NO320943B1 - Method and device for avoiding fouling in sea boxes as used in ships and on offshore platforms. - Google Patents

Method and device for avoiding fouling in sea boxes as used in ships and on offshore platforms. Download PDF

Info

Publication number
NO320943B1
NO320943B1 NO20016164A NO20016164A NO320943B1 NO 320943 B1 NO320943 B1 NO 320943B1 NO 20016164 A NO20016164 A NO 20016164A NO 20016164 A NO20016164 A NO 20016164A NO 320943 B1 NO320943 B1 NO 320943B1
Authority
NO
Norway
Prior art keywords
sea
box
seawater
sea box
fouling
Prior art date
Application number
NO20016164A
Other languages
Norwegian (no)
Other versions
NO20016164L (en
NO20016164D0 (en
Inventor
Eva-Maria Scharf
Stefan Sandrock
Gunter Hoffer
Original Assignee
Gunter Hoffer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19921433A external-priority patent/DE19921433C1/en
Application filed by Gunter Hoffer filed Critical Gunter Hoffer
Publication of NO20016164D0 publication Critical patent/NO20016164D0/en
Publication of NO20016164L publication Critical patent/NO20016164L/en
Publication of NO320943B1 publication Critical patent/NO320943B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/022Heat exchangers immersed in a large body of liquid for immersion in a natural body of water, e.g. marine radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • B63B13/02Ports for passing water through vessels' sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/04Preventing hull fouling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • F01P3/207Cooling circuits not specific to a single part of engine or machine liquid-to-liquid heat-exchanging relative to marine vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00
    • F28G13/005Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00 cleaning by increasing the temperature of heat exchange surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/06Cleaning; Combating corrosion
    • F01P2011/063Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/06Cleaning; Combating corrosion
    • F01P2011/066Combating corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/02Marine engines
    • F01P2050/06Marine engines using liquid-to-liquid heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catching Or Destruction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Revetment (AREA)
  • Ship Loading And Unloading (AREA)

Abstract

The invention relates to a method and a device on ships, offshore-platforms, etc. for protecting against organism growth in complete seawater systems, operated on the basis of briefly raising the temperature of a volume of water (1) which is isolated by a mechanical closure system (4, 12). The brief temperature increase destroys the growth of organisms or their larvae without the need for toxic, environmentally damaging substances. Once the closure system has been opened, the normal cooling operation is resumed. The waste heat from the motor is used to raise the temperature for short periods of time. The mechanical closure of a sea-case is described as an application example. In cooling systems, comprising several circuits, joined by a mixing tank, each sub-circuit can be heated separately for a brief period, using the assembly of different heat exchangers and the integrated control and regulatory systems, thus preventing organism growth.

Description

Oppfinnelsen vedrører en fremgangsmåte og en innretning for å unngå begroning med rur, muslinger og andre begroningsmekanismer i sjøkasser med tilordnede sjøkassekjølere, slik de benyttes på skip, offshore-plattformer etc. I slike sjøkasser befinner det seg byggeelementer som filtere, armaturer, varmevekslere, pumper, sjøkassekjølere og liknende som sporadisk eller permanent er i berøring med sjøvannet i sjøkassen og oppfinnelsen tar sikte på å beskytte slike elementer i sjøkassene. The invention relates to a method and a device to avoid fouling with pipes, clams and other fouling mechanisms in sea boxes with assigned sea box coolers, as they are used on ships, offshore platforms etc. In such sea boxes there are building elements such as filters, fittings, heat exchangers, pumps , sea box coolers and the like which are sporadically or permanently in contact with the sea water in the sea box and the invention aims to protect such elements in the sea boxes.

Vekst på skip, skipsdeler og rørledningssystemer samt deres komponenter har øket betydelig ikke minst på grunn av den økte tilsmussing av vassdrag. Internasjonalt utprøves forskjellige metoder for å unngå henholdsvis redusere slik begroning. 1. I DE PN 31 23 682 A er det beskrevet et begroningssikkert metallisk materiale med Alfa-enfasestruktur, bestående av en legering med 5-30 vektprosent Mn, minst ett element, som Sn med opptil 5 vektprosent. Ulempen her er at det ikke dreier seg om standardstål som benyttes ved skipsbygging og at det således medfører en betydelig fordyring av skipet. 2. En lignende løsning er valgt i henhold til patentet DE PN 36 28 150 Al, idet en påsatt plate, utformet som DuNi-legeringsplate, utstyres med en grunning, slik at det dannes et selvklebende adhesjonsskikt. CuNi-legeringer er betydelig dyrere materiale enn stål. 3. Ytterhuden på sjøgående skip blir for tiden beskyttet mot begroning ved hjelp av selvpolerende antibegroning-malingssystemer. Til denne gruppa av metoder for begroningshindring hører f.eks begroningsavvisende eller oppspisningshemmende beskyttelsesbelegg utformet ved hjelp av plasmapolymerisering i henhold til DE PN 3522 817 eller i henhold til DE PN 2756 495 blir en silikonkautsjuk påført på en metallisk overflate. Som ulempe anses her forurensing av sjøvannet med kjemiske substanser. 4. Katodebeskyttelsesanlegg, ved hvilke Cu-ioner utløses fra offeranoder i samsvar med et elektrokjemisk potensial utgjør en ytterligere, imidlertid meget kostnadsintensiv og giftig metode for begroningshindring. 5. Ifølge DE PN 4109 197 blir det på en spesiell antibegroningsbeskyttelsesmaling lagt en i polaritet og styrke variabel spenning, som skal føre til dannelsen av et tynt begroningshemmende vannskikt med vekslende pH-verdier. Den nødvendige flerlags farveoppbygging er lettere å påføre på glattere flater enn på kjølesystemer og derfor mer egnet for skipsytterflater med stor størrelse. Growth in ships, ship parts and pipeline systems as well as their components has increased significantly, not least because of the increased pollution of waterways. Different methods are being tested internationally to avoid or reduce such fouling. 1. DE PN 31 23 682 A describes a fouling-proof metallic material with an Alpha single-phase structure, consisting of an alloy with 5-30 weight percent Mn, at least one element, such as Sn with up to 5 weight percent. The disadvantage here is that it is not about standard steel that is used in shipbuilding and that it thus entails a significant increase in the cost of the ship. 2. A similar solution has been chosen according to the patent DE PN 36 28 150 Al, in that an attached plate, designed as a DuNi alloy plate, is equipped with a primer, so that a self-adhesive adhesion layer is formed. CuNi alloys are significantly more expensive materials than steel. 3. The outer skin of seagoing ships is currently protected against fouling by means of self-polishing anti-fouling paint systems. This group of methods for preventing fouling includes, for example, fouling-repellent or anti-fouling protective coatings designed by means of plasma polymerization according to DE PN 3522 817 or according to DE PN 2756 495 a silicone rubber is applied to a metallic surface. Contamination of the seawater with chemical substances is considered a disadvantage here. 4. Cathodic protection systems, in which Cu ions are released from sacrificial anodes in accordance with an electrochemical potential constitute a further, however very cost-intensive and toxic method of fouling prevention. 5. According to DE PN 4109 197, a voltage variable in polarity and strength is applied to a special anti-fouling protection paint, which should lead to the formation of a thin anti-fouling water layer with alternating pH values. The necessary multi-layer paint build-up is easier to apply to smoother surfaces than to cooling systems and is therefore more suitable for large-sized ship exteriors.

6.1 US patent 3 309 167 blir det beskrevet en fremgangsmåte for begroningshindring ved hvilken den begroningshindrende virkning oppnås ved å bruke en regelmessig gjentatt temperaturøkning. I motsetning til bl.a. oppfinnelsen som er rettet mot oppvarming av det innelukkede vannet i tidsmessig lukkede kretsløp ved hjelp av motorvarme blir det i det nevnte US patent de utad 6.1 US patent 3 309 167 describes a method for preventing fouling in which the anti-fouling effect is achieved by using a regularly repeated increase in temperature. In contrast to i.a. the invention which is aimed at heating the enclosed water in temporally closed circuits by means of engine heat, in the aforementioned US patent they become outward

tilgrensende overflater som skal beskyttes oppvarmet direkte av et elektrisk drevet varmeelement, noe som krever ekstra energioppbud. 7. US patent 3 650 667 beskriver en fremgangsmåte for beskyttelse av sjøkasser ved periodisk gjentatt belegning av innerleggende ved tilsetning av planteoljer og fett, spesielt i løpet av vinterpausen, for å forhindre ødeleggelse ved isdannelse og for å hindre korrosjon. De i patentskriftet nevnte høye temperaturer beror på oppvarmingen av oljene og fettene for påsprøytningen i sjøkassene i henholdsvis ved fjerning av disse på slutten av vinterpausen. Et overtrekk for å forhindre begroning er ikke angitt. Begroning avsetter seg vanligvis ikke om vinteren ved fare for isdannelse, men sent på foråret ved temperaturer fra 10°C. adjacent surfaces to be protected are heated directly by an electrically powered heating element, which requires additional energy supply. 7. US patent 3 650 667 describes a method for the protection of sea boxes by periodically repeated coating of the lining by adding vegetable oils and fats, especially during the winter break, to prevent destruction by ice formation and to prevent corrosion. The high temperatures mentioned in the patent document are due to the heating of the oils and fats for spraying in the sea boxes during or when removing these at the end of the winter break. A cover to prevent fouling is not indicated. Fouling usually does not settle in winter when there is a risk of ice formation, but in late spring at temperatures from 10°C.

Den oppgave som ligger til grunn for foreliggende oppfinnelse er å frembringe en virksom og miljøvennlig fremgangsmåte samt en innretning for å unngå begroning på overflater som kommer i kontakt med sjøvann i sjøkasser, så som rørledninger, filtere, varmevekslere, armaturer, pumper, sjøkassekjølere, som er i sporadisk eller permanent berøring med sjøvann. Innretningen skal både kunne installeres enkelt og gi lave kostnader under bruk, være vedlikeholdsvennlig og betjeningsvennlig, samtidig som den muliggjør en begroningsbeskyttelse uten anvendelse av giftstoffer. The task underlying the present invention is to produce an effective and environmentally friendly method as well as a device to avoid fouling on surfaces that come into contact with seawater in sea boxes, such as pipelines, filters, heat exchangers, fittings, pumps, sea box coolers, which is in occasional or permanent contact with seawater. The device must both be easy to install and provide low costs during use, be maintenance-friendly and user-friendly, while at the same time enabling fouling protection without the use of toxic substances.

Ifølge oppfinnelsen løses denne oppgave ved hjelp av de i kravene 1-13 angitte trekk. According to the invention, this task is solved with the help of the features specified in claims 1-13.

Sjøkassekjølere for motorkjølevann blir utstyret med en begroningsmaling som imidlertid bare kortvarig gir begroningsbeskyttelse. Spesielt de såkalte lavtemperatur-sjøkassekjølere med motorkjølevannstemperatur på ca. 45°C gir larvene til sjøpølser, muslinger og lignende ideelle vekstbetingelser slik at kjøleren allerede etter kort tid kan bli ekstremt begrenset i sin kjøleeffekt og av sikkerhetsgrunner må dimensjoneres med en flatereserve større enn 30%. Høytemperatur-sjøkassekjølere med motorkjølevannsinnløp på ca. 75-90°C blir i forhold til dette ikke eller nesten ikke begrodd med begroningsorganismer. Undersøkelser har vist at begroning på den ene side kan forhindres varig ved virkningen av meget store skjaerkrefter pga. høye strømningshastigheter eller ved hjelp av en stedsmessig og tidsmessig begrenset, imidlertid regelmessig og i avstander gjentatt kortvarig overheting. I, sistnevnte tilfelle er det en forutsetning for den økonomiske realisering at det foretas en tidsmessig begrenset overheting av vannet, med vidtgående adskillelse av det oppvarmede vann fra omgivelsesvannet. Sea box coolers for engine cooling water are fitted with an anti-fouling paint which, however, only provides short-term protection against fouling. Especially the so-called low-temperature sea box coolers with an engine cooling water temperature of approx. 45°C gives the larvae of sea sausages, clams and similar ideal growth conditions so that the cooler can become extremely limited in its cooling effect after only a short time and for safety reasons must be sized with a surface reserve greater than 30%. High-temperature sea box coolers with engine cooling water inlet of approx. In comparison, 75-90°C is not or almost not fertilized with fouling organisms. Investigations have shown that fouling on the one hand can be permanently prevented by the effect of very large shear forces due to high flow rates or by means of a spatially and temporally limited, however regular and at intervals repeated short-term overheating. In the latter case, it is a prerequisite for the economic realization that a time-limited superheating of the water is carried out, with extensive separation of the heated water from the surrounding water.

Fordelen ved oppfinnelsen består deri at det ved å unngå begroning i sjøkassen kan sjøkassekjøleren pga reduksjonen av kjøleflaten overføres større kjøleeffekt ved samme byggestørrelse, henholdsvis at sjøkassekjøleren ved sammenlignbar ytelse kan bygges ca. 20% mindre og således lettere kan plasseres i sjøkassen, som ofte er meget liten. Den minimerte byggestørrelse og den igjen mulige anvendelse av vanlig stål for rørbuntene sørger for en markant kostnadsredusering ved sjøkassekjølere. Således kan det gi avkall på eventuelle reservekjølere. Den for oppvarming av det innelukkede sjøvann nødvendige energi blir tilført ved hjelp av høytemperturkjølevannet til hovedmotoren henholdsvis dieselgeneratorkjølevannet. Den komplette sjøkasse med alle innebyggingsdeler kan konserveres med det samme beleggsystem slik at det kompliserte belegging av CuNilO-Fe-rørbundten og de dermed forbundne problemer med elektrolytisk korrosjon etter beskadigelse av belegget på rørbuntene kan bortfalle. The advantage of the invention consists in the fact that by avoiding fouling in the sea box, the sea box cooler can, due to the reduction of the cooling surface, transmit a greater cooling effect with the same construction size, respectively that the sea box cooler with comparable performance can be built approx. 20% smaller and thus easier to place in the sea box, which is often very small. The minimized construction size and the again possible use of ordinary steel for the tube bundles ensure a marked cost reduction for sea box coolers. Thus, any spare coolers can be dispensed with. The energy required for heating the enclosed seawater is supplied by means of the high-temperature cooling water to the main engine or the diesel generator cooling water. The complete sea box with all built-in parts can be preserved with the same coating system so that the complicated coating of the CuNilO-Fe tube bundle and the associated problems with electrolytic corrosion after damage to the coating on the tube bundles can be dispensed with.

Det skal også tilføyes at i prinsippet kan oppfinnelsen med sin begroningshindrende mekanisme også innebygges i skip som allerede er i drift. It should also be added that, in principle, the invention with its anti-fouling mechanism can also be built into ships that are already in operation.

Oppfinnelsen blir i det følgende forklart ved hjelp av flere utførelseseksempler. Tegningene viser: Fig. 1 Prinsippet for oppbyggingen av en sjøkasse med inn- og avsløpsslisser som kan stenges. The invention is explained in the following with the help of several design examples. The drawings show: Fig. 1 The principle for the construction of a sea box with inlet and outlet slots that can be closed.

Fig. 2 Sjøkasser med lukkede avløpsslisser. Fig. 2 Sea boxes with closed drainage slots.

Fig. 3 Sjøkassesjalusi for stengning av innløpsslisser. Fig. 3 Sea box shutter for closing inlet slots.

Fig. 4 Som på fig. 1 kombikjøler, lavtemperatur-sjøkassekjøler med integrert høytemperatur-sj økassekjøler. Fig. 5 Skjema for en høytemperatur- og lavtemperaturkrets med ekstra ekstern varmeveklser. Fig. 4 As in fig. 1 combi cooler, low temperature sea box cooler with integrated high temperature sea box cooler. Fig. 5 Scheme for a high-temperature and low-temperature circuit with additional external heat exchanger.

Fig. 6 Avrullbar elastisk plate for lukking av inn- og avløpsslisser, og Fig. 6 Unrollable elastic plate for closing inlet and outlet slits, and

Fig. 7 Sjøkassens koblingsoppbygging nied vekselvis sjø-og rengjøringsdrift. Fig. 7 The sea box's connection structure under alternating sea and cleaning operation.

For den lokale oppvarming av sjøvannet i en lukket sjøkasse 1 brukes hovedmotorens 13 høytemperaturkjølevann 13, alternativt sylinderkjølevannet fra dieselgeneratoren som ved hjelp av en koblingsventil på For the local heating of the seawater in a closed sea box 1, the high-temperature cooling water 13 of the main engine 13 is used, alternatively the cylinder cooling water from the diesel generator which, by means of a switching valve on

lavtemperaturkjølevannkretsløpet kobles inn på sjøkassekjøleren 2. the low-temperature cooling water circuit is connected to the sea box cooler 2.

Fig. 1 viser prinsippet for oppbygging av sjøkassen 1 med lavtemperatur-sjøkassekjøler 2, en sjøkassesjalusi 4 med sjalusikasse 12 for sperring av en utløpssliss 3. Tilsvarende sperres innløp-slissen 8. Videre er det anordnet utluftning 5, spylekobling 6 og sinkanode 7 på kassen. Ved normal drift i sjø sirkulerer lavtempertur-motorkj øle vannet med ca. 45°C gjennom lavtemperatur-sjøkassekjøleren 2 og sjøvannet strømmer med:maksimalt 32°C gjennom innløpsslissen 8 inn i sjøkassen 1. Dette sjøvannet kjøler motorkj øle vannet og lavtemperatursjøkassekjøleren 2 ned til minimum 36 °C og forlater sjøkassen gjennom utløpsslissen 3. Med sjøvannet kommer larvene til begroningsorganismen inn i kassen, hvor de slår seg til mens båten overhales eller ligger i vann og det er liten eller ingen gjennomstrømning i sjøkassen 1.1 sjøkassen vil nå inn- og utløpsslissen 8 og 3 lukkes med sjøkassesjalusien. Under spesielt gunstige forhold kan det være tilstrekkelig å stenge utløpsslissen. Fig. 2 viser som eksempel sperring av utløpsslissen 3 for å vise hvordan sjøkassesjalusien 4 er konstruert. Den består av et drivverk 10, sjalusikassen 12 og lameller. Føringsskinnen 11 er montert på innsiden av kledningen på sjøkassen 1, med nødvendig avstivning og eventuelt også en pakning for å forbli vanntett. Trykkutjevningen skjer gjennom utluftningen 5 med inn- og utløpsslissen lukket av sjøkassesjalusien 4. Fig. 3 viser plasseringen av lavtemperatur-sjøkassekjøleren 2 over innløpsslissen 8 er sjøkassesjalusien 4, for lukking av inn- og utløpsslissene 8, 3. Fig. 4 viser en mulig direkte oppvarming av sjøkassen 1 via høytemperatur rørbunten i høytemperaturkretsen eller eventuelt kjølevannskretsløpet i dieselgeneratoren som er integrert i den såkalte kombikjøleren. Inngangstemperaturen er på minst 70°C. Den prinsipielle oppbygging er som vist på fig. 1. Den lokale og tidsbegrensede overoppheting ved lukkede inn- og utløpsslisser 8, 3 overtar i dette tilfellet den integrerte høytemperatur rørbunt 9 på samme måte som beskrevet nærmere i den etterfølgende fig. 5. Fig. 5 viser R og I-skjemaet for en motor med separate høy- og lavtemperaturkjølevannskretser. Ved normal drift vil høytemperaturmotorkjølevannet kjøles ned av lavtemperaturkj øle vannet ved en platevarmeveksler 14. Lavtemperaturkjølevannet vil på sin side ved å åpne inn- og utløpsslissen 8, 3 avgi den opptatte varmen via sjøkasse-kjøleren 2 til sjøvannet. I havn eller på red, etter at hovedmotoren er slått av, starter overhetingsdriftmodus for oppvarmingen av lavtemperatur-sjøkassekjøleren 2 til 60°C, som er nødvendig temperatur for å drepe begroningsorganismene. Bypasset på temperaturreguleringsventilen 16 lukkes helt. Høytemperaturkj øle vannet varmer opp lavtemperaturkj øle vannet via platevarmeveklseren 14. Det sjøvann som befinner seg i sjøkassen varmes raskt og for et begrenset tidsrom opp til 60°C av låvtemperatur-kjølevannet i et lukket Fig. 1 shows the principle for the construction of the sea box 1 with low-temperature sea box cooler 2, a sea box blind 4 with blind box 12 for blocking an outlet slot 3. The inlet slot 8 is similarly blocked. Furthermore, a vent 5, flushing connection 6 and zinc anode 7 are arranged on the box . During normal operation at sea, low-temperature engines circulate the water at approx. 45°C through the low-temperature seabox cooler 2 and the seawater flows at: maximum 32°C through the inlet slot 8 into the seabox 1. This seawater cools the engine cooling water and the low-temperature seabox cooler 2 down to a minimum of 36°C and leaves the seabox through the outlet slot 3. With the seawater comes the larvae of the fouling organism into the box, where they settle while the boat is being overhauled or is in water and there is little or no flow in the sea box 1.1 the sea box will now have the inlet and outlet slots 8 and 3 closed with the sea box shutter. Under particularly favorable conditions, it may be sufficient to close the outlet slot. Fig. 2 shows, as an example, blocking of the outlet slot 3 to show how the sea box shutter 4 is constructed. It consists of a drive unit 10, the shutter box 12 and slats. The guide rail 11 is mounted on the inside of the cladding on the sea box 1, with the necessary bracing and possibly also a gasket to remain watertight. The pressure equalization takes place through the vent 5 with the inlet and outlet slots closed by the sea box shutter 4. Fig. 3 shows the location of the low-temperature sea box cooler 2 above the inlet slot 8 is the sea box shutter 4, for closing the inlet and outlet slots 8, 3. Fig. 4 shows a possible direct heating of the sea box 1 via the high-temperature pipe bundle in the high-temperature circuit or possibly the cooling water circuit in the diesel generator which is integrated in the so-called combi cooler. The inlet temperature is at least 70°C. The basic structure is as shown in fig. 1. In this case, the local and time-limited overheating at closed inlet and outlet slots 8, 3 takes over the integrated high-temperature tube bundle 9 in the same way as described in more detail in the following fig. 5. Fig. 5 shows the R and I diagram for an engine with separate high and low temperature cooling water circuits. In normal operation, the high-temperature engine cooling water will be cooled by the low-temperature cooling water at a plate heat exchanger 14. The low-temperature cooling water will, in turn, by opening the inlet and outlet slots 8, 3, release the absorbed heat via the sea box cooler 2 to the seawater. In port or at sea, after the main engine is shut down, superheat operation mode starts to heat the low temperature sea chest cooler 2 to 60°C, which is the necessary temperature to kill the fouling organisms. The bypass on the temperature control valve 16 closes completely. The high-temperature cooling water heats up the low-temperature cooling water via the plate heat exchanger 14. The seawater in the seabox is heated quickly and for a limited period of time up to 60°C by the low-temperature cooling water in a closed

kretsløp via lavtemperatur-sjøkassekjøleren 2, slik at vekstorganismene tas livet av. Etter at de lukkede inn- og/eller utløpslisser 8, 3 er åpne kan sjøkassen 1 ved behov kortvarig spyles via spylekobling 6. Lavtemperatur-sjøkassekjøleren settes tilbake i normal drift ved at justeringen ovenfor gjennomføres i omvendt rekkefølge. circuit via the low-temperature sea box cooler 2, so that the growth organisms are killed. After the closed inlet and/or outlet slots 8, 3 are open, the sea box 1 can be briefly flushed if necessary via flush coupling 6. The low-temperature sea box cooler is returned to normal operation by carrying out the above adjustment in reverse order.

Utover dette viser fig. 5 et forslag til hvordan en varmeveksler 15 som er integrert i lavkretstemperatur-kretsløpet og varmet opp av damp, termalolje og elektro-energi kan forkorte oppvarmingstiden. Fig. 6 viser et annet utføringseksempel hvor en elastisk plate 17 som er tilpasset formen på skipets utside kan forskyves og danner en vanntett lukkeinnretning for inn- og utløpslissene. Det statiske trykket som virker på platen 17 utenfra presser den mot den ytre kledning av sjøkassen, som på dette stedet er konstruert som dobbelthylser. Fig. 7 viser sjøvannsystemet. Det består av sjøkassene la og lb, som er forbundet med rørledning og/eller kanaler med innebygde sperrearmaturer 21, 22 og pumper 20, samt blandetanken 19. Ved drift i sjø er armaturene 21, 22 og sjalusiene 4A;4B i sjøkassene åpne. In addition to this, fig. 5 a proposal for how a heat exchanger 15 which is integrated in the low circuit temperature circuit and heated by steam, thermal oil and electrical energy can shorten the heating time. Fig. 6 shows another design example where an elastic plate 17 which is adapted to the shape of the ship's exterior can be displaced and forms a watertight closure device for the inlet and outlet slips. The static pressure acting on the plate 17 from the outside presses it against the outer cladding of the sea box, which in this place is constructed as double sleeves. Fig. 7 shows the seawater system. It consists of the sea boxes la and lb, which are connected by pipeline and/or channels with built-in shut-off fittings 21, 22 and pumps 20, as well as the mixing tank 19. When operating at sea, the fittings 21, 22 and shutters 4A;4B in the sea boxes are open.

I havn eller på red når skipet går på redusert fart vil det også når det ligger stille blir sjøvannsystemet ved lukking av sjalusien 4B som er i sjøkassen IB og ved åpning av sperreventilen 22B samt ved åpningen av armaturen 22A som er i den aktive sjøkassen IA oppdelt i det passive delsystem B - rengjøringsdrift- og det aktive delsystem A - sjødrift. Sjøkasse 1 med det tilhørende forbindelsesrør, armaturer 2IB, 22B, kassekjøler 2B og pumpe 20B blir nå isolert lokalt og over et begrenset tidsrom overopphetet termisk. Dette beskytter systemet mot vekst av mikroorganismer, makroorganismer og disses larver. Etter at rengjøringsmodus er sluttført i sjøkasse IB stilles dette system om til sjødrift ved at sjalusien 4B åpnes. Systemets del A som tidligere var i sjødrift stilles om til rengjøringsdrift på samme måte som beskrevet ovenfor. Nå isoleres system del A og overhetes kortvarig termisk. In port or at sea, when the ship is running at a reduced speed, the seawater system will also be divided by closing the shutter 4B which is in the sea box IB and by opening the shut-off valve 22B and by opening the armature 22A which is in the active sea box IA. in the passive subsystem B - cleaning operation - and the active subsystem A - marine operation. Sea box 1 with the associated connecting pipe, fittings 2IB, 22B, box cooler 2B and pump 20B is now isolated locally and thermally overheated over a limited period of time. This protects the system against the growth of microorganisms, macro-organisms and their larvae. After cleaning mode has been completed in sea box IB, this system is switched to sea operation by opening shutter 4B. Part A of the system, which was previously in marine operation, is switched to cleaning operation in the same way as described above. Now system part A is isolated and briefly overheated thermally.

Ytterligere sjøkasser med tilhørende rørledninger kan med analog fremgangsmåtetrinn avsnittsvis beskyttes mot begroning. Additional sea boxes with associated pipelines can be protected against fouling in sections using analogous procedural steps.

Henvisningstall Reference number

Claims (13)

1. Fremgangsmåte for å unngå begroning med rur, muslinger og andre begroningsorganismer i sjøkasser med tilordnede sjøkassekjølere, som anvendt i skip og på offshoreplattformer, karakterisert ved at for dreping av begroningsorganismene blir det i sjøkassen ved hjelp av sjøkassekjøleren gjennomført en kortvarig og regelmessig gjentagbar termisk overheting av sjøvannet i sjøkassen ved hjelp av motorkjølevann med høy tempereatur, idet sjøkassen stenges mot sjøen under den nevnte overhetingen.1. Procedure to avoid fouling with barnacles, clams and other fouling organisms in sea boxes with assigned sea box coolers, as used in ships and on offshore platforms, characterized in that in order to kill the fouling organisms, a short-term and regularly repeatable thermal overheating of the seawater in the seabox is carried out in the seabox using the seabox cooler using engine cooling water with a high temperature, the seabox being closed towards the sea during the aforementioned overheating. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det i flere sjøkasser (IA; IB), i et sjøvannsystem med tilhørende rørledninger og kanaler, de nevnte i systemet innbyggede komponenter så som kjølere (2A, 2B), pumper (20A, 20B) og armaturer (2IA; 2IB, 22A, 22B) regelmessig gjennomføres en termisk overheting av det innelukkede sjøvann, kortvarig og lokal begrenset, for således å beskytte komponentene i sjøvannsystemet avsnittsvis mot begroning ved hjelp av det overhetede, innelukkede sjøvann.2. Method according to claim 1, characterized in that in several sea boxes (IA; IB), in a seawater system with associated pipelines and channels, the aforementioned system built-in components such as coolers (2A, 2B), pumps (20A, 20B) and fittings (2IA; 2IB, 22A, 22B) a thermal overheating of the enclosed seawater is regularly carried out, short-term and locally limited, in order to protect the components of the seawater system in sections against fouling by means of the superheated, enclosed seawater. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at det ved hjelp av integrerte måle- og reguleringssystemer, samt innstillingsinnretninger regelmessig og automatisk gjennomføres en automatisk overvåkning av den lokale, kortvarige overheting.3. Method according to claim 1 or 2, characterized by the fact that with the help of integrated measuring and regulation systems, as well as setting devices, an automatic monitoring of the local, short-term overheating is carried out regularly and automatically. 4. Fremgangsmåte ifølge krav 1-3, karakterisert ved at det over en spylekobling (6) kan foretas spyling av avsperrede deler med ferskt vann før og etter avslutningen av den lokale overheting.4. Method according to claims 1-3, characterized in that blocked parts can be flushed with fresh water via a flushing connection (6) before and after the end of the local overheating. 5. Innretning innbefattende en sjøkasse med deri anordnet sjøkassekjøler, som anvendt i skip og på offshoreplattformer, karakterisert ved at sjøkassens innløps- og utløpslisser kan lukkes enkeltvis eller felles med lukkemekanismer, og at sjøkassekjøleren er tilknyttet en omkoblingsinnretning for slik tilkobling til en motors kjølevannsystem, at motorkjølevann med høy temperatur kan føres til sjøkassekjøleren for termisk oppheting av sjøvannet i den mot sjøen stengte sjøkasse.5. Device including a sea box with a sea box cooler arranged therein, as used in ships and on offshore platforms, characterized in that the inlet and outlet slots of the sea box can be closed individually or together with closing mechanisms, and that the sea box cooler is connected to a switching device for such connection to an engine's cooling water system, that engine cooling water at a high temperature can be fed to the sea box cooler for thermal heating of the sea water in the closed to the sea sea box. 6. Innretning ifølge krav 5, karakterisert ved at enkelte sjøkassekjølere (1A;1B) i et sjøvannssystem som omfatter rørledninger, kanaler og de i systemet innbyggede komponenter så som sjøkassekjølere (2A, 2B), pumper (20A; 20B), armaturer (21A;21B, 22A;22B) danner adskilte delsystemer, slik at en kortvarig og lokalt begrenset regelmessig termisk overheting av det innelukkede sjøvann kan gjennomføres for derved avsnittsvis å beskytte hele sjøvannsystemet mot begroning.6. Device according to claim 5, characterized in that certain sea box coolers (1A; 1B) in a seawater system that includes pipelines, channels and the components built into the system such as sea box coolers (2A, 2B), pumps (20A; 20B), fittings (21A; 21B, 22A; 22B) form separate subsystems, so that a short-term and locally limited regular thermal overheating of the enclosed seawater can be carried out in order to protect the entire seawater system against fouling in sections. 7. Innretning ifølge krav 6, karakterisert ved at delsystemene deles i et aktivt delsystem for sjødrift med åpen sjalusi (4A) i den aktive sjøkassen (IA) og lukket sperrearmatur (21 A), samt lukket sperrearmatur ( 21 A;21B) i den passive sjøkasse (IB), og et passivt delsystem for rengjøringsdrift, med lukket sjalusi (4B) i den passive sjøkassen og åpen sperrearmatur (22A) i den aktive sjøkassen (IA)).7. Device according to claim 6, characterized by the fact that the subsystems are divided into an active subsystem for sea operation with an open shutter (4A) in the active sea box (IA) and a closed blocking valve (21 A), as well as a closed blocking valve (21 A; 21B) in the passive sea box (IB), and a passive subsystem for cleaning operation, with closed shutter (4B) in the passive sea box and open shut-off valve (22A) in the active sea box (IA)). 8. Innretning ifølge et av de ovenstående krav, karakterisert ved at lukkemekanismen (4) er en sjalusi.8. Device according to one of the above requirements, characterized in that the closing mechanism (4) is a shutter. 9. Innretning ifølge et av de ovenstående krav, karakterisert ved at lukkemekanismen (4) er en elastisk forskyvbar plate (17).9. Device according to one of the above requirements, characterized in that the closing mechanism (4) is an elastically displaceable plate (17). 10. Innretning ifølge et av de ovenstående krav, karakterisert ved at lukkemekanismen beveges av en individuell eller felles drivenhet (10).10. Device according to one of the above requirements, characterized in that the closing mechanism is moved by an individual or joint drive unit (10). 11. Innretning ifølge et av de ovenstående krav, karakterisert ved at lukkemekanismen (4) er belagt med spesielle begronings- og friksjonsreduserende materialer, særlig teflon.11. Device according to one of the above requirements, characterized in that the closing mechanism (4) is coated with special fouling and friction-reducing materials, especially Teflon. 12. Innretning ifølge et av de ovenstående krav, karakterisert ved at det for hurtig lokal oppvarming av det innelukkede sjøvann i sjøkassekjøleren (1) er anordnet en ekstra integrert høytemperatur- rørbunt (9) i høytemperaturkretsen til hovedmotoren (13).12. Device according to one of the above requirements, characterized in that, for rapid local heating of the enclosed seawater in the sea box cooler (1), an additional integrated high-temperature tube bundle (9) is arranged in the high-temperature circuit of the main engine (13). 13. Innretning ifølge et av de ovenstående krav, karakterisert ved at det i sjøkassekjøleren (1) i tillegg er bygget inn spesielle hjelpeinnretninger, særlig dampfordelingslanser.13. Device according to one of the above requirements, characterized by the fact that special auxiliary devices, particularly steam distribution lances, are also built into the sea box cooler (1).
NO20016164A 1999-06-17 2001-12-17 Method and device for avoiding fouling in sea boxes as used in ships and on offshore platforms. NO320943B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19921433A DE19921433C1 (en) 1999-06-17 1999-06-17 Prevention of biological growth formation on equipment of sea water systems on ships, offshore platforms etc. involves local, short-term repetitive heating of enclosed sea water
DE19960037A DE19960037A1 (en) 1999-06-17 1999-12-13 Method and device for preventing fouling in sea boxes and sea water systems on ships, offshore platforms, etc.
PCT/DE2000/001947 WO2000078605A1 (en) 1999-06-17 2000-06-14 Method and device for preventing organism growth on sea-cases and seawater systems on ships, offshore platforms, etc.

Publications (3)

Publication Number Publication Date
NO20016164D0 NO20016164D0 (en) 2001-12-17
NO20016164L NO20016164L (en) 2002-02-18
NO320943B1 true NO320943B1 (en) 2006-02-13

Family

ID=26053296

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20016164A NO320943B1 (en) 1999-06-17 2001-12-17 Method and device for avoiding fouling in sea boxes as used in ships and on offshore platforms.

Country Status (12)

Country Link
EP (1) EP1192075B1 (en)
JP (1) JP4114769B2 (en)
KR (1) KR100615788B1 (en)
CN (1) CN1131158C (en)
AT (1) ATE259737T1 (en)
AU (1) AU765103B2 (en)
DE (2) DE19960037A1 (en)
ES (1) ES2215693T3 (en)
HK (1) HK1047914B (en)
NO (1) NO320943B1 (en)
PL (1) PL352308A1 (en)
WO (1) WO2000078605A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1017403C2 (en) * 2001-02-19 2002-08-20 Bloksma B V Bin cooler.
GB0115968D0 (en) * 2001-06-29 2001-08-22 Wilson Taylor & Company Ltd Management of water ballast in marine vessels
NZ548436A (en) 2003-12-09 2010-06-25 Keith Johnson A method and apparatus for treating marine growth on a surface
DE102005029988B3 (en) * 2005-06-28 2006-11-16 Peter Dipl.-Ing. Ninnemann Heat exchanger protection device against growth of organisms has movable funnels in distributor chamber and collection chamber
DE102007050107B4 (en) 2007-10-19 2009-10-22 Envi Con & Plant Engineering Gmbh Cooling water system for power plants and industrial plants
DE102008029464B4 (en) * 2008-06-20 2013-02-07 Gunter Höffer Sea chest coolers on ships and offshore platforms with integrated anti-fouling system to kill barnacles, shells and other fouling organisms by means of regularly repeatable overheating
NL2001902C (en) * 2008-08-20 2010-03-10 Bloksma B V VESSEL WITH HEAT EXCHANGERS BETWEEN ITS DOUBLE BOTTOM.
JP5979941B2 (en) * 2012-04-03 2016-08-31 株式会社 アメロイド日本サービス社 Facilities and methods for preventing marine organisms from growing on sea chests and the like provided at the bottom of a ship
CN104176207B (en) * 2014-07-16 2016-09-07 江苏南通申通机械有限公司 A kind of method suppressing marine micro-organisms to grow
NO20141141A1 (en) * 2014-09-19 2016-02-29 Multi Solutions As Procedure and system for cleaning cooling pipes in heat exchangers
JP6488013B2 (en) * 2014-12-12 2019-03-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Cooling device that cools fluid using surface water
BR112017012048A2 (en) * 2014-12-12 2018-01-16 Koninklijke Philips Nv cooling apparatus, and ship
CN107208988B (en) * 2014-12-12 2019-12-20 皇家飞利浦有限公司 Cooling device for cooling a fluid with the aid of surface water
US10228199B2 (en) 2014-12-12 2019-03-12 Koninklijke Philips N.V. Cooling apparatus for cooling a fluid by means of surface water
CN105781711B (en) * 2014-12-26 2018-05-11 中石化胜利石油工程有限公司钻井工艺研究院 A kind of ocean platform seawater cooling cycle cabin
US10816269B2 (en) 2015-05-06 2020-10-27 Koninklijke Philips N.V. Assembly comprising an object having a surface which is intended to be exposed to water and an anti-fouling protector arrangement
EP3368229B1 (en) * 2015-10-27 2021-12-08 Koninklijke Philips N.V. Anti-fouling system , controller and method of controlling the anti-fouling system
CN116280041B (en) * 2023-02-27 2024-02-02 中国船舶科学研究中心 Mobile blue algae separating boat and blue algae treatment method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE124173C (en) *
US3309167A (en) 1963-05-21 1967-03-14 Galler Sidney Anti-fouling apparatus
US3650677A (en) 1969-09-25 1972-03-21 Drew Chem Corp Sea chest protection process
GB1581727A (en) 1976-12-21 1980-12-17 Shell Int Research Coated marine structure
JPS575837A (en) 1980-06-16 1982-01-12 Mitsubishi Heavy Ind Ltd Metallic material preventing fouling with marine organisms
DE3522817A1 (en) 1985-06-26 1987-01-02 Gruenwald Heinrich Dipl Chem Process for the production of protective coatings which prevent vegetative or animal colonisation and rodent or insect damage
JPS6241280A (en) 1985-08-19 1987-02-23 Nichiban Co Ltd Adhesive sheet for prevention of deposition of underwater organism
DE4109197C2 (en) 1991-03-18 1995-02-09 Stefan Dr Rer Nat Sandrock Process for the prevention of growth on submerged surfaces by sporadic, controlled changes in their physical properties
US5327848A (en) * 1991-03-25 1994-07-12 Hannon Jr John L Method and apparatus for keeping surfaces organism free
US5294351A (en) * 1993-03-25 1994-03-15 First Thermal Systems, Inc. Method for controlling zebra mussels in power and water plants
US5618214A (en) * 1994-01-28 1997-04-08 Wyss; Frederick B. Apparatus and method for eradicating zebra mussels in vessel raw water marine plumbing systems
US5692451A (en) * 1995-04-13 1997-12-02 Pastore; Joseph Sea chest covers

Also Published As

Publication number Publication date
KR20020025078A (en) 2002-04-03
CN1131158C (en) 2003-12-17
KR100615788B1 (en) 2006-08-25
JP4114769B2 (en) 2008-07-09
DE50005337D1 (en) 2004-03-25
AU765103B2 (en) 2003-09-11
NO20016164L (en) 2002-02-18
EP1192075A1 (en) 2002-04-03
NO20016164D0 (en) 2001-12-17
AU2299702A (en) 2002-07-18
JP2003502072A (en) 2003-01-21
EP1192075B1 (en) 2004-02-18
ATE259737T1 (en) 2004-03-15
HK1047914B (en) 2004-05-07
HK1047914A1 (en) 2003-03-14
DE19960037A1 (en) 2001-06-21
WO2000078605A1 (en) 2000-12-28
PL352308A1 (en) 2003-08-11
ES2215693T3 (en) 2004-10-16
CN1356946A (en) 2002-07-03

Similar Documents

Publication Publication Date Title
NO320943B1 (en) Method and device for avoiding fouling in sea boxes as used in ships and on offshore platforms.
JP5431463B2 (en) Sea chest cooler with built-in deposit protection system
US7913684B2 (en) Solar heat transfer system (HTPL), high temperature pressurized loop
AU2012253232B2 (en) Subsea cooling system
US20070221362A1 (en) Disinfection System
EP2976574A1 (en) Building heating installation and methodology that enables room temperatures as low as 7c during unoccupied hours with secondary frost thermostats able to be set at -2°c or below
CN108502123A (en) A method of removing hull bottom marine fouling organism
DE19921433C1 (en) Prevention of biological growth formation on equipment of sea water systems on ships, offshore platforms etc. involves local, short-term repetitive heating of enclosed sea water
CN111403149B (en) Seawater immersion type cooling system
JP3986517B2 (en) Ballast water heat sterilizer and heat sterilization method thereof
JP4409416B2 (en) Method for controlling attached organisms in cooling water coolers in power plants
AU2013281350A1 (en) Cooling system for subsea elements
KR20100075228A (en) Cooling apparatus of a vessel
CN211828413U (en) Seawater immersion type cooling system
NO339309B1 (en) Heat Exchanger System
JP2021025669A (en) Bathtub hot water heat insulation circulation system
KR20150015940A (en) Heat recovery apparatus for ship
RU2011928C1 (en) Power system heat accumulator
JPH07170901A (en) Prevention method of marine organism adhesion and device therefor
WO2014014358A1 (en) Subsea cooling assembly and method for cooling
EP0098907A1 (en) Transformation of thermal energy into mechanical energy
JPH11257022A (en) Sea water system of power-generation plant
KR20150072229A (en) Hot water supply system for ship water canon to prevent the intrusion of pirates

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees