RU2226022C1 - Генератор наносекундных импульсов для возбуждения лазеров на самоограниченных переходах атомов металлов - Google Patents

Генератор наносекундных импульсов для возбуждения лазеров на самоограниченных переходах атомов металлов Download PDF

Info

Publication number
RU2226022C1
RU2226022C1 RU2002118259/28A RU2002118259A RU2226022C1 RU 2226022 C1 RU2226022 C1 RU 2226022C1 RU 2002118259/28 A RU2002118259/28 A RU 2002118259/28A RU 2002118259 A RU2002118259 A RU 2002118259A RU 2226022 C1 RU2226022 C1 RU 2226022C1
Authority
RU
Russia
Prior art keywords
storage capacitor
lead
nonlinear
anode
output
Prior art date
Application number
RU2002118259/28A
Other languages
English (en)
Other versions
RU2002118259A (ru
Inventor
Н.М. Лепехин
Ю.С. Присеко
В.Г. Филиппов
бин Н.А. Л
Н.А. Лябин
А.Д. Чурсин
И.С. Колоколов
Original Assignee
Лепехин Николай Михайлович
Присеко Юрий Степанович
Филиппов Валентин Георгиевич
Лябин Николай Александрович
Чурсин Александр Дмитриевич
Колоколов Игорь Сергеевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лепехин Николай Михайлович, Присеко Юрий Степанович, Филиппов Валентин Георгиевич, Лябин Николай Александрович, Чурсин Александр Дмитриевич, Колоколов Игорь Сергеевич filed Critical Лепехин Николай Михайлович
Priority to RU2002118259/28A priority Critical patent/RU2226022C1/ru
Application granted granted Critical
Publication of RU2002118259A publication Critical patent/RU2002118259A/ru
Publication of RU2226022C1 publication Critical patent/RU2226022C1/ru

Links

Images

Landscapes

  • Generation Of Surge Voltage And Current (AREA)
  • Lasers (AREA)

Abstract

Изобретение относится к мощной квантовой электронике и может быть использовано при создании импульсно-периодических лазеров на самоограниченных переходах атомов металлов. Генератор содержит зарядное устройство, тиратронный коммутатор, три накопительных конденсатора, три нелинейные индуктивности, газоразрядную трубку с параллельно подключенной индуктивностью, обостряющую емкость, общую шину устройства и анодный реактор. Вывод зарядного устройства соединен с выводом анодного реактора и выводом первой нелинейной индуктивности, второй вывод которой соединен с общей точкой соединения двух последовательно соединенных накопительных конденсаторов. Второй вывод анодного реактора соединен с анодом тиратронного коммутатора, вывод первого накопительного конденсатора соединен с общей шиной устройства, а вывод второго накопительного конденсатора через вторую нелинейную индуктивность соединен с выводом третьего накопительного конденсатора, который через третью нелинейную индуктивность соединен с выводом обостряющего конденсатора и электродом газоразрядной трубки с параллельно подключенной индуктивностью. Второй электрод газоразрядной трубки через общую шину устройства соединен со вторым выводом третьего накопительного конденсатора, катодом тиратронного коммутатора и вторым выводом зарядного устройства. Технический результат: снижение коммутационных потерь в тиратронном коммутаторе и повышение энергетических показателей лазерного комплекса в целом. 1 з.п.ф-лы, 1 ил.

Description

Изобретение относится к области мощной квантовой электроники и может быть использовано при создании импульсно-периодических лазеров на самоограниченных переходах атомов металлов.
Известен импульсный лазер на парах химических элементов, содержащий газоразрядную трубку с параллельно подключенной индуктивностью, высоковольтный выпрямитель, дроссель резонансной зарядки, зарядный диод, накопительную емкость, коммутатор и генератор запускающих импульсов. Дроссель резонансной зарядки через зарядный диод и накопительную емкость соединен с катодом газоразрядной трубки. Коммутатор электрически связан с накопительной емкостью. Генератор запускающих импульсов своим выходом электрически связан с управляющим электродом коммутатора. Высоковольтный выпрямитель одним своим выходом связан с входом дросселя резонансной зарядки, а другим - с катодом коммутатора и анодом газоразрядной трубки. Устройство дополнительно содержит индуктивность и емкость. Емкость одним концом соединена с катодом коммутатора, а другим подключена в точку соединения дросселя резонансной зарядки и зарядного диода. Индуктивность включена между зарядным диодом и накопительной емкостью [Патент Российской Федерации № 2175158 С2, кл. H 01 S 3/097, опубл.20.10.2001, Бюл. № 29].
Недостатком данного устройства являются повышенные коммутационные потери тиратронного коммутатора и, как следствие, низкий ресурс его работы.
Известен блок возбуждения лазера на самоограниченных переходах атомов металлов, содержащий зарядное устройство, зарядный диод, тиратронный коммутатор, дроссель резонансной перезарядки, два последовательно соединенных накопительных конденсатора и газоразрядную трубку с параллельно подключенной индуктивностью [В.М. Батенин, В.В. Бучанов, M.А. Казарян и др. Лазеры на самоограниченных переходах атомов металлов. - М.: Научная книга, 1998. - 544 с., с.144].
Недостатком данного устройства являются повышенные коммутационные потери тиратронного коммутатора.
Наиболее близким по технической сущности к предлагаемому устройству является генератор наносекундных импульсов для возбуждения лазеров на парах меди, содержащий зарядное устройство, тиратронный коммутатор, два последовательно соединенных накопительных конденсатора, первую и вторую нелинейные индуктивности, газоразрядную трубку с параллельно подключенной индуктивностью, обостряющую емкость, а также общую шину устройства [Лепехин Н.М., Присеко Ю.С., Филиппов В.Г. // Прикладная физика, № 5, с.46-49, 2001].
Недостатком данного устройства являются повышенные коммутационные потери тиратронного коммутатора и, как следствие, низкий ресурс его работы.
Задачей изобретения является снижение коммутационных потерь тиратронного коммутатора, а также повышение энергетических показателей лазерного комплекса в целом.
Задача изобретения решается тем, что в генератор наносекундных импульсов для возбуждения лазеров на самоограниченных переходах атомов металлов, содержащий зарядное устройство, тиратронный коммутатор, два последовательно соединенных накопительных конденсатора, первую и вторую нелинейные индуктивности, газоразрядную трубку с параллельно подключенной индуктивностью, обостряющую емкость, а также общую шину устройства, дополнительно введены анодный реактор, третий накопительный конденсатор и третья нелинейная индуктивность, при этом вывод зарядного устройства соединен с выводом анодного реактора и выводом первой нелинейной индуктивности, второй вывод анодного реактора соединен с анодом тиратронного коммутатора непосредственно, второй вывод первой нелинейной индуктивности соединен с общей точкой соединения двух последовательно соединенных накопительных конденсаторов, вывод первого из которых соединен с общей шиной устройства, а вывод второго накопительного конденсатора через вторую нелинейную индуктивность соединен с выводом третьего накопительного конденсатора, который через третью нелинейную индуктивность соединен с выводом обостряющего конденсатора и электродом (катодом) газоразрядной трубки, второй электрод (анод) газоразрядной трубки через общую шину устройства соединен со вторым выводом обостряющего конденсатора, вторым выводом третьего накопительного конденсатора, катодом тиратронного коммутатора и вторым выводом зарядного устройства.
Кроме того, величина емкости первого накопительного конденсатора относится к величине емкости второго накопительного конденсатора и величине емкости третьего накопительного конденсатора как 1:0,95:0,4, величины второй и третьей нелинейных индуктивностей в насыщенном состоянии соотносятся как 10:1.
Выходная мощность лазеров на самоограниченных переходах атомов металлов в значительной степени определяется выходными параметрами генераторов наносекундных импульсов, а именно напряженностью электрического поля на газоразрядной трубке, амплитудой тока импульса накачки, его длительностью, крутизной фронта и частотой следования, что, в основном, определяется параметрами тиратронного коммутатора. Коммутационные потери в тиратронном коммутаторе резко возрастают как при увеличении амплитуды импульса тока анода и крутизны его переднего фронта, так и при увеличении частоты повторения импульсов. В свою очередь, увеличение коммутационных потерь резко снижает ресурс работы тиратронного коммутатора [Тиратрон импульсный. ПАСПОРТ 3.340.056.ПС].
В предлагаемом устройстве введение анодного реактора снижает как амплитуду импульса тока анода, так и длительность переднего фронта, таким образом, достигается снижение коммутационных потерь тиратронного коммутатора и повышение ресурса его работы. Но, с другой стороны, введение анодного реактора резко изменяет параметры разрядного контура и ухудшает характеристики генерации из-за большого влияния скорости нарастания возбуждающего импульса тока накачки на среднюю мощность генерации. Поэтому снижение амплитуды и увеличение длительности переднего фронта импульса тока в предлагаемом устройстве компенсируется введением третьего накопительного конденсатора и третьей нелинейной индуктивности, чем обеспечивается коррекция исходного и формирование требуемого импульса тока накачки.
Кроме того, повышение уровня генерации газоразрядной лазерной трубки, т.е. повышение энергетических показателей лазерного комплекса в целом, обусловлено, в большей степени, согласованием выходных параметров генератора наносекундных импульсов с параметрами газоразрядного канала. Соотношение емкостей первого, второго и третьего накопительных конденсаторов как 1:0,95:0,4, а второй и третьей нелинейных индуктивностей в насыщенном состоянии как 10:1 обеспечивают такое согласование параметров генератора и нагрузки, при котором уровень генерации газоразрядной лазерной трубки возрастает.
На чертеже представлена схема генератора наносекундных импульсов для возбуждения лазеров на самоограниченных переходах атомов металлов.
Устройство содержит зарядное устройство 1, анодный реактор 2, тиратронный коммутатор 3, первую нелинейную индуктивность 4, последовательно соединенные накопительные конденсаторы 5 и 6, вторую 7 и третью 8 нелинейные индуктивности, третий накопительный конденсатор 9, обостряющую емкость 10, газоразрядную трубку 11 с параллельно подключенной индуктивностью 12, а также общую шину устройства 13.
Устройство работает следующим образом. Перед началом рабочего импульса накопительные конденсаторы 5 и 6 заряжаются от зарядного устройства 1 через первую нелинейную индуктивность 4 и индуктивность 12 до некоторого амплитудного значения напряжения с полярностью, указанной на чертеже. После включения тиратронного коммутатора 3 в первый момент времени все напряжение на накопительном конденсаторе 5 (равное напряжению на выходе зарядного устройства 1) прикладывается к первой нелинейной индуктивности 4. Нелинейная индуктивность 4 представляет собой тороидальную катушку с кольцевым сердечником из ферромагнитного материала, который через некоторый интервал времени, определяемый материалом и сечением сердечника, числом витков обмотки сердечника и напряжением на накопительном конденсаторе 5, переходит в насыщенное состояние.
При насыщении сердечника величина нелинейной индуктивности 4 резко уменьшается, и дальнейший перезаряд конденсатора 5 определяется величиной характеристического сопротивления контура, образованного накопительной емкостью 5, нелинейной индуктивностью 4 в насыщенном состоянии, анодным реактором 2 и тиратронным коммутатором 3.
Перезаряд накопительного конденсатора 5 происходит до амплитуды, близкой к напряжению зарядного устройства 1, таким образом, вторая нелинейная индуктивность 7 оказывается под удвоенным потенциалом последовательно соединенных накопительных конденсаторов 5 и 6. Происходит насыщение сердечника второй нелинейной индуктивности 7.
Вторая 7 и третья 8 нелинейные индуктивности также выполнены на кольцевых сердечниках из ферромагнитного материала.
Вторая нелинейная индуктивность 7 подобрана так, что ее насыщение происходит в момент времени, соответствующий полной перезарядке накопительного конденсатора 5 до противоположного знака. В момент насыщения сердечника второй нелинейной индуктивности 7 происходит разряд накопительных конденсаторов 5 и 6 на третий накопительный конденсатор 9 с амплитудой тока, определяемой характеристическим сопротивлением контура, образованного накопительными конденсаторами 5, 6 и 9, а также нелинейной индуктивностью 7 в насыщенном состоянии. Таким образом, электрическая энергия последовательно соединенных накопительных конденсаторов 5 и 6 преобразуется в магнитную энергию нелинейной индуктивности 7 и, далее, преобразуется в электрическую энергию третьего накопительного конденсатора 9, но за время, значительно меньшее, чем время протекания импульса прямого анодного тока через тиратронный коммутатор 3.
После заряда третьего накопительного конденсатора 9 до амплитуды, примерно равной удвоенному напряжению зарядного устройства 1, происходит насыщение сердечника третьей нелинейной индуктивности 8. Параметры третьей нелинейной индуктивности 8 подобраны так, что ее насыщение происходит в момент времени, соответствующий полной зарядке третьего накопительного конденсатора 9. В результате обостряющая емкость 10, газоразрядная трубка 11 с параллельно подключенной индуктивностью 12 оказываются под напряжением на третьей накопительной емкости 9 и в газоразрядной трубке 11 формируется импульс тока требуемой амплитуды и длительности.
Перемагничивание ферромагнитных сердечников нелинейных ин-дуктивностей 4, 7 и 8 в обратном направлении происходит током заряда накопительных конденсаторов 5 и 6 от зарядного устройства 1 и не требует специальных цепей перемагничивания.
Обостряющая емкость 10 обеспечивает фронт импульса тока накачки. Индуктивность 12 служит как для заряда накопительного конденсатора 6, так и для закорачивания разрядного промежутка в газоразрядной трубке 11 в межимпульсный период, что создает необходимые условия для инверсной заселенности в разрядном накале.
Таким образом, на начальном этапе включения ток тиратронного коммутатора 3 не превышает величину тока намагничивания нелинейной индуктивности 4, а после насыщения сердечника нелинейной индуктивности 4 амплитуда тока тиратронного коммутатора 3 ограничена индуктивностью анодного реактора 2. В результате из-за уменьшения как скорости нарастания, так и амплитуды импульса анодного тока через тиратронный коммутатор 4 коммутационные потери уменьшаются, а ресурс его работы увеличивается.
При этом увеличение длительности и уменьшение амплитуды импульса анодного тока через тиратронный коммутатор 4, обусловленные введением анодного реактора 2, в предлагаемом устройстве компенсируются введением третьего накопительного конденсатора 9 и третьей нелинейной индуктивности 8.
Практическая реализация предлагаемого устройства была осуществлена в генераторе наносекундных импульсов для возбуждения лазеров на парах меди, где в качестве тиратронного коммутатора использовался тиратрон ТГИ 2-1000/25К. В качестве нагрузки использовалась отпаянная саморазогревная газоразрядная трубка типа “KULON” LT-10CU. Величина емкости первого накопительного конденсатора 5 равна 1050 пФ, второго накопительного конденсатора - 6-1000 пФ, третьего накопительного конденсатора - 9-400 пФ. Величина второй 7 и третьей 8 нелинейной индуктивности в насыщенном состоянии соотносится как 10:1. В прототипе максимальная средняя мощность излучения при уровне зарядного напряжения на аноде тиратронного коммутатора 4, равном 10 кВ, и частоте следования импульсов накачки 15 кГц получена равной 15 Вт. Температура анода тиратрона при этом равнялась 165°С. В предлагаемом устройстве максимальная средняя мощность излучения, полученная на этой же трубке и при том же уровне напряжения на аноде тиратрона и частоте следования импульсов накачки, составила 16,4 Вт при температуре анода тиратронного коммутатора, равной 102°С.
Испытания предлагаемого устройства проводились в течение 1350 часов с циклом непрерывной работы в течение 8 часов. За время испытаний отказов в работе тиратрона не было.
Таким образом, применение предлагаемого устройства позволяет снизить температуру анода тиратронного коммутатора более чем на 60%, что косвенно свидетельствует о снижении коммутационных потерь и обеспечивает повышение ресурса работы тиратронного коммутатора. Следует отметить, что срок службы тиратронных коммутаторов, предназначенных для работы в импульсных лазерах на парах меди, не превышает 1000 часов.
Кроме того, повышение уровня генерации газоразрядной лазерной трубки примерно на 9% свидетельствует о более эффективной накачке газоразрядного накала, что свидетельствует о повышении энергетических показателей всего лазерного комплекса в целом.

Claims (2)

1. Генератор наносекундных импульсов для возбуждения лазеров на самоограниченных переходах атомов металлов, содержащий зарядное устройство, тиратронный коммутатор, два последовательно соединенных накопительных конденсатора, первую и вторую нелинейные индуктивности, газоразрядную трубку с параллельно подключенной индуктивностью, обостряющую емкость, а также общую шину устройства, отличающийся тем, что в него введены анодный реактор, третий накопительный конденсатор и третья нелинейная индуктивность, при этом вывод зарядного устройства соединен с первым выводом анодного реактора и первым выводом первой нелинейной индуктивности, второй вывод анодного реактора соединен с анодом тиратронного коммутатора непосредственно, второй вывод первой нелинейной индуктивности соединен с общей точкой соединения двух последовательно соединенных накопительных конденсаторов, вывод первого из которых соединен с общей шиной устройства, а вывод второго накопительного конденсатора через вторую нелинейную индуктивность соединен с выводом третьего накопительного конденсатора, который через третью нелинейную индуктивность соединен с выводом обостряющего конденсатора и электродом (катодом) газоразрядной трубки, второй электрод (анод) газоразрядной трубки через общую шину устройства соединен со вторым выводом обостряющего конденсатора, вторым выводом третьего накопительного конденсатора, катодом тиратронного коммутатора и вторым выводом зарядного устройства.
2. Генератор наносекундных импульсов по п.1, отличающийся тем, что величина емкости первого накопительного конденсатора относится к величине емкости последовательно соединенного с ним второго накопительного конденсатора и величине емкости третьего накопительного конденсатора как 1:0,95:0,4, а величины второй и третьей нелинейных индуктивностей в насыщенном состоянии соотносятся как 10:1.
RU2002118259/28A 2002-07-10 2002-07-10 Генератор наносекундных импульсов для возбуждения лазеров на самоограниченных переходах атомов металлов RU2226022C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002118259/28A RU2226022C1 (ru) 2002-07-10 2002-07-10 Генератор наносекундных импульсов для возбуждения лазеров на самоограниченных переходах атомов металлов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002118259/28A RU2226022C1 (ru) 2002-07-10 2002-07-10 Генератор наносекундных импульсов для возбуждения лазеров на самоограниченных переходах атомов металлов

Publications (2)

Publication Number Publication Date
RU2002118259A RU2002118259A (ru) 2004-03-20
RU2226022C1 true RU2226022C1 (ru) 2004-03-20

Family

ID=32390537

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002118259/28A RU2226022C1 (ru) 2002-07-10 2002-07-10 Генератор наносекундных импульсов для возбуждения лазеров на самоограниченных переходах атомов металлов

Country Status (1)

Country Link
RU (1) RU2226022C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672180C1 (ru) * 2017-12-08 2018-11-12 Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук Генератор импульсов возбуждения для лазеров на самоограниченных переходах атомов металлов
RU2716289C1 (ru) * 2019-08-14 2020-03-11 Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук (ИОА СО РАН) Генератор импульсов возбуждения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БАТЕНИН В.Б. и др. Лазеры на самоограниченных переходах атомов металлов. - М.: Научная книга, 1998, с.144. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672180C1 (ru) * 2017-12-08 2018-11-12 Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук Генератор импульсов возбуждения для лазеров на самоограниченных переходах атомов металлов
RU2716289C1 (ru) * 2019-08-14 2020-03-11 Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук (ИОА СО РАН) Генератор импульсов возбуждения

Also Published As

Publication number Publication date
RU2002118259A (ru) 2004-03-20

Similar Documents

Publication Publication Date Title
Zhang et al. A compact, high repetition-rate, nanosecond pulse generator based on magnetic pulse compression system
CN102447213A (zh) 一种高重复率全固态高压脉冲发生器
RU2226022C1 (ru) Генератор наносекундных импульсов для возбуждения лазеров на самоограниченных переходах атомов металлов
CN113691239B (zh) 一种用于电脉冲破岩的磁开关脉冲发生器
CN210997043U (zh) 激光焊接机智能电源
RU55233U1 (ru) Система питания импульсных ламп (варианты)
CN107069421B (zh) 用于高重复率准分子激光的无二次放电高效激励电路
RU2089042C1 (ru) Устройство магнитного сжатия импульса
RU2790206C1 (ru) Система генерации импульсов высокого напряжения
RU2031501C1 (ru) Устройство для возбуждения объемного разряда в импульсном лазере
RU2795675C1 (ru) Генератор импульсов для возбуждения активных сред на самоограниченных переходах атомов металлов
CN113098317B (zh) 一种rbdt器件的触发电路及其在脉冲发生器的应用
RU2069929C1 (ru) Устройство для возбуждения газового лазера
Kakehashi et al. Analysis of an HID-lamp igniter using a two-stage magnetic-pulse-compression circuit
RU2307462C1 (ru) Устройство для питания импульсных ламп
RU2009611C1 (ru) Полупроводниковый генератор наносекундных импульсов
RU2234804C1 (ru) Импульсный модулятор (варианты)
SU1450086A1 (ru) Генератор импульсов напр жени
SU894837A1 (ru) Генератор импульсов тока
SU978331A1 (ru) Импульсный модул тор
SU849481A1 (ru) Импульсный модул тор
RU2003219C1 (ru) Магнитный импульсный генератор
RU46402U1 (ru) Газоразрядный импульсный источник оптического излучения
RU2175158C2 (ru) Импульсный лазер на парах химических элементов
RU1815768C (ru) Источник питани дл магнетрона

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20070522

MM4A The patent is invalid due to non-payment of fees

Effective date: 20140711