RU2009611C1 - Полупроводниковый генератор наносекундных импульсов - Google Patents

Полупроводниковый генератор наносекундных импульсов Download PDF

Info

Publication number
RU2009611C1
RU2009611C1 SU4932613A RU2009611C1 RU 2009611 C1 RU2009611 C1 RU 2009611C1 SU 4932613 A SU4932613 A SU 4932613A RU 2009611 C1 RU2009611 C1 RU 2009611C1
Authority
RU
Russia
Prior art keywords
capacitor
current circuit
circuit
current
switch
Prior art date
Application number
Other languages
English (en)
Inventor
И.В. Грехов
В.М. Ефанов
А.Ф. Кардо-Сысоев
С.В. Коротков
Original Assignee
Физико-технический институт им.А.Ф.Иоффе РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Физико-технический институт им.А.Ф.Иоффе РАН filed Critical Физико-технический институт им.А.Ф.Иоффе РАН
Priority to SU4932613 priority Critical patent/RU2009611C1/ru
Application granted granted Critical
Publication of RU2009611C1 publication Critical patent/RU2009611C1/ru

Links

Images

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

Изобретение относится к сильноточной полупроводниковой электронике и может быть использовано в лазерной и ускорительной технике. Цель изобретения является уменьшение потерь энергии в генераторе наносекундных импульсов на базе дрейфового диода с резким восстановлением. Полупроводниковый генератор наносекундных импульсов содержит дрейфовый диод с резким восстановлением, цепь обратного тока, состоящую из конденсатора, катушки индуктивности и коммутатора: цепь прямого тока, состоящую из конденсатора, катушки индуктивности и коммутатора; цепь нагрузки, зарядное устройство, шунтирующий диод. Коммутатор цепи обратного тока может быть выполнен в виде дросселя с насыщающимся сердечником. 1 з. п. ф-лы, 1 ил.

Description

Изобретение относится к сильноточной полупроводниковой электронике и может быть использовано в лазерной и ускорительной технике.
Известен полупроводниковый генератор наносекундных импульсов на базе дрейфового диода с резким восстановлением (ДДРВ). Он содержит ДДРВ, формирователь обратного тока, подключенный параллельно ДДРВ и соединенный отрицательным выводом с его анодом, цепь нагрузки, подключенную параллельно ДДРВ, а так же формирователь прямого тока, соединенный отрицательным выводом с катодом ДДРВ и LC-фильтр. Индуктивность фильтра L включена между положительным выводом формирователя прямого тока и анодом ДДРВ, емкость фильтра с включена между положительным выводом формирователя прямого тока и катодом ДДРВ.
При включении формирователя прямого тока через ДДРВ проходит короткий импульс прямого тока, обуславливающий накопление в его структуре заряда неосновных носителей в виде тонкого плазменного слоя у p-п-перехода. Затем включается формирователь обратного тока и через ДДРВ проходит быстронарастающий импульс обратного тока. LC-фильтр исключает возможность замыкания обратного тока через формирователь прямого тока. В процессе протекания обратного тока происходит освобождение базовой области ДДРВ от накопленного заряда неосновных носителей. После полного истощения плазменного слоя дальнейшее протекание обратного тока через ДДРВ осуществляется за счет выведения основных носителей и приводит к резкому возрастанию напряжения на ДДРВ и к быстрой коммутации тока в цепь нагрузки.
При обеспечении оптимальной длительности прямого тока (100-300 наносекунд) и оптимальной плотности обратного тока (около 100 А/см2) скорость восстановления обратного напряжения на ДДРВ очень высока и длительность фронта нарастания тока в цепи нагрузки составляет несколько наносекунд. Общая длительность импульса тока в цепи нагрузки определяется формирователем обратного тока и так же находится в наносекундном диапазоне.
Недостатком рассмотренного генератора является неэффективное использование формирователя прямого тока, энергия которого используется только для создания плазменного слоя в структуре ДДРВ и не передается в цепь нагрузки. В результате снижается КПД генератора.
За прототип принят полупроводниковый генератор наносекундных импульсов на базе ДДРВ, имеющий более высокий КПД. Он содержит цепь прямого тока включающую коммутатор, конденсатор, катушку индуктивности и зарядное устройство, а также ДДРВ, цепь нагрузки и цепь обратного тока, включающую катушку индуктивности конденсатор, коммутатор и зарядное устройство.
Целью изобретения является уменьшение потерь энергии.
В предлагаемом полупроводниковом генераторе наносекундных импульсов, содержащем дрейфовый диод с резким восстановлением, цепь обратного тока, подключенную параллельно дрейфовому диоду и состоящую из последовательно соединенных конденсатора, катушки индуктивности и коммутатора, цепь прямого тока подключенную отрицательным выводом к катоду дрейфового диода и состоящую из последовательно соединенных конденсатора, катушки индуктивности и коммутатора, а так же цепь нагрузки, подключенную параллельно дрейфовому диоду и зарядное устройство, подключенное параллельно конденсатору цепи прямого тока, указанная цель достигается тем, что в генератор введен шунтирующий диод, подключенный параллельно конденсатору цепи обратного тока и соединенный анодом с анодом дрейфового диода, а цепь прямого тока подключена параллельно коммутатору цепи обратного тока.
Коммутатор цепи обратного тока может быть выполнен в виде дросселя с насыщающимся сердечником.
На чертеже представлена схема предлагаемого полупроводникового генератора наносекундных импульсов.
Генератор содержит: 1 - цепь прямого тока, 2 - коммутатор цепи прямого тока, 3 - конденсатор цепи прямого тока, 4 - катушка индуктивности цепи прямого тока, 5 - зарядное устройство, 6 - ДДРВ, 7 - цепь нагрузки, 8 - цепь обратного тока, 9 - катушка индуктивности цепи обратного тока, 10 - конденсатор цепи обратного тока, 11 - коммутатор цепи обратного тока, 12 - шунтирующий диод.
Цепь нагрузки 7 и цепь обратного тока 8, состоящая из последовательно соединенных коммутатора 11, конденсатора 10 и катушки индуктивности 9 подключены параллельно ДДРВ 6. Цепь прямого тока 1, состоящая из последовательно соединенных конденсатора 3, коммутатора 2 и катушки индуктивности 4, подключена параллельно коммутатору 11. Зарядное устройство 5 подключено параллельно конденсатору 3 и соединено отрицательным выводом с катодом ДДРВ 6. Шунтирующий диод 12 подключен параллельно конденсатору 10 и соединен анодом с анодом ДДРВ 6;
Схема работает следующим образом.
В исходном состоянии коммутаторы 2, 11 разомкнуты, конденсатор 10 разряжен, конденсатор 3 заряжен от блока заряда 5 в указанной на фиг. 1 полярности. При включении коммутатора 2 через катушки 4, 9, конденсатор 10 и ДДРВ 6 проходит короткий импульс тока разряда конденсатора 3, являющийся прямым для ДДРВ 6. При этом осуществляется заряд конденсатора 10 и накопление неосновных носителей в структуре ДДРВ 6. В момент окончания процесса заряда конденсатора 10 включается коммутатор 11 и через катушку 9 и ДДРВ 6 проходит импульс тока разряда конденсатора 10, являющийся обратным для ДДРВ 6. В процессе прохождения обратного тока из структуры ДДРВ 6 выводится накопленный заряд неосновных носителей, величина которого, вследствие малой длительности процесса накопления фактически равна величине заряда, введенного на этапе пропускания импульса прямого тока. После освобождения базовой области ДДРВ 6 от заряда неосновных носителей обратный ток через ДДРВ 6 поддерживается за счет вывода основных носителей. При этом электрическая проводимость ДДРВ 6 резко уменьшается и становится существенно меньше электрической проводимости цепи нагрузки 7. В результате происходит быстрая коммутация тока из ДДРВ 6 в цепь нагрузки 7. В процессе коммутации диод 12 исключает возможность перезаряда конденсатора 10. При этом практически вся энергия, запасаемая в цепи 8 рассеивается на сопротивлении нагрузки 7. Длительность фронта нарастания коммутируемого тока определяется скоростью уменьшения обратной проводимости ДДРВ 6, которая в свою очередь определяется скоростью вывода основных носителей из базовой области ДДРВ 6. Длительность импульса коммутируемого тока пропорциональна индуктивности катушки 9, которая выполняет роль индуктивного накопителя энергии, поддерживающего ток в цепи нагрузки 7 и обратно пропорциональна электрическому сопротивлению цепи 7. Величина коммутируемого тока фактически равна величине тока, проходящего через катушку 9 в момент коммутации. Вследствие малого сопротивления ДДРВ 6 на этапе вывода неосновных носителей и малого сопротивления цепи 8 мощный импульс тока через катушку 9 формируется при небольшом напряжении на конденсаторе 10, которое существенно меньше напряжения, возникающего в процессе коммутации на высокоомной цепи нагрузки 7. Так как в процессе заряда конденсатора 10 от нулевого до максимального напряжения через него проходит такой же заряд Ω = CU (C - емкость конденсатора 10, U - максимальное напряжение на конденсаторе 10), что и при его разряде от максимального напряжения до нуля, то момент коммутации, определяемый равенством заряда, вводимого и выводимого из структуры ДДРВ 6 током заряда и разряда конденсатора 10, совпадает с моментом полного разряда конденсатора 10, который, вследствие малых потерь энергии в цепи 8 и ДДРВ 6, наступает практически при достижении максимума обратного тока через ДДРВ 6. Наиболее благоприятный режим работы схемы наблюдается в случае равенства емкостей конденсаторов 3 и 10. При этом в момент окончания тока заряда конденсатора 10 конденсатор 3 полностью разряжается и практически вся энергия, предварительно накопленная в конденсаторе 3 передается в конденсатор 10, а затем в цепь нагрузки 7. При равных емкостях конденсаторов 3, 10 соотношение между амплитудами и длительностями токов, проходящих через коммутаторы 2, 11, определяется соотношением между индуктивностями катушек 4, 9. Так как в процессе работы схемы к коммутатору 11 напряжение прикладывается только в течение короткого времени заряда конденсатора 10, то он может быть выполнен в виде дросселя с насыщающимся сердечником, основным преимуществом которого является малая стоимость и малые потери энергии при коммутации коротких быстронарастающих импульсов тока. В исходном состоянии дроссель должен иметь очень большую индуктивность. При этом в процессе заряда конденсатора 10 ток через него пренебрежимо мал. Параметры дросселя выбираются таким образом, чтобы его сердечник насыщался сразу после окончания процесса заряда конденсатора 10. При насыщении сердечника индуктивность дросселя резко уменьшается и он шунтирует цепь прямого тока 1. В результате осуществляется быстрый разряд конденсатора 10 через дроссель насыщения, и по цепи ДДРВ 6 проходит быстро нарастающий импульс обратного тока. Момент насыщения сердечника дросселя можно регулировать путем пропускания небольшого тока через дополнительную обмотку размагничивания.
Таким образом, благодаря подключению цепи прямого тока 1 параллельно коммутатору 11 и введению в схему шунтирующего диода 12 в предлагаемом генераторе практически исключены потери энергии в процессе коммутации тока из цепи ДДРВ 6 в цепь нагрузки 7. При этом общие потери энергии существенно уменьшаются и определяются только потерями энергии в цепях 1, 8 в процессе формирования прямого и обратного тока через ДДРВ 6.
По предлагаемой схеме был собран наносекундный генератор ультразвукового диапазона с пиковой мощностью ≈ 80 кВт.
Высоковольтный блок ДДРВ 6 состоял из 2 последовательно включенных диодов. Приборы имели рабочую площадь 0,3 см2 и рабочее напряжение 1500 В. В качестве шунтирующего диода 12 использовался диод ДЛ112-10. Коммутатор 2 был выполнен на базе высокочастотных тиристоров КУ221. В качестве коммутатора 11 использовался дроссель насыщения, собранный на ферритовых кольцах марки 600НН. Дроссель имел площадь сечения ≈ 0,4 см2 и 3 витка. Размагничивание сердечника дросселя осуществлялось током 0,5 А, проходящим через дополнительную обмотку размагничивания. Величина индуктивности катушек 4, 9 - 1 : 0,5 мкГн, величина емкостей конденсаторов 3, 10 - 1 нФ. Катушки 4, 9 имели однослойную обмотку и использовались без сердечников, марка конденсаторов 3, 10 - КСO. Зарядное устройство 5 питалось от сети 220 В, 50 Гц и состояло из трансформатора мостового выпрямителя, емкости фильтра и зарядного дросселя. Выходное напряжение устройства 5 - 1000 В. Цепь нагрузки представляла собой набор малоиндуктивных резисторов с суммарным сопротивлением 50 Ом. Величина потерь энергии в генераторе не превышала 20% от величины энергии, коммутируемой в цепь нагрузки, что примерно в 1,5 раза меньше, чем в генераторе прототипе.
Так как величины напряжения и тока, коммутируемого в цепь нагрузки 7 может быть легко увеличены путем увеличения количества последовательно соединенных диодов в блоке ДДРВ 6 и увеличения рабочей площади этих диодов, то при использовании предлагаемой схемы оказывается возможным создание полупроводниковых генераторов наносекундного диапазона с пиковой мощностью свыше 1 МВт. Необходимость создания таких устройств диктуется современным уровнем развития лазерной и ускорительной техники. (56) 1. Тучкевич В. М. , Грехов И. В. Новые принципы коммутации больших мощностей полупроводниковыми приборами. Л. , Наука, 1988, с. 103.
2. Тучков В. М. и др. Новые принципы коммутации больших мощностей полупроводниковыми приборами. Л. , Наука, 1988, с. 50-66.
3. Тучков В. М. и др. Новые принципы коммутации больших мощностей полупроводниковыми приборами. Л. , Наука, 1988, с. 106.
4. Грехов И. В. , Ефанов В. М. , Кардо-Сысоев А. Ф. , Шендерей С. В. Формирование высоковольтных наносекундных перепадов напряжения на диодах с дрейфовым механизмом восстановления напряжения. Письма в ЖТФ. 1983, т. 9, вып. 7, с. 435-439.

Claims (2)

1. ПОЛУПРОВОДНИКОВЫЙ ГЕНЕРАТОР НАНОСЕКУНДНЫХ ИМПУЛЬСОВ, содержащий дрейфовый диод с резким восстановлением, цепь обратного тока, подключенную параллельно дрейфовому диоду и состоящую из последовательно соединенных конденсатора, катушки индуктивности и коммутатора, цепь прямого тока, подключенную отрицательным выводом к катоду дрейфового диода и состоящую из последовательно соединенных конденсатора, катушки индуктивности и коммутатора, а также цепь нагрузки, подключенную параллельно дрейфовому диоду, и зарядное устройство, подключенное параллельно конденсатору цепи прямого тока, отличающийся тем, что, с целью уменьшения потерь энергии, в генератор введен шунтирующий диод, подключенный параллельно конденсатору цепи обратного тока и соединенный анодом с анодом дрейфового диода, а цепь прямого тока подключена параллельно коммутатору цепи обратного тока.
2. Генератор по п. 1, отличающийся тем, что коммутатор цепи обратного тока выполнен в виде дросселя с насыщающимся сердечником.
SU4932613 1991-04-30 1991-04-30 Полупроводниковый генератор наносекундных импульсов RU2009611C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4932613 RU2009611C1 (ru) 1991-04-30 1991-04-30 Полупроводниковый генератор наносекундных импульсов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4932613 RU2009611C1 (ru) 1991-04-30 1991-04-30 Полупроводниковый генератор наносекундных импульсов

Publications (1)

Publication Number Publication Date
RU2009611C1 true RU2009611C1 (ru) 1994-03-15

Family

ID=21572602

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4932613 RU2009611C1 (ru) 1991-04-30 1991-04-30 Полупроводниковый генератор наносекундных импульсов

Country Status (1)

Country Link
RU (1) RU2009611C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2509409C1 (ru) * 2012-11-16 2014-03-10 Семен Валериевич Поносов Генератор импульсов тока
RU2580787C1 (ru) * 2015-02-11 2016-04-10 Михаил Владимирович Ефанов Генератор мощных наносекундных импульсов (варианты)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2509409C1 (ru) * 2012-11-16 2014-03-10 Семен Валериевич Поносов Генератор импульсов тока
RU2580787C1 (ru) * 2015-02-11 2016-04-10 Михаил Владимирович Ефанов Генератор мощных наносекундных импульсов (варианты)

Similar Documents

Publication Publication Date Title
US7414333B2 (en) High-voltage pulse generating circuit
US5138622A (en) Apparatus and method for generating high-power, high-voltage pulses, particularly for te gas lasers
JP2849876B2 (ja) 充電制御を許容する手段を備えた、電気エネルギ蓄積手段充電装置
CN107040244B (zh) 基于frspt和反谐振网络的全固态高电压微秒脉冲发生器
JPH0653031U (ja) スパーク浸食材料加工用パルス発生器
CN108923641B (zh) 一种基于dsrd的高压快脉冲电源
CN87106591A (zh) 具有高压脉冲发生器的激光装置和高压脉冲发生器及脉冲的发生方法
CN115208229A (zh) 一种电感储能脉冲发生器
US4211969A (en) High efficiency circuit for rapidly charging batteries
RU2009611C1 (ru) Полупроводниковый генератор наносекундных импульсов
CN113258905A (zh) 一种多电源协同供电产生平顶脉冲强磁场的装置及方法
US4230955A (en) Method of and apparatus for eliminating priming and carrier sweep-out losses in SCR switching circuits and the like
US7489052B2 (en) High voltage pulse generating circuit
RU112556U1 (ru) Переключатель мощных импульсов тока
CN212063519U (zh) 组合式开关电场感应取电装置
RU2716289C1 (ru) Генератор импульсов возбуждения
RU2097910C1 (ru) Импульсный генератор
JP2000323772A (ja) パルス電源装置
RU2095941C1 (ru) Магнитный генератор импульсов
RU2097913C1 (ru) Переключатель
RU2226022C1 (ru) Генератор наносекундных импульсов для возбуждения лазеров на самоограниченных переходах атомов металлов
RU2087070C1 (ru) Переключающее устройство
JP3090279B2 (ja) 磁気パルス圧縮回路
RU2107988C1 (ru) Высоковольтный переключатель
RU1802911C (ru) Инвертор