RU2011106314A - Способ гашения колебаний и устройство для его осуществления (варианты) - Google Patents

Способ гашения колебаний и устройство для его осуществления (варианты) Download PDF

Info

Publication number
RU2011106314A
RU2011106314A RU2011106314/11A RU2011106314A RU2011106314A RU 2011106314 A RU2011106314 A RU 2011106314A RU 2011106314/11 A RU2011106314/11 A RU 2011106314/11A RU 2011106314 A RU2011106314 A RU 2011106314A RU 2011106314 A RU2011106314 A RU 2011106314A
Authority
RU
Russia
Prior art keywords
rod
section
cross
module
corresponds
Prior art date
Application number
RU2011106314/11A
Other languages
English (en)
Other versions
RU2482347C2 (ru
Inventor
Евгений Иванович Терновский (RU)
Евгений Иванович Терновский
Original Assignee
Евгений Иванович Терновский (RU)
Евгений Иванович Терновский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Евгений Иванович Терновский (RU), Евгений Иванович Терновский filed Critical Евгений Иванович Терновский (RU)
Priority to RU2011106314/11A priority Critical patent/RU2482347C2/ru
Publication of RU2011106314A publication Critical patent/RU2011106314A/ru
Priority to PCT/RU2012/000060 priority patent/WO2012112076A1/ru
Application granted granted Critical
Publication of RU2482347C2 publication Critical patent/RU2482347C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/48Arrangements for providing different damping effects at different parts of the stroke
    • F16F9/486Arrangements for providing different damping effects at different parts of the stroke comprising a pin or stem co-operating with an aperture, e.g. a cylinder-mounted stem co-operating with a hollow piston rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/48Arrangements for providing different damping effects at different parts of the stroke
    • F16F9/49Stops limiting fluid passage, e.g. hydraulic stops or elastomeric elements inside the cylinder which contribute to changes in fluid damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

1. Способ гашения колебаний колебательной системы, содержащей, по меньшей мере, один первый элемент, который обладает инерционным свойством, по меньшей мере, один второй элемент, который, изменяя свое состояние под действием внешней по отношению к этому элементу силы, запасает потенциальную энергию и вследствие этого создает потенциальную силу, действующую на связанные с этим элементом другие элементы колебательной системы и, по меньшей мере, один третий элемент, который в процессе циркуляции энергии между упомянутыми первым и вторым элементами выводит энергию из колебательной системы путем ее расходования на совершение работы вне колебательной системы и создает силу сопротивления, модуль которой имеет прямую зависимость от модуля скорости изменения состояния упомянутого второго элемента, и которая замедляет это изменение, при котором ! уменьшают (увеличивают) угол наклона упомянутой зависимости модуля силы сопротивления от модуля скорости изменения состояния упомянутого второго элемента, если текущий модуль упомянутой силы сопротивления больше (меньше) заданного значения, ! изменяют упомянутое заданное значение в зависимости от текущего состояния упомянутого второго элемента, по меньшей мере, на части максимального интервала изменения значений его состояния, ! отличающийся тем, что ! во время уменьшения модуля отклонения текущего состояния упомянутого второго элемента от статического состояния устанавливают текущее упомянутое заданное значение прямо пропорциональное приведенному к вектору упомянутой силы сопротивления модулю текущего отклонения упомянутой потенциальной силы упомянутого

Claims (18)

1. Способ гашения колебаний колебательной системы, содержащей, по меньшей мере, один первый элемент, который обладает инерционным свойством, по меньшей мере, один второй элемент, который, изменяя свое состояние под действием внешней по отношению к этому элементу силы, запасает потенциальную энергию и вследствие этого создает потенциальную силу, действующую на связанные с этим элементом другие элементы колебательной системы и, по меньшей мере, один третий элемент, который в процессе циркуляции энергии между упомянутыми первым и вторым элементами выводит энергию из колебательной системы путем ее расходования на совершение работы вне колебательной системы и создает силу сопротивления, модуль которой имеет прямую зависимость от модуля скорости изменения состояния упомянутого второго элемента, и которая замедляет это изменение, при котором
уменьшают (увеличивают) угол наклона упомянутой зависимости модуля силы сопротивления от модуля скорости изменения состояния упомянутого второго элемента, если текущий модуль упомянутой силы сопротивления больше (меньше) заданного значения,
изменяют упомянутое заданное значение в зависимости от текущего состояния упомянутого второго элемента, по меньшей мере, на части максимального интервала изменения значений его состояния,
отличающийся тем, что
во время уменьшения модуля отклонения текущего состояния упомянутого второго элемента от статического состояния устанавливают текущее упомянутое заданное значение прямо пропорциональное приведенному к вектору упомянутой силы сопротивления модулю текущего отклонения упомянутой потенциальной силы упомянутого второго элемента от ее статической величины.
2. Способ по п.1, отличающийся тем, что
во время уменьшения модуля отклонения текущего состояния упомянутого второго элемента от статического состояния устанавливают текущее упомянутое заданное значение равное приведенному к вектору упомянутой силы сопротивления модулю текущего отклонения упомянутой потенциальной силы упомянутого второго элемента от ее статической величины.
3. Способ по п.1, 2, отличающийся тем, что
устанавливают угол наклона упомянутой зависимости модуля силы сопротивления от модуля скорости изменения состояния упомянутого второго элемента, тангенс которого больше тангенса минимального угла наклона этой зависимости, который соответствует апериодическому затуханию возмущений упомянутой колебательной системы, если текущий модуль упомянутой силы сопротивления равен или меньше текущего упомянутого заданного значения,
устанавливают угол наклона упомянутой зависимости модуля силы сопротивления от модуля скорости изменения состояния упомянутого второго элемента, тангенс которого меньше 30% и больше 0,01% от тангенса максимального угла наклона этой зависимости, который соответствует колебательному затуханию возмущений упомянутой колебательной системы, если текущий модуль упомянутой силы сопротивления больше текущего упомянутого заданного значения.
4. Способ по п.3, отличающийся тем, что
во время увеличения модуля отклонения текущего состояния упомянутого второго элемента от статического состояния устанавливают упомянутое заданное значение не больше 10% от приведенного к вектору упомянутой силы сопротивления модуля статической величины упомянутой потенциальной силы упомянутого второго элемента.
5. Способ по п.4, отличающийся тем, что
изменяют текущее упомянутое заданное значение в прямой зависимости от модуля текущего отклонения упомянутой потенциальной силы упомянутого второго элемента от ее статической величины, по большей мере, на части максимального интервала значений отклонения состояния упомянутого второго элемента от статического состояния во время увеличения модуля этого отклонения.
6. Способ по п.5, отличающийся тем, что
осуществляют гашение колебаний механической колебательной системы, которая представляет собой подвеску транспортного средства, в которой упомянутым первым элементом колебательной системы является подрессоренная масса транспортного средства, упомянутым вторым элементом колебательной системы является упругий элемент упомянутой подвески, который связывает упомянутую подрессоренную массу транспортного средства с его неподрессоренной массой, через которую упомянутая подвеска воспринимает внешние возмущения, упомянутым состоянием упомянутого второго элемента колебательной системы является прогиб упомянутого упругого элемента, а упомянутой потенциальной силой этого элемента является сила упругости упругого элемента, упомянутым третьим элементом колебательной системы является демпфер, который связывает упомянутые подрессоренную и неподрессоренную массы транспортного средства, и который во время изменения прогиба упомянутого упругого элемента создает силу сопротивления замедляющую изменение этого прогиба и модуль которой имеет прямую зависимость от модуля скорости изменения этого прогиба,
устанавливают и изменяют угол наклона упомянутой зависимости модуля силы сопротивления упомянутого демпфера от модуля скорости изменения упомянутого прогиба упомянутого упругого элемента,
устанавливают и изменяют упомянутое заданное значение в зависимости от текущего отклонения упомянутой силы упругости упомянутого упругого элемента от ее статической величины.
7. Способ по п.5, отличающийся тем, что
осуществляют гашение колебаний электромагнитной колебательной системы, которая представляет собой электромагнитный контур, в котором упомянутым первым элементом колебательной системы является индуктивность упомянутого контура, упомянутым вторым элементом колебательной системы является электрическая емкость упомянутого контура, упомянутым состоянием упомянутого второго элемента колебательной системы является электрический заряд упомянутой электрической емкости, а упомянутой потенциальной силой этого элемента является разность электрических потенциалов на этой емкости, упомянутым третьим элементом колебательной системы является активное электрическое сопротивление упомянутого контура, которое во время изменения электрического заряда упомянутой электрической емкости создает разность электрических потенциалов, которая представляет собой силу сопротивления замедляющую изменение электрического заряда упомянутой электрической емкости и модуль которой имеет прямую зависимость от модуля скорости изменения этого заряда,
устанавливают и изменяют угол наклона упомянутой зависимости модуля силы сопротивления упомянутого активного электрического сопротивления от модуля скорости изменения электрического заряда упомянутой электрической емкости,
устанавливают и изменяют упомянутое заданное значение в зависимости от текущего отклонения разности электрических потенциалов на упомянутой электрической емкости от ее статической величины.
8. Устройство для гашения колебаний подвески транспортного средства, которая содержит, по меньшей мере, один упругий элемент, который создает силу упругости, действующую на связанные этим упругим элементом подрессоренную массу и неподрессоренную массу транспортного средства, и представляет собой гидравлический телескопический демпфер, который во время изменения прогиба упомянутой подвески создает силу сопротивления, модуль которой зависит от модуля скорости изменения упомянутого прогиба, и который содержит
рабочий цилиндр, внутренняя полость которого заполнена жидкостью,
шток, который предназначен для восприятия внешней нагрузки и установлен соосно с упомянутым рабочим цилиндром с возможностью поступательного (возвратного) движения в упомянутом рабочем цилиндре при сжатии (растяжении) демпфера,
внутреннюю полость упомянутого штока, которая сообщается с внутренней полостью упомянутого рабочего цилиндра,
поршень, который закреплен на конце упомянутого штока, и делит внутреннюю полость упомянутого рабочего цилиндра на камеру сжатия, объем которой уменьшается при сжатии демпфера, и на камеру растяжения, объем которой уменьшается при растяжении демпфера,
клапан сжатия, который имеет, по меньшей мере, один подводящий канал, который выполнен в упомянутом поршне и имеет входное отверстие со стороны упомянутой камеры сжатия, а выходное отверстие со стороны упомянутой камеры растяжения,
клапан растяжения, который имеет, по меньшей мере, один подводящий канал, который выполнен в упомянутом поршне и имеет входное отверстие со стороны упомянутой камеры растяжения, а выходное отверстие со стороны упомянутой камеры сжатия,
первый запорный элемент, который является частью упомянутого клапана сжатия, перекрывает упомянутое выходное отверстие подводящего канала этого клапана и установлен с возможностью перемещения под действием упомянутой жидкости, истекающей из упомянутой камеры сжатия,
второй запорный элемент, который является частью упомянутого клапана растяжения, перекрывает упомянутое выходное отверстие подводящего канала этого клапана и установлен с возможностью перемещения под действием упомянутой жидкости, истекающей из упомянутой камеры растяжения,
первый упругий элемент, сила упругости которого препятствует перемещению упомянутого первого запорного элемента под действием упомянутой жидкости, истекающей из упомянутой камеры сжатия, и который является частью упомянутого клапана сжатия,
второй упругий элемент, сила упругости которого препятствует перемещению упомянутого второго запорного элемента под действием упомянутой жидкости, истекающей из упомянутой камеры растяжения, и который является частью упомянутого клапана растяжения,
первую опору, которая взаимодействует с упомянутым первым упругим элементом, является частью упомянутого клапана сжатия и имеет часть внутренней поверхности, которая выполнена конусной,
первый направляющий элемент, вдоль которого упомянутая первая опора имеет возможность возвратно-поступательного перемещения в направлении упомянутого первого упругого элемента,
вторую опору, которая взаимодействует с упомянутым вторым упругим элементом, является частью упомянутого клапана растяжения и имеет часть внутренней поверхности, которая выполнена конусной,
второй направляющий элемент, вдоль которого упомянутая вторая опора имеет возможность возвратно-поступательного перемещения в направлении упомянутого второго упругого элемента,
стержень, который закреплен на дне упомянутой камеры сжатия, вдвигается в упомянутую внутреннюю полость упомянутого штока при сжатии демпфера, имеет четырехгранное переменное поперечное сечение на рабочем участке своей длины, которая равна максимальному ходу упомянутого штока,
первое отверстие, выполненное в упомянутом первом направляющем элементе со стороны первой боковой поверхности упомянутого стержня и ось которого перпендикулярна продольной оси этого стержня,
второе отверстие, выполненное в упомянутом первом направляющем элементе со стороны второй боковой поверхности упомянутого стержня, которая противоположна упомянутой первой боковой поверхности этого стержня, и ось которого перпендикулярна продольной оси этого стержня,
третье отверстие, выполненное в упомянутом втором направляющем элементе со стороны третьей боковой поверхности упомянутого стержня и ось которого перпендикулярна продольной оси этого стержня,
четвертое отверстие, выполненное в упомянутом втором направляющем элементе со стороны четвертой боковой поверхности упомянутого стержня, которая противоположна упомянутой третьей боковой поверхности этого стержня, и ось которого перпендикулярна продольной оси этого стержня,
первый упор цилиндрической формы, который установлен в упомянутом первом отверстии с возможностью возвратно-поступательного перемещения вдоль оси этого отверстия и одним своим торцом взаимодействует с упомянутой первой боковой поверхностью стержня, а противоположным своим торцом взаимодействует с конусной внутренней поверхностью упомянутой первой опоры,
второй упор, который идентичен упомянутому первому упору, установлен в упомянутом втором отверстии с возможностью возвратно-поступательного перемещения вдоль оси этого отверстия и одним своим торцом взаимодействует с упомянутой второй боковой поверхностью стержня, а противоположным своим торцом взаимодействует с конусной внутренней поверхностью упомянутой первой опоры,
третий упор цилиндрической формы, который установлен в упомянутом третьем отверстии с возможностью возвратно-поступательного перемещения вдоль оси этого отверстия и одним своим торцом взаимодействует с упомянутой третьей боковой поверхностью стержня, а противоположным своим торцом взаимодействует с конусной внутренней поверхностью упомянутой второй опоры,
четвертый упор, который идентичен упомянутому третьему упору, установлен в упомянутом четвертом отверстии с возможностью возвратно-поступательного перемещения вдоль оси этого отверстия и одним своим торцом взаимодействует с упомянутой четвертой боковой поверхностью стержня, а противоположным своим торцом взаимодействует с конусной внутренней поверхностью упомянутой второй опоры,
первый дроссель, который связывает упомянутую камеру сжатия с упомянутой камерой растяжения, и, который образован зазором между боковой поверхностью упомянутого первого упора и поверхностью упомянутого первого отверстия,
второй дроссель, который связывает упомянутую камеру сжатия с упомянутой камерой растяжения, и, который образован зазором между боковой поверхностью упомянутого второго упора и поверхностью упомянутого второго отверстия,
отличающееся тем, что
каждому значению упомянутого прогиба подвески соответствует поперечное сечение упомянутого стержня на рабочем участке его длины,
на рабочем участке длины упомянутого стержня расстояние между упомянутой первой и упомянутой второй боковыми поверхностями этого стержня в каждом поперечном сечении этого стержня соответствует уравнению
L1=Ln1+2×tgα1×(X1/S1)×Sk1/C1
где L1 - расстояние между упомянутой первой и упомянутой второй боковыми поверхностями упомянутого стержня в каждом поперечном сечении этого стержня;
Ln1 - максимальное расстояние между упомянутой первой и упомянутой второй боковыми поверхностями упомянутого стержня соответствующее недеформированному состоянию упомянутого первого упругого элемента;
α1 - угол между продольной осью упомянутого стержня и конусной внутренней поверхностью упомянутой первой опоры;
X1 - соответствующее каждому поперечному сечению упомянутого стержня заданное значение модуля упомянутой силы сопротивления, при котором открывается упомянутый клапан сжатия;
S1 - площадь поперечного сечения упомянутого рабочего цилиндра;
Sk1 - площадь упомянутого выходного отверстия подводящего канала упомянутого клапана сжатия;
С1 - жесткость упомянутого первого упругого элемента,
на рабочем участке длины упомянутого стержня, который соответствует растянутому состоянию упомянутой подвески, упомянутое заданное значение X1 для каждого поперечного сечения этого стержня прямо пропорционально приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значения,
на рабочем участке длины упомянутого стержня расстояние между упомянутой третьей и упомянутой четвертой боковыми поверхностями этого стержня в каждом поперечном сечении этого стержня соответствует уравнению
L2=Ln2+2×tgα2×(X2/S2)×Sk2/C2
где L2 - расстояние между упомянутой третьей и упомянутой четвертой боковыми поверхностями упомянутого стержня в каждом поперечном сечении этого стержня;
Ln2 - максимальное расстояние между упомянутой третьей и упомянутой четвертой боковыми поверхностями упомянутого стержня соответствующее недеформированному состоянию упомянутого второго упругого элемента;
α2 - угол между продольной осью упомянутого стержня и конусной внутренней поверхностью упомянутой второй опоры;
Х2 - соответствующее каждому поперечному сечению упомянутого стержня заданное значение модуля упомянутой силы сопротивления, при котором открывается упомянутый клапан растяжения;
S2 - разница между площадью поперечного сечения упомянутого рабочего цилиндра и площадью поперечного сечения упомянутого штока;
Sk2 - площадь упомянутого выходного отверстия подводящего канала упомянутого клапана растяжения;
С2 - жесткость упомянутого второго упругого элемента,
на рабочем участке длины упомянутого стержня, который соответствует сжатому состоянию упомянутой подвески, упомянутое заданное значение Х2 для каждого поперечного сечения этого стержня прямо пропорционально приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значения.
9. Устройство по п.8, отличающееся тем, что
на рабочем участке длины упомянутого стержня, который соответствует растянутому состоянию упомянутой подвески, упомянутое заданное значение X1 для каждого поперечного сечения этого стержня равно приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значении,
на рабочем участке длины упомянутого стержня, который соответствует сжатому состоянию упомянутой подвески, упомянутое заданное значение Х2 для каждого поперечного сечения этого стержня равно приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значения.
10. Устройство по п.8, 9, отличающееся тем, что
проходное сечение упомянутого клапана сжатия соответствует углу наклона упомянутой зависимости модуля силы сопротивления от модуля скорости изменения прогиба, тангенс которого меньше 30% и больше 0,01% от тангенса максимального угла наклона этой зависимости, который соответствует колебательному затуханию возмущений упомянутой подвески,
проходное сечение упомянутого клапана растяжения соответствует углу наклона упомянутой зависимости модуля силы сопротивления от модуля скорости изменения прогиба, тангенс которого меньше 30% и больше 0,01% от тангенса максимального утла наклона этой зависимости, который соответствует колебательному затуханию возмущений упомянутой подвески,
суммарное проходное сечение упомянутого первого и упомянутого второго дросселей соответствует углу наклона упомянутой зависимости модуля силы сопротивления от модуля скорости изменения прогиба, тангенс которого больше тангенса минимального угла наклона этой зависимости, который соответствует апериодическому затуханию возмущений упомянутой подвески.
11. Устройство по п.10, отличающееся тем, что
на рабочем участке длины упомянутого стержня, который соответствует сжатому состоянию упомянутой подвески, упомянутое заданное значение X1 для каждого поперечного сечения этого стержня не больше 10% от приведенного к продольной оси демпфера статического значения упомянутой силы упругости,
на рабочем участке длины упомянутого стержня, который соответствует растянутому состоянию упомянутой подвески, упомянутое заданное значение Х2 для каждого поперечного сечения этого стержня не больше 10% от приведенного к продольной оси демпфера статического значения упомянутой силы упругости.
12. Устройство по п.11, отличающееся тем, что
по большей мере, на части рабочего участка длины упомянутого стержня, который соответствует сжатому состоянию упомянутой подвески, упомянутое заданное значение X1 для каждого поперечного сечения этого стержня прямо пропорционально приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значения,
по большей мере, на части рабочего участка длины упомянутого стержня, который соответствует растянутому состоянию упомянутой подвески, упомянутое заданное значение Х2 для каждого поперечного сечения этого стержня прямо пропорционально приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значения.
13. Устройство для гашения колебаний подвески транспортного средства, которая содержит, по меньшей мере, один упругий элемент, который создает силу упругости, действующую на связанные этим упругим элементом подрессоренную массу и неподрессоренную массу транспортного средства, и представляет собой гидравлический телескопический демпфер, который во время изменения прогиба упомянутой подвески создает силу сопротивления, модуль которой зависит от модуля скорости изменения упомянутого прогиба, и который содержит
рабочий цилиндр, внутренняя полость которого заполнена жидкостью,
шток, который предназначен для восприятия внешней нагрузки и установлен соосно с упомянутым рабочим цилиндром с возможностью поступательного (возвратного) движения в упомянутом рабочем цилиндре при сжатии (растяжении) демпфера,
поршень, который закреплен на конце упомянутого штока, и делит внутреннюю полость упомянутого рабочего цилиндра на камеру сжатия, объем которой уменьшается при сжатии демпфера, и на камеру растяжения, объем которой уменьшается при растяжении демпфера,
клапан сжатия, который имеет, по меньшей мере, один подводящий канал, который имеет входное отверстие со стороны упомянутой камеры сжатия, а выходное отверстие со стороны другой камеры упомянутого демпфера,
клапан растяжения, который имеет, по меньшей мере, один подводящий канал, который выполнен в упомянутом поршне и имеет входное отверстие со стороны упомянутой камеры растяжения, а выходное отверстие со стороны упомянутой камеры сжатия,
первый запорный элемент, который является частью упомянутого клапана сжатия, перекрывает упомянутое выходное отверстие подводящего канала этого клапана и установлен с возможностью перемещения под действием упомянутой жидкости, истекающей из упомянутой камеры сжатия,
второй запорный элемент, который является частью упомянутого клапана растяжения, перекрывает упомянутое выходное отверстие подводящего канала этого клапана и установлен с возможностью перемещения под действием упомянутой жидкости, истекающей из упомянутой камеры растяжения,
первый упругий элемент, сила упругости которого препятствует перемещению упомянутого первого запорного элемента под действием упомянутой жидкости, истекающей из упомянутой камеры сжатия, и который является частью упомянутого клапана сжатия,
второй упругий элемент, сила упругости которого препятствует перемещению упомянутого второго запорного элемента под действием упомянутой жидкости, истекающей из упомянутой камеры растяжения, и который является частью упомянутого клапана растяжения,
первую опору, которая взаимодействует с упомянутым первым упругим элементом, является частью упомянутого клапана сжатия и имеет часть внутренней поверхности, которая выполнена конусной,
первый направляющий элемент, вдоль которого упомянутая первая опора имеет возможность возвратно-поступательного перемещения в направлении упомянутого первого упругого элемента,
вторую опору, которая взаимодействует с упомянутым вторым упругим элементом, является частью упомянутого клапана растяжения и имеет часть внутренней поверхности, которая выполнена конусной,
второй направляющий элемент, вдоль которого упомянутая вторая опора имеет возможность возвратно-поступательного перемещения в направлении упомянутого второго упругого элемента,
отличающееся тем, что
содержит компенсационную камеру, которая отделена от упомянутой камеры сжатия перегородкой и частично заполнена упомянутой жидкостью,
содержит перепускной клапан, который связывает упомянутую камеру сжатия с упомянутой камерой растяжения во время сжатия демпфера и имеет пренебрежимо малое сопротивление истечению упомянутой жидкости из упомянутой камеры сжатия,
упомянутый подводящий канал упомянутого клапана сжатия выполнен в упомянутой перегородке и имеет выходное отверстие со стороны упомянутой компенсационной камеры,
содержит первый стержень, который установлен соосно с упомянутым рабочим цилиндром внутри упомянутого первого направляющего элемента с возможностью продольного перемещения и на рабочем участке своей длины, которая меньше максимального хода упомянутого штока, выполнен в форме тела вращения с вогнутой или выпуклой боковой поверхностью,
один торец упомянутого первого стержня расположен в упомянутой камере сжатия, а рабочий участок длины этого стержня расположен в упомянутой компенсационной камере,
содержит второй стержень, который установлен соосно с упомянутым рабочим цилиндром внутри упомянутого второго направляющего элемента с возможностью продольного перемещения и на рабочем участке своей длины, которая меньше максимального хода упомянутого штока, выполнен в форме тела вращения с вогнутой или выпуклой боковой поверхностью,
содержит, по меньшей мере, первое и второе отверстия, выполненные в упомянутом первом направляющем элементе и оси которых перпендикулярны продольной оси упомянутого первого стержня,
содержит, по меньшей мере, третье и четвертое отверстия, выполненные в упомянутом втором направляющем элементе, и оси которых перпендикулярны продольной оси упомянутого второго стержня,
содержит, по меньшей мере, первый и второй идентичные шары, установленные соответственно в упомянутых первом и втором отверстиях с возможностью возвратно-поступательного качения вдоль оси этих отверстий, и каждый из которых одной стороной взаимодействует с боковой поверхностью упомянутого первого стержня, а противоположной стороной взаимодействует с конусной внутренней поверхностью упомянутой первой опоры,
содержит, по меньшей мере, третий и четвертый идентичные шары, установленные соответственно в упомянутых третьем и четвертом отверстиях с возможностью возвратно-поступательного качения вдоль оси этих отверстий, и каждый из которых одной стороной взаимодействует с боковой поверхностью упомянутого второго стержня, а противоположной стороной взаимодействует с конусной внутренней поверхностью упомянутой второй опоры,
содержит третью опору, которая соединена с расположенным в упомянутой камере сжатия торцом упомянутого первого стержня,
содержит четвертую опору, которая соединена с обращенным в сторону упомянутой камеры сжатия торцом упомянутого второго стержня,
содержит первую пружину, которая установлена между упомянутой третьей опорой и упомянутой четвертой опорой,
содержит вторую пружину, которая установлена между упомянутой третьей опорой и упомянутой перегородкой и жесткость которой относится к жесткости упомянутой первой пружины, как максимальный ход упомянутого штока относится к длине рабочего участка упомянутого первого стержня,
содержит третью пружину, которая установлена между упомянутой четвертой опорой и упомянутым поршнем и жесткость которой относится к жесткости упомянутой первой пружины, как максимальный ход упомянутого штока относится к длине рабочего участка упомянутого второго стержня.
14. Устройство по п.13, отличающееся тем, что
каждому значению упомянутого прогиба подвески соответствует поперечное сечение упомянутого первого стержня на рабочем участке его длины,
каждому значению упомянутого прогиба подвески соответствует поперечное сечение упомянутого второго стержня на рабочем участке его длины,
на рабочем участке длины упомянутого первого стержня диаметр в каждом поперечном сечении этого стержня соответствует уравнению
D1=Dn1+2×tgα1×(X1/S1)×Sk1/C1
где D1 - диаметр упомянутого первого стержня в каждом поперечном сечении этого стержня;
Dn1 - максимальный диаметр упомянутого первого стержня соответствующий недеформированному состоянию упомянутого первого упругого элемента;
α1 - угол между продольной осью упомянутого первого стержня и конусной внутренней поверхностью упомянутой первой опоры;
X1 - соответствующее каждому поперечному сечению упомянутого первого стержня заданное значение модуля упомянутой силы сопротивления, при котором открывается упомянутый клапан сжатия;
S1 - площадь поперечного сечения упомянутого штока;
Sk1 - площадь упомянутого выходного отверстия подводящего канала упомянутого клапана сжатия;
С1 - жесткость упомянутого первого упругого элемента,
на рабочем участке длины упомянутого первого стержня, который соответствует растянутому состоянию упомянутой подвески, упомянутое заданное значение X1 для каждого поперечного сечения этого стержня прямо пропорционально приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значения,
на рабочем участке длины упомянутого второго стержня диаметр в каждом поперечном сечении этого стержня соответствует уравнению
D2=Dn2+2×tgα2×(X2/S2)×Sk2/C2
где D2 - диаметр упомянутого второго стержня в каждом поперечном сечении этого стержня;
Dn2 - максимальный диаметр упомянутого второго стержня соответствующий недеформированному состоянию упомянутого второго упругого элемента;
α2 - угол между продольной осью упомянутого второго стержня и конусной внутренней поверхностью упомянутой второй опоры;
Х2 - соответствующее каждому поперечному сечению упомянутого второго стержня заданное значение модуля упомянутой силы сопротивления, при котором открывается упомянутый клапан растяжения;
S2 - разница между площадью поперечного сечения упомянутого рабочего цилиндра и площадью поперечного сечения упомянутого штока;
Sk2 - площадь упомянутого выходного отверстия подводящего канала упомянутого клапана растяжения;
С2 - жесткость упомянутого второго упругого элемента,
на рабочем участке длины упомянутого второго стержня, который соответствует сжатому состоянию упомянутой подвески, упомянутое заданное значение Х2 для каждого поперечного сечения этого стержня прямо пропорционально приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значения.
15. Устройство по п.14, отличающееся тем, что
на рабочем участке длины упомянутого первого стержня, который соответствует растянутому состоянию упомянутой подвески, упомянутое заданное значение X1 для каждого поперечного сечения этого стержня равно приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значения,
на рабочем участке длины упомянутого второго стержня, который соответствует сжатому состоянию упомянутой подвески, упомянутое заданное значение Х2 для каждого поперечного сечения этого стержня равно приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значения.
16. Устройство по п.14, 15, отличающееся тем, что
проходное сечение упомянутого клапана сжатия соответствует углу наклона упомянутой зависимости модуля силы сопротивления от модуля скорости изменения прогиба, тангенс которого меньше 30% и больше 0,01% от тангенса максимального угла наклона этой зависимости, который соответствует колебательному затуханию возмущений упомянутой подвески,
проходное сечение упомянутого клапана растяжения соответствует углу наклона упомянутой зависимости модуля силы сопротивления от модуля скорости изменения прогиба, тангенс которого меньше 30% и больше 0,01% от тангенса максимального угла наклона этой зависимости, который соответствует колебательному затуханию возмущений упомянутой подвески,
содержит, по меньшей мере, один дроссель, который связывает упомянутую внутреннюю полость упомянутого рабочего цилиндра с упомянутой компенсационной камерой,
проходное сечение упомянутого дросселя соответствует углу наклона упомянутой зависимости модуля силы сопротивления от модуля скорости изменения прогиба, тангенс которого больше тангенса минимального угла наклона этой зависимости, который соответствует апериодическому затуханию возмущений упомянутой подвески.
17. Устройство по п.16, отличающееся тем, что
на рабочем участке длины упомянутого первого стержня, который соответствует сжатому состоянию упомянутой подвески, упомянутое заданное значение X1 для каждого поперечного сечения этого стержня не больше 10% от приведенного к продольной оси демпфера статического значения упомянутой силы упругости,
на рабочем участке длины упомянутого второго стержня, который соответствует растянутому состоянию упомянутой подвески, упомянутое заданное значение Х2 для каждого поперечного сечения этого стержня не больше 10% от приведенного к продольной оси демпфера статического значения упомянутой силы упругости.
18. Устройство по п.17, отличающееся тем, что
по большей мере, на части рабочего участка длины упомянутого первого стержня, который соответствует сжатому состоянию упомянутой подвески, упомянутое заданное значение X1 для каждого поперечного сечения этого стержня прямо пропорционально приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значения,
по большей мере, на части рабочего участка длины упомянутого второго стержня, который соответствует растянутому состоянию упомянутой подвески, упомянутое заданное значение Х2 для каждого поперечного сечения этого стержня прямо пропорционально приведенному к продольной оси демпфера и соответствующему этому поперечному сечению стержня модулю отклонения упомянутой силы упругости от ее статического значения.
RU2011106314/11A 2011-02-18 2011-02-18 Способ гашения колебаний и устройство для его осуществления (варианты) RU2482347C2 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2011106314/11A RU2482347C2 (ru) 2011-02-18 2011-02-18 Способ гашения колебаний и устройство для его осуществления (варианты)
PCT/RU2012/000060 WO2012112076A1 (ru) 2011-02-18 2012-02-03 Способ гашения колебаний и устройство для его осуществления (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011106314/11A RU2482347C2 (ru) 2011-02-18 2011-02-18 Способ гашения колебаний и устройство для его осуществления (варианты)

Publications (2)

Publication Number Publication Date
RU2011106314A true RU2011106314A (ru) 2011-07-10
RU2482347C2 RU2482347C2 (ru) 2013-05-20

Family

ID=44740129

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011106314/11A RU2482347C2 (ru) 2011-02-18 2011-02-18 Способ гашения колебаний и устройство для его осуществления (варианты)

Country Status (2)

Country Link
RU (1) RU2482347C2 (ru)
WO (1) WO2012112076A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017298026A1 (en) 2016-07-20 2019-03-07 Elka Suspension Inc. Position-relative damper assist system
US10393211B2 (en) 2017-02-08 2019-08-27 Beijingwest Industries Co., Ltd. Hydraulic damper with a hydraulic stop arrangement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2127675C1 (ru) * 1998-07-27 1999-03-20 Стравинский Игорь Александрович Способ регулирования силы сопротивления гидравлического демпфера и устройство для его осуществления /варианты/
DE19944183A1 (de) * 1999-09-15 2001-03-22 Bayerische Motoren Werke Ag Hydraulischer Stossdämpfer für Kraftfahrzeuge
ITBO20000552A1 (it) * 2000-09-26 2002-03-26 Paioli Spa Ammortizzatore a doppio effetto con dispositivo di fine corsa a indurimento progressivo particolarmente per sospensioni di veicoli
WO2002101262A1 (fr) * 2001-06-13 2002-12-19 Yevgeniy Yvanovich Ternovskiy Dispositif pour reguler la resistance d'un amortisseur hydraulique
RU2216665C2 (ru) * 2001-08-01 2003-11-20 Открытое акционерное общество холдинговая компания "Коломенский завод" Гидропневматический демпфер
RU96920U1 (ru) * 2010-04-19 2010-08-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Гидравлический демпфер

Also Published As

Publication number Publication date
WO2012112076A1 (ru) 2012-08-23
RU2482347C2 (ru) 2013-05-20

Similar Documents

Publication Publication Date Title
US8978845B2 (en) Frequency/pressure sensitive shock absorber
KR101254233B1 (ko) 쇽업소버의 밸브 구조
EP2118515B1 (en) Shock absorber with hydraulic flow ducts
CN106958619B (zh) 一种自动调节减振器
EP2105630B1 (en) Damping force variator
KR20140022583A (ko) 쇽 업소버의 밸브 조립체
CN110131354B (zh) 减震器装置
CN104455177A (zh) 汽车用主动自适应式减振器
CN108999911B (zh) 具有组合的气体弹簧和阻尼器的支杆组件
CN110056599B (zh) 一种基于剪切模式下可变行程的双筒主动式磁流变减振器
CN110439955A (zh) 一种磁流变液单向阻尼调节阀
RU2011106314A (ru) Способ гашения колебаний и устройство для его осуществления (варианты)
CN206770480U (zh) 一种自动调节减振器
KR20180098937A (ko) 변위 가변형 댐퍼
CN105546016B (zh) 一种类半主动控制的被动减振器
RU157916U1 (ru) Устройство для демпфирования колебаний
CN104132091A (zh) 一种剪切式双筒磁流变减振器
EP3839286A1 (en) Shock absorber with frequency-dependent load regulation by hydraulic inertia
RU2481507C1 (ru) Пневмогидравлический амортизатор
RU170737U1 (ru) Амортизатор для гашения резонансных колебаний в вибрационных машинах
KR20130130118A (ko) 주파수 감응형 쇽업소버
CN207921222U (zh) 油液缓冲式导向器
RU2764210C1 (ru) Регулируемый магнитореологический пневматический амортизатор
RU168041U1 (ru) Устройство для демпфирования колебаний
CN216158173U (zh) 可调节阻尼的减震器

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190219