-28 1975-11-04 Baxter Laboratories Inc Fluorometer assembly including a flow cell
US3954341A (en) 1974-09-30 1976-05-04 Technicon Instruments Corporation Liquid sample analyzer with improved optical characteristics
US4008397A (en) 1975-04-24 1977-02-15 Hoffmann-La Roche Inc. Fluorometer flow cell
GB1567031A (en) 1976-04-07 1980-05-08 Partech Ltd Sensing heads
US4108602A (en) 1976-10-20 1978-08-22 Hanson Research Corporation Sample changing chemical analysis method and apparatus
US4180739A (en) 1977-12-23 1979-12-25 Varian Associates, Inc. Thermostatable flow cell for fluorescence measurements
SU734270A1 (ru) * 1978-01-12 1980-05-15 Ленинградский Институт Авиационного Приборостроения Устройство дл флуоресцентного исследовани биологических объектов в водной пробе
US4275300A (en) 1978-10-23 1981-06-23 Varian Associates, Inc. Fluorescent composition, a process for synthesizing the fluorescent composition, and methods of use of the fluorescent composition
US4271123A (en) 1979-10-22 1981-06-02 Bio-Rad Laboratories, Inc. Automated system for performing fluorescent immunoassays
US4279509A (en) 1979-12-05 1981-07-21 Syva Company Zero volume flow cell
US4377880A (en) 1981-02-27 1983-03-29 The United States Of America As Represented By The United States Department Of Energy Cleaning method and apparatus
US4527114A (en) 1982-02-25 1985-07-02 Coulter Electronics, Inc. Electrical slit scanning apparatus
US4440497A (en) 1982-05-17 1984-04-03 Corning Glass Works Combination absorbance fluorescence aspirating thermal cuvette
US4575424A (en) 1984-03-01 1986-03-11 Isco, Inc. Chromatographic flow cell and method of making it
JPS6123947A (ja) * 1984-07-12 1986-02-01 Ajinomoto Co Inc 液体の濁度測定方法及びその装置
SU1260778A1 (ru) * 1985-01-31 1986-09-30 Центральный научно-исследовательский рентгено-радиологический институт Устройство дл флуоресцентного анализа отдельных микрочастиц в потоке
US4802768A (en) 1986-04-11 1989-02-07 Sclavo, Inc. Two light source reference system for a fluorometer
US4750837A (en) 1986-04-11 1988-06-14 Sclavo Inc. Fluorometer with reference light source
CH670513A5 (ru) 1986-09-01 1989-06-15 Benno Perren
US4738528A (en) 1987-04-03 1988-04-19 General Electric Co. Pyrometer vortex purge air cleaning system with center masked pyrometer lens
US4867559A (en) 1988-01-06 1989-09-19 Amoco Corporation Liquid/liquid fiber-optic fluorescence detector and absorbance analyzer
US4861163A (en) 1988-01-06 1989-08-29 Amoco Corporation Ellipsoidal cylinder fluorescence analyzer
US4896047A (en) * 1988-04-11 1990-01-23 Westinghouse Electric Corp. Method and apparatus of periodically obtaining accurate opacity monitor readings of an exhaust gas stream
US4992380A (en) 1988-10-14 1991-02-12 Nalco Chemical Company Continuous on-stream monitoring of cooling tower water
JPH02103252U (ru) * 1989-02-03 1990-08-16
US5078493A (en) 1990-06-29 1992-01-07 Conoco Inc. Flow cell resistant to corrosive environments for fiber optic spectroscopy
US5250186A (en) 1990-10-23 1993-10-05 Cetus Corporation HPLC light scattering detector for biopolymers
US5269937A (en) 1990-10-23 1993-12-14 Cetus Corporation HPLC light scattering detector for biopolymers
US5140169A (en) 1991-04-25 1992-08-18 Conoco Inc. Long path flow cell resistant to corrosive environments for fiber optic spectroscopy
JPH052055U (ja) * 1991-06-24 1993-01-14 横河電機株式会社 吸光度式分析計
FI93582C (fi) * 1991-09-18 1995-04-25 Janesko Oy Sovitelma prosessissa olevan optisen ikkunan puhdistamiseksi
US5185531A (en) * 1991-09-26 1993-02-09 Wedgewood Technology, Inc. Window cleaner for inline optical sensors
JP3212647B2 (ja) 1991-10-24 2001-09-25 シスメックス株式会社 イメージングフローサイトメータ
JPH05240774A (ja) 1992-03-02 1993-09-17 Hitachi Ltd 光学セル及び光学検出装置とこれを用いる試料分離検出装置
RU2071056C1 (ru) * 1992-09-18 1996-12-27 Научно-производственное объединение "Диполь" Устройство для определения содержания жира и белка в молоке и молочных продуктах
JPH06281565A (ja) * 1993-03-29 1994-10-07 Yokogawa Electric Corp 吸光度式分析計
US5442437A (en) 1993-09-13 1995-08-15 Atlantic Richfield Company Sample cell and probe for spectrophotometer
US7101661B1 (en) 1993-11-01 2006-09-05 Nanogen, Inc. Apparatus for active programmable matrix devices
US5422719A (en) 1993-11-12 1995-06-06 Auburn International, Inc. Multi-wave-length spectrofluorometer
US5452082A (en) 1994-07-05 1995-09-19 Uop Flow cell with leakage detection
US5485277A (en) 1994-07-26 1996-01-16 Physical Optics Corporation Surface plasmon resonance sensor and methods for the utilization thereof
US5972721A (en) 1996-03-14 1999-10-26 The United States Of America As Represented By The Secretary Of The Air Force Immunomagnetic assay system for clinical diagnosis and other purposes
US5736405A (en) 1996-03-21 1998-04-07 Nalco Chemical Company Monitoring boiler internal treatment with fluorescent-tagged polymers
US6627873B2 (en) * 1998-04-23 2003-09-30 Baker Hughes Incorporated Down hole gas analyzer method and apparatus
US6635224B1 (en) 1998-10-30 2003-10-21 General Electric Company Online monitor for polymer processes
US6300638B1 (en) 1998-11-12 2001-10-09 Calspan Srl Corporation Modular probe for total internal reflection fluorescence spectroscopy
CA2379711A1 (en) 1999-07-02 2001-01-25 Conceptual Mindworks, Inc Organic semiconductor recognition complex and system
JP4374663B2 (ja) * 1999-07-12 2009-12-02 凸版印刷株式会社 測定セルの洗浄方法と測定セル洗浄装置ならびにそれを用いたインクの色測定装置と色合わせ装置
EP1070953A1 (fr) * 1999-07-21 2001-01-24 Societe D'etude Et De Realisation D'equipements Speciaux - S.E.R.E.S. Procédé et dispositif de mesure optique de la transparence d'un liquide
WO2001025153A1 (en) * 1999-10-01 2001-04-12 Trojan Technologies Inc. Optical radiation sensor system with cleaning device
US20030013849A1 (en) 1999-10-29 2003-01-16 Ward William W. Renilla reniformis green fluorescent protein
US6452672B1 (en) 2000-03-10 2002-09-17 Wyatt Technology Corporation Self cleaning optical flow cell
US6755079B1 (en) 2000-03-27 2004-06-29 Halliburton Energy Services, Inc. Method and apparatus for determining fluid viscosity
US6369894B1 (en) 2000-05-01 2002-04-09 Nalco Chemical Company Modular fluorometer
US7008535B1 (en) 2000-08-04 2006-03-07 Wayne State University Apparatus for oxygenating wastewater
US6678051B2 (en) 2001-01-18 2004-01-13 Systec, Inc. Flow cells utilizing photometric techniques
US7320775B2 (en) 2001-05-16 2008-01-22 Guava Technologies, Inc. Exchangeable flow cell assembly with a suspended capillary
US6670614B1 (en) 2001-06-01 2003-12-30 Leonard F. Plut Volume cone beam acquisition on a nuclear spect system using a digital flat panel
WO2002101400A1 (en) 2001-06-08 2002-12-19 Biolab Services, Inc. Self-cleaning probe system
US6670617B2 (en) 2001-06-28 2003-12-30 Ondeo Nalco Company Mirror fluorometer
US6788409B2 (en) 2001-09-07 2004-09-07 Becton, Dickinson And Company Flow cell system for solubility testing
US6780306B2 (en) 2002-02-12 2004-08-24 Bioelectromagnetics, Inc. Electroionic water disinfection apparatus
JP3861036B2 (ja) * 2002-08-09 2006-12-20 三菱重工業株式会社 プラズマcvd装置
US7300630B2 (en) * 2002-09-27 2007-11-27 E. I. Du Pont De Nemours And Company System and method for cleaning in-process sensors
US7099012B1 (en) 2003-03-13 2006-08-29 Turner Designs, Inc. In-line spectrometer
US7231833B2 (en) 2003-04-01 2007-06-19 Intel Corporation Board deflection metrology using photoelectric amplifiers
US7431883B2 (en) 2003-09-30 2008-10-07 Beckman Coulter, Inc. Clinical analysis system
US7095500B2 (en) 2004-01-30 2006-08-22 Nalco Company Interchangeable tip-open cell fluorometer
SE0401219D0 (sv) 2004-05-10 2004-05-10 Biochromix Ab Metoder för detektera konformationsförändringar eller aggregering hos proteiner med hjälp av konjugerade polyelektrolyter
US8373861B2 (en) 2004-05-11 2013-02-12 Les Entreprises Biospec Global Solutions Inc. System for rapid analysis of microbiological materials in liquid samples
US7209223B1 (en) 2004-11-15 2007-04-24 Luna Innovations Incorporated Optical device for measuring optical properties of a sample and method relating thereto
FR2883602B1 (fr) 2005-03-22 2010-04-16 Alain Lunati Procede d'optimisation des parametres de fonctionnement d'un moteur a combustion
WO2007024778A2 (en) 2005-08-22 2007-03-01 Applera Corporation Device, system and method for depositing processed immiscible-fluid-discrete-volumes
US7909963B2 (en) 2006-01-18 2011-03-22 Cascades Canada Inc. Method for measuring hydrophobic contaminants in paper pulp
DE102006005574B4 (de) 2006-02-06 2010-05-20 Johann Wolfgang Goethe-Universität Frankfurt am Main Meßvorrichtung zur Bestimmung der Größe, Größenverteilung und Menge von Partikeln im nanoskopischen Bereich
US8473262B2 (en) 2008-08-14 2013-06-25 ARETé ASSOCIATES Self-cleaning submerged instrumentation
GB0603778D0 (en) 2006-02-24 2006-04-05 Intellitect Water Ltd Integrated auto-calibration system for a chlorine sensor
JP2007278886A (ja) * 2006-04-07 2007-10-25 Olympus Corp 反応容器、分析装置および分析方法
CA2648632C (en) 2006-06-01 2014-03-18 Ecolab Inc. Uv fluorometric sensor and method for using the same
JP2008002956A (ja) * 2006-06-22 2008-01-10 Dkk Toa Corp 洗浄装置および水質計
FR2904951B1 (fr) 2006-08-21 2009-03-06 Sp3H Soc Par Actions Simplifie Procede de mise en securite des organes du groupe motropropulseur d'un vehicule a la suite d'une degradation du carburant.
RU2329502C1 (ru) * 2006-11-28 2008-07-20 Государственное научное учреждение "Институт механики металлополимерных систем имени В.А. Белого Национальной академии наук Беларуси" Способ оперативного контроля работоспособности масла и устройство для его осуществления
FR2916019B1 (fr) 2007-05-07 2014-06-27 Sp3H Procede de reglage des parametres d'injection, de combustion et/ou de post-traitement d'un moteur a combustion interne a auto-allumage.
US20080293091A1 (en) * 2007-05-25 2008-11-27 Ravi Kanipayor Apparatus and methods for automated diffusion filtration, culturing and photometric detection and enumeration of microbiological parameters in fluid samples
US8006760B2 (en) 2008-04-10 2011-08-30 Halliburton Energy Services, Inc. Clean fluid systems for partial monolayer fracturing
NO2277025T3 (ru) * 2008-04-30 2018-02-10
US8214159B2 (en) 2008-12-04 2012-07-03 Siemens Medical Solutions Usa, Inc. Apparatus and method for automated quality control
US8561486B2 (en) * 2009-07-13 2013-10-22 Enertechnix, Inc Particle interrogation devices and methods
US8269193B2 (en) 2010-03-31 2012-09-18 Ecolab Usa Inc. Handheld fluorometer and method of use
US8248611B2 (en) 2010-03-31 2012-08-21 Ecolab Usa Inc. Handheld optical measuring device and method of use
US8373140B2 (en) 2010-03-31 2013-02-12 Ecolab Usa Inc. Fluorometric sensor
US8614793B2 (en) * 2012-04-02 2013-12-24 Ecolab Usa Inc. Flow chamber for online fluorometer

Also Published As

Publication number Publication date
ES2675508T3 (es) 2018-07-11
AU2013256467B2 (en) 2016-03-03
BR112014026374A2 (pt) 2017-06-27
CA2872662A1 (en) 2013-11-07
CA2872662C (en) 2021-03-16
AU2016203708A1 (en) 2016-06-23
AU2013256467A1 (en) 2014-10-02
US20150177124A1 (en) 2015-06-25
EP2844979A4 (en) 2016-01-27
MX337080B (es) 2016-02-11
BR112014026374B1 (pt) 2022-01-11
US20130293881A1 (en) 2013-11-07
EP2844979A1 (en) 2015-03-11
CN104755907A (zh) 2015-07-01
CA3107545A1 (en) 2013-11-07
NZ731378A (en) 2019-01-25
US9464982B2 (en) 2016-10-11
WO2013165999A1 (en) 2013-11-07
EP2844979B1 (en) 2018-12-26
KR102080329B1 (ko) 2020-02-21
RU2642455C2 (ru) 2018-01-25
AU2016203708B2 (en) 2018-03-22
US9001319B2 (en) 2015-04-07
MX2014013085A (es) 2014-12-08
JP2015516076A (ja) 2015-06-04
JP6346171B2 (ja) 2018-06-20
NZ700126A (en) 2017-05-26
CN104755907B (zh) 2017-06-13
EP2982964A1 (en) 2016-02-10
EP2982964B1 (en) 2018-03-28
ZA201406822B (en) 2016-08-31
CA3107545C (en) 2022-07-05
KR20150013250A (ko) 2015-02-04
ES2715848T3 (es) 2019-06-06

Similar Documents

Publication Publication Date Title
RU2014148760A (ru) Самоочищающийся оптический датчик
CN104780945B (zh) 具有高度均匀辐射场的紧凑系统
ES2869435T3 (es) Sistema de suministro de tinta para impresoras de chorro de tinta
RU2015136582A (ru) Вентилятор в сборе
JP2016511138A5 (ru)
US8557572B2 (en) Culture apparatus
JP2013040094A5 (ru)
RU2013147615A (ru) Дыхательный аппарат
RU2014144000A (ru) Проточная камера для флуорометра реального времени
JP2017514271A5 (ru)
FI3849352T3 (fi) Aerosolintoimitusjärjestelmiä
US20170201058A1 (en) Solid-state laser device
US10164397B2 (en) Laser oscillation device
JP2010053767A5 (ru)
JP2014518696A (ja) 交換デバイス
CN104548306B (zh) 一种医用湿化与雾化转换连通的转换接头
CN206195143U (zh) 一种可拆卸陶瓷腔芯的激光器聚光腔装置
CN209459313U (zh) 一种用于管腔器械快速烘干的装置
RU2013152156A (ru) Подогреватель
MX353583B (es) Atomizador.
JP2020059168A5 (ru)
JP5010188B2 (ja) 気体噴射冷却システムと投写型表示装置
CN209527051U (zh) 一种传感器的散热装置
JP2010284621A (ja) 熱交換器
CN106707525A (zh) 一种双光束重合装置