JP4114769B2 - Method and apparatus for preventing living organisms from growing on seawater boxes and seawater systems installed on ships, offshore platforms, etc. - Google Patents

Method and apparatus for preventing living organisms from growing on seawater boxes and seawater systems installed on ships, offshore platforms, etc. Download PDF

Info

Publication number
JP4114769B2
JP4114769B2 JP2001504784A JP2001504784A JP4114769B2 JP 4114769 B2 JP4114769 B2 JP 4114769B2 JP 2001504784 A JP2001504784 A JP 2001504784A JP 2001504784 A JP2001504784 A JP 2001504784A JP 4114769 B2 JP4114769 B2 JP 4114769B2
Authority
JP
Japan
Prior art keywords
seawater
box
cooling device
cooling
seawater box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001504784A
Other languages
Japanese (ja)
Other versions
JP2003502072A5 (en
JP2003502072A (en
Inventor
シャーフ,エファ−マリア
ザンドロック,シュテファン
ヘファー,グンター
Original Assignee
ヘファー,グンター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19921433A external-priority patent/DE19921433C1/en
Application filed by ヘファー,グンター filed Critical ヘファー,グンター
Publication of JP2003502072A publication Critical patent/JP2003502072A/en
Publication of JP2003502072A5 publication Critical patent/JP2003502072A5/ja
Application granted granted Critical
Publication of JP4114769B2 publication Critical patent/JP4114769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/022Heat exchangers immersed in a large body of liquid for immersion in a natural body of water, e.g. marine radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • B63B13/02Ports for passing water through vessels' sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/04Preventing hull fouling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • F01P3/207Cooling circuits not specific to a single part of engine or machine liquid-to-liquid heat-exchanging relative to marine vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00
    • F28G13/005Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00 cleaning by increasing the temperature of heat exchange surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/06Cleaning; Combating corrosion
    • F01P2011/063Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/06Cleaning; Combating corrosion
    • F01P2011/066Combating corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/02Marine engines
    • F01P2050/06Marine engines using liquid-to-liquid heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catching Or Destruction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Ship Loading And Unloading (AREA)
  • Revetment (AREA)

Abstract

The invention relates to a method and a device on ships, offshore-platforms, etc. for protecting against organism growth in complete seawater systems, operated on the basis of briefly raising the temperature of a volume of water (1) which is isolated by a mechanical closure system (4, 12). The brief temperature increase destroys the growth of organisms or their larvae without the need for toxic, environmentally damaging substances. Once the closure system has been opened, the normal cooling operation is resumed. The waste heat from the motor is used to raise the temperature for short periods of time. The mechanical closure of a sea-case is described as an application example. In cooling systems, comprising several circuits, joined by a mixing tank, each sub-circuit can be heated separately for a brief period, using the assembly of different heat exchangers and the integrated control and regulatory systems, thus preventing organism growth.

Description

【0001】
【発明の実施の形態】
本発明は、船舶や沖合プラットフォーム等に使われる通りの海水箱及び海水システムにおける動植物の繁茂を防止し、フィルター、制御器類(装備)、配管系、熱交換機、ポンプ、海水箱冷却装置等の、散発的に又は恒常的に、開けられた海水箱及び海水システム内で海水に接触する構成部品を保護し、請求項1に従ってモーター冷却水内にある余熱を利用して閉じ込められた海水の局所的で短時間の目的に適った過熱を行うための処理方法ならびに装置に関わる。
【0002】
船舶や船舶の部品の回りそして配管システム内及びそれらの構成部品内の動植物の繁茂は、特に水域汚染の増強によりはっきりと増加している。これら動植物の繁茂を減らしたり、あるいは防止したりするために、国際的に様々な方法が試みられている。
【0003】
1.DE PN 31 23 682 A1においては、動植物の繁茂を予防する、少なくとも錫のような要素を一つ最大5重量%まで含み、5〜30重量%がマンガンである合金から成るアルファ単相構造による金属材料が記述されている。欠点は、ここでは造船業における標準スチールが材料でないために、船舶の価格が高くなることである。
【0004】
2.DE PN 36 28 150 A1の特許によっても類似のアイデアが選択されている。そこでは、CuNi合金プレートを材料とする粘着性板金に下塗りがされて、それにより自己粘着性を持つ粘着層が形成されている。CuNi合金はスチールに較べてかなり高価である。
【0005】
3.海洋船舶の外殻は現在、自己研磨性を持つよごれ止め剤の塗装により動植物の繁茂を予防している。この処理方法のカテゴリーでは、例えばDE PN 3522 817によれば、プラズマ(原形質)重合化により繁茂を撥ねつけ、食いつきを阻止する保護層が形成されたり、あるいはDE PN 2756 495によれば金属面上にシリコンゴムが装着されている。ここでは、化学物質による海水の汚染が欠点と見られている。
【0006】
4.電気防食陽極から銅イオンが、電気化学的電解電位の結果として溶けだす陰極保護装置は、動植物の繁茂を予防するコスト高で有毒な方法である。
【0007】
5.DE PN 4109 197によれば、特殊なよごれ止め剤の保護塗装に、変動pH−値を持ち動植物の繁茂を抑制する薄い水の層の形成を目的とする、極性と強度において可変な電圧がかけられる。必要な多層の色構成は、冷却システムよりも滑らかな面へ塗布しやすく、従って広い面積の船舶外壁に適している。
【0008】
6.米国の特許明細書 3 309 167の中に、温度引き上げを規則的に繰り返すことによる動植物の繁茂の防止効果を利用する、動植物の繁茂防止のための方法が記述されている。一時的に閉じられた循環回路において閉じ込められた水のモーターの熱による過熱を目標とする下に記述する発明とは違って、上に挙げた米国の特許においては、外側に隣接する加工表面が直接電気ヒーター要素により加熱される。これは追加的にエネルギーの消費を必要とする。
【0009】
7.米国の特許 3 650 677は海水箱のための方法に関わり、特に冬季休止期間中に、氷の形成による破壊を防止し、腐食を阻止するために、内壁に植物油脂を上塗りすることにより一時的に層を重ねることを目的とした方法である。特許明細書中に挙げられたより高い温度は、海水箱の中に噴霧するための油脂の加熱、もしくは冬季休止期間終了時点でのそれらの除去に関わる。動植物の繁茂の防止との関連は見られない。貝や藻は通常は、冬季に氷形成の危険がある時期には付着せず、春も深まり温度が10℃以上となってから付着するのである。
【0010】
届け出の本発明の基礎には、海水箱及び海水システムの中で散発的又は恒常的に海水に接触する配管系、フィルター、熱交換機、制御器類、ポンプ、海水箱冷却装置の、海水と接触する表面への動植物の繁茂を抑制・防止することを目的とし、簡単かつ低コストに使用・設置が可能な、メンテナンスと操作が簡単なことを特色とする、運転費用が僅かで、有毒物質を使用せずに動植物の繁茂の予防を実現する、効果的で環境にやさしい処理方法と設備を開発するという課題がある。
【0011】
発明のとおりにこの課題は、請求項1から13までに挙げられた特徴により解決されている。
【0012】
モーター冷却水のための海水冷却装置には、動植物の繁茂によるよごれを防止する塗装がなされているが、この塗装は短期間の繁茂防止しか提供しない。特別に、約45℃のモーター冷却水の流入温度を持つ、低温海水箱冷却装置と呼ばれる冷却装置は、フジツボ、貝等の幼生の成長に理想的な条件を提供しており、そのために冷却装置は短期間内にそれらの繁茂により冷却能力を極端に制限されることがあり、安全性の理由から予備表面積>30%を指定されているのである。約75〜90℃のモーター冷却水の流入温度を持つ高温海水箱冷却装置にはそれに対して、全く、もしくはほとんど有機体組織の生息は見られない。調査により、一方で高い潮流速度の結果としての非常に大きな剪断応力の作用により、又は場所的に時間的に限定された、しかしながら規則的な間隔で繰り返される短時間の過熱により、動植物の繁茂が永続的に防止できることが示されている。後者においては、海水の一時的な過熱を経済的に実現するための前提条件は、加熱する海水を周囲の海水から徹底的に分離することにある。
【0013】
本発明の利点は、海水箱冷却装置への動植物の繁茂の防止により、冷却装置が冷却表面積の削減により、同じ寸法においてより大きな冷却能力を伝達できること、もしくは同様の性能においては海水箱冷却装置が約20%ほど小さくて済み、そのため往々にして非常に小さな海水箱の中への据え付けが容易になることである。寸法が小さくなることと、管束に再び通常のスチールが使用できることにより、海水箱冷却装置そのものにおけるコスト削減がもたらされる。従って場合により考慮されていた予備冷却装置を省略することができる。封じ込めた海水の加熱に必要なエネルギーは、メインモーターもしくはディーゼル発電機冷却水装置の高温冷却水により調達される。あらゆる組み込み部分を含めた海水箱全体が、同じコーティング・システムで保護できるために、費用のかかるCuNi10Fe製管束のコーティングの必要及び、それに結合した、管束のコーティングの損傷による電解質腐食の問題はなくなる。
【0014】
締めくくりとして、既に運行されている船舶にもこの密閉機構を投入してシステムアップする原則的可能性があることに言及しておく。
【0015】
閉じた海水箱1における局所的に限定された海水の加熱のために、メイン・モーター13の高温冷却水もしくはその代替えとしてディーゼル発電機の気筒冷却水が使われ、切替え装備を用いて海水箱冷却装置2を装備した低温冷却水循環回路へと接続される。図1は、低温海水箱冷却装置2、排水スリット3の遮断のための鎧戸ボックス12と海水箱鎧戸4を備えた海水箱1の原理的構造を示している。同様に、流入スリット8の遮断が行われる。その他の組み込み要素は、換気5、洗浄用接続6、亜鉛陽極7である。通常運転モード(海水モード)では、低温モーター冷却水が約45℃で低温海水箱冷却装置2を通って循環し、海水は最大32℃で流入スリット8を通って海水箱1内に流れ込む。この海水は低温海水箱冷却装置2を通ってモーター冷却水を最低36℃まで冷却し、海水箱1から排水スリット3を通って排出する。海水と共に、よごれの原因である有機体の幼生が恒常的に海水箱1内に入り込み、港や沖合での停泊中、河口運行中、潮流がわずかしかない時等に、海水箱1内やその組み込み要素に堆積する。海水箱1内ではいま、発明に従って流入・排水スリット8;3が海水箱鎧戸4により密閉される。特別に有利な温度状況と組み込み条件のもとでは、排水スリットの密閉で十分である。
【0016】
図2は、排水スリット3の遮断の例で、駆動装置10、鎧戸ボックス12とラメラ(薄板)から成る海水箱鎧戸4の構造を示す。ガイドレール11は海水箱1の外殻の内側に据えつけられており、防水性を達成するために、必要な補強材と、場合により回転するパッキングが装備される。換気5を介して、海水箱鎧戸4により密閉された流入・排水スリット8;3での圧力調整が行われる。
【0017】
図3は流入スリット8と流入・排水スリット8;3の密閉のための海水箱鎧戸4の上方への低温海水箱冷却装置2の配置を示す。
【0018】
図4は、高温循環回路又は最低流入温度70℃のディーゼル発電機の冷却水循環回路のいわゆる組み合わせ型冷却装置の中に組み込まれた高温管束9を介して、海水箱1を直接に加熱する可能性を表している。原理的構造は図1に従う。流入・排水スリット8;3を閉じた状態における局所的かつ時間的に限定された短時間の過熱はここでは、以下に図5のもとで説明するのと同じようにして、統合された高温管束9が引き受ける。
【0019】
図5は独立の高温・低温冷却水循環回路を持つモーターのR&I図式を示す。高温モーター冷却水は平板熱交換機14を介して通常運転モードにおいて、こちらはこちらで吸収した熱量を開かれた流入・排水スリット8;3において低温海水箱冷却装置2を通して海水に引き渡す低温冷却水により、冷し戻される。港で、又投錨地点でメインモーター13をスイッチオフにした後に、低温海水箱冷却装置2のために有機体を撲滅するのに必要な最低温度60℃への過熱運転モードが開始される。温度調整弁16のバイパスは完全に閉じられる。そうして高温冷却水は平板熱交換機14を介して低温冷却水を熱する。海水箱1内の海水は、有機体が死滅するように、閉じた循環回路内で循環する低温冷却水により、低温海水箱冷却装置2を介して少なくとも60℃へ、一定の持続時間をもたせて短時間、局所的に過熱される。閉じられた流入・排水スリット8;3を開けた後に、必要な場合は、洗浄用接続5を介して海水箱1の短時間の洗浄が行われ、低温海水箱冷却装置2は、上に挙げた措置を逆の順序で実施することにより、再び通常運転モードに戻される。図5はさらに、補助的に低温循環回路内に統合された、蒸気、温油、又は電気エネルギーで過熱される熱交換機15によって、加熱時間を短縮することを可能にする提案も示す。
【0020】
図6はもう一つ別の、船舶の外殻輪郭に沿える弾性に富んだスライド式プレート17の応用例を、流入・排水スリット8;3の防水遮断のための装置として示す。外部からプレート17に作用する静力学的圧力は、プレート17を、海水箱1のこの領域内に二重カバー18として作り上げられた外殻に押しつける。
【0021】
図7は、海水箱1A;1Bから成り、組み入れられた遮断装備21;22、ポンプ20、混合タンク19と導管及び/又は導溝を通して作用結合している海水システムを示す。海水モードにおいては、海水箱1A;1B内の遮断装備21;22と鎧戸4A;4Bが開けられる。
【0022】
港で、又投錨地点で低減速度で航行される時に、あるいは停泊中に、海水システムは、海水箱1B内の鎧戸4Bを閉じることにより、そしてそれに属する遮断装備22B並びに能動状態の海水箱1A内の遮断装備22Aを開けることにより、受動状態の部分システムB(洗浄モード)と能動状態の部分システムA(海水モード)に分割される。今や海水箱1Bはそれに属する接続導管、遮断装備21B;22B、海水箱冷却装置2Bとポンプ20Bと共に局所的に短時間にわたり過熱され、それにより微生物やマクロ有機体及びそれらの幼生の繁茂によるよごれから守られるのである。海水箱1Bにおける洗浄モードが終了すると、この部分システムは鎧戸4Bを開けることにより、海水モードに切り替えられる。前に海水モードで能動状態であった海水箱1Aはいまや上記の処理方法に従って洗浄モードに切り替えられる。部分システムAはそうすると同様に動植物の繁茂を防止するために、局所的に短時間過熱される。
【0023】
その他の海水箱ならびにそれらと作用結合している配管系も、同様の処理方法によりセクション毎に、動植物の繁茂によるよごれから守ることができる。
【図面の簡単な説明】
【図1】 密閉可能な流入スリットと排水スリットを持つ海水箱の原理的構造。
【図2】 排水スリットが閉じられた海水箱。
【図3】 流入スリットの密閉のための海水箱鎧戸。
【図4】 図1と同様、組み合わせ型冷却装置、高温海水箱冷却装置を統合した低温海水箱冷却装置。
【図5】 外部熱交換機を持つ、高温・低温循環回路の図式。
【図6】 流入・排水スリットの密閉のための巻き上げ可能な弾性に富んだプレート。
【図7】 海水モードと洗浄モードの切替えにおける海水箱の切替え構造。
【符号の説明】
1 海水箱
1A 海水箱
1B 海水箱
2 低温海水箱冷却装置
2A 低温海水箱冷却装置
2B 低温海水箱冷却装置
3 排水スリット
4 海水箱鎧戸
4A 海水箱鎧戸
4B 海水箱鎧戸
5 換気
6 洗浄用接続
7 亜鉛陽極
8 流入スリット
9 統合された高温管束
10 鎧戸駆動装置
11 ガイドレール
12 鎧戸ボックス
13 メインモーター
14 平板熱交換機
15 補助熱交換機
16 温度調整弁
17 弾性に富んだスライド式プレート
18 二重カバー
19 混合タンク
20A 海水循環ポンプ、能動状態
20B 海水循環ポンプ、受動状態
21A;B 遮断装備、海水流入、能動;受動
22A;B 遮断装備、海水逆流、能動;受動。
[0001]
DETAILED DESCRIPTION OF THE INVENTION
The present invention prevents overgrowth of flora and fauna in seawater boxes and seawater systems used for ships, offshore platforms, etc., and includes filters, controllers (equipment), piping systems, heat exchangers, pumps, seawater box cooling devices, etc. Protecting components in contact with seawater in open seawater boxes and seawater systems, sporadically or permanently, and confining localized seawater using residual heat in motor cooling water according to claim 1 The present invention relates to a processing method and apparatus for performing superheating suitable for a short time and purpose.
[0002]
The overgrowth of animals and plants around ships and ship components and within piping systems and their components has increased significantly, especially due to increased water pollution. Various methods have been tried internationally to reduce or prevent the overgrowth of these animals and plants.
[0003]
1. In DE PN 31 23 682 A1, a metal with an alpha single-phase structure consisting of an alloy containing at least one element such as tin up to 5% by weight and 5-30% by weight of manganese, which prevents flora and fauna The material is described. The disadvantage is that the price of the ship is high here because standard steel in the shipbuilding industry is not a material.
[0004]
2. A similar idea has been selected by the DE PN 36 28 150 A1 patent. There, an adhesive sheet metal made of a CuNi alloy plate is primed to form a self-adhesive adhesive layer. CuNi alloys are much more expensive than steel.
[0005]
3. The outer shells of marine vessels are currently preventing the growth of animals and plants by painting a self-polishing antifouling agent. In this treatment method category, for example according to DE PN 3522 817, plasma (plasma) polymerization forms a protective layer that repels overgrowth and prevents biting, or according to DE PN 2756 495 Silicon rubber is mounted on the top. Here, contamination of seawater with chemical substances is seen as a drawback.
[0006]
4). Cathode protection devices, in which copper ions dissolve from the electrochemical protection anode as a result of the electrochemical electrolysis potential, are a costly and toxic method for preventing the flora and fauna of plants and animals.
[0007]
5. According to DE PN 4109 197, a special antifouling agent protective coating is applied with a variable voltage in polarity and strength for the purpose of forming a thin layer of water that has a variable pH-value and suppresses overgrowth of plants and animals. It is done. The required multi-layered color configuration is easier to apply to a smooth surface than the cooling system and is therefore suitable for large area ship exterior walls.
[0008]
6). US Patent Specification 3 309 167 describes a method for preventing the overgrowth of animals and plants that utilizes the effect of preventing overgrowth of animals and plants by regularly repeating temperature increases. Unlike the invention described below, which aims to overheat due to the heat of a water motor confined in a temporarily closed circuit, in the above-mentioned US patent, Directly heated by an electric heater element. This requires additional energy consumption.
[0009]
7). U.S. Patent 3 650 677 relates to a method for seawater boxes, especially during winter periods, to prevent temporary damage by ice formation and to prevent corrosion by temporary coating of vegetable oil on the inner wall. It is a method aiming at stacking layers. The higher temperatures mentioned in the patent specification are related to the heating of fats to be sprayed into seawater boxes or their removal at the end of the winter rest period. There is no association with prevention of overgrowth of animals and plants. Shellfish and algae usually do not attach during the winter when there is a risk of ice formation, and attach after the spring is deepened and the temperature reaches 10 ° C. or higher.
[0010]
The basis of the present invention is that the piping system, filter, heat exchanger, controller, pump, seawater box cooling device that contacts the seawater sporadically or constantly in the seawater box and seawater system is in contact with seawater. The purpose is to control and prevent overgrowth of animals and plants on the surface, and it is easy to use and install at low cost. It is easy to maintain and operate. There is a problem of developing an effective and environmentally friendly treatment method and equipment that can prevent overgrowth of animals and plants without using them.
[0011]
According to the invention, this problem is solved by the features listed in claims 1 to 13.
[0012]
Seawater cooling devices for motor cooling water have been painted to prevent contamination due to overgrowth of animals and plants, but this coating provides only short-term prevention of overgrowth. Specially, a cooling device called a low-temperature seawater box cooling device, which has a motor cooling water inflow temperature of about 45 ° C., provides ideal conditions for the growth of barnacles, shellfish and other larvae. The cooling capacity may be extremely limited due to their growth in a short period of time, and a reserve surface area> 30% is specified for safety reasons. In contrast, a high temperature seawater box cooling device having a motor cooling water inflow temperature of about 75 to 90 ° C. shows no or little living organism tissue. Investigations, on the other hand, caused the growth of animals and plants by the action of very large shear stresses as a result of high tidal speeds, or by short-term overheating that was limited in time locally but at regular intervals. It has been shown that it can be permanently prevented. In the latter, the precondition for economically realizing the temporary overheating of seawater is to thoroughly separate the seawater to be heated from the surrounding seawater.
[0013]
An advantage of the present invention is that the cooling device can transmit greater cooling capacity in the same dimensions by reducing the cooling surface area by preventing the flora and fauna of the seawater box cooling device, or the seawater box cooling device in the same performance. It can be as small as about 20%, so that it is often easy to install in a very small seawater box. The reduced size and the ability to use normal steel again for the tube bundle results in cost savings in the sea water box cooling device itself. Therefore, it is possible to omit the precooling device which has been taken into consideration in some cases. The energy required to heat the contained seawater is procured by the high-temperature cooling water of the main motor or the diesel generator cooling water device. Since the entire sea box, including any built-in parts, can be protected with the same coating system, the need for expensive CuNi10Fe tube bundle coating and the associated electrolyte corrosion problems due to damage to the tube bundle coating are eliminated.
[0014]
To conclude, it should be noted that there is a principle possibility to upgrade the system by introducing this sealing mechanism to ships already in service.
[0015]
For locally limited seawater heating in the closed seawater box 1, high-temperature cooling water of the main motor 13 or cylinder cooling water of a diesel generator is used as an alternative, and cooling equipment is used to cool the seawater box. It is connected to a low-temperature cooling water circulation circuit equipped with the device 2. FIG. 1 shows the principle structure of a seawater box 1 including a low-temperature seawater box cooling device 2, an armor box 12 for blocking a drain slit 3, and a seawater box armor 4. Similarly, the inflow slit 8 is blocked. Other built-in elements are ventilation 5, cleaning connection 6 and zinc anode 7. In the normal operation mode (seawater mode), the low-temperature motor cooling water circulates through the low-temperature seawater box cooling device 2 at about 45 ° C., and the seawater flows into the seawater box 1 through the inflow slit 8 at a maximum of 32 ° C. The seawater passes through the low-temperature seawater box cooling device 2 to cool the motor cooling water to a minimum of 36 ° C., and is discharged from the seawater box 1 through the drainage slit 3. Together with the seawater, the larva of the organism that is the source of dirt constantly enters the seawater box 1 and stays in the seawater box 1 or when it is anchored at the port or offshore, during estuary operation, or when there is only a small tide. Deposit on built-in elements. In the seawater box 1, the inflow / drainage slits 8; 3 are now sealed by the seawater box armor 4 according to the invention. Under particularly advantageous temperature conditions and installation conditions, sealing the drainage slit is sufficient.
[0016]
FIG. 2 shows an example of blocking the drainage slit 3 and shows the structure of the seawater box armor door 4 composed of the driving device 10, the armor door box 12 and a lamella (thin plate). The guide rail 11 is installed inside the outer shell of the seawater box 1 and is equipped with necessary reinforcing materials and, in some cases, a rotating packing, in order to achieve waterproofness. The pressure is adjusted in the inflow / drainage slits 8; 3 sealed by the seawater box armor door 4 through the ventilation 5.
[0017]
FIG. 3 shows the arrangement of the low-temperature sea water box cooling device 2 above the sea water box armor 4 for sealing the inflow slit 8 and the inflow / drain slit 8;
[0018]
FIG. 4 shows the possibility of directly heating the seawater box 1 via a hot tube bundle 9 incorporated in a so-called combination cooling device of a high temperature circuit or a diesel generator cooling water circuit with a minimum inlet temperature of 70 ° C. Represents. The principle structure follows FIG. A short time of local and temporally limited overheating with the inlet / drain slits 8; 3 closed is here integrated in the same way as described below with reference to FIG. The tube bundle 9 takes over.
[0019]
FIG. 5 shows the R & I diagram of a motor with an independent hot / cold cooling water circulation circuit. The high-temperature motor cooling water is supplied in the normal operation mode via the flat plate heat exchanger 14, and this is the low-temperature cooling water delivered to the seawater through the low-temperature seawater box cooling device 2 in the inflow / drainage slit 8; Chilled back. After the main motor 13 is switched off at the port and at the anchoring point, the superheated operation mode to the minimum temperature of 60 ° C. required to eradicate the organisms for the low temperature sea water box cooling device 2 is started. The bypass of the temperature regulating valve 16 is completely closed. The high temperature cooling water then heats the low temperature cooling water via the flat plate heat exchanger 14. The seawater in the seawater box 1 is allowed to have a certain duration to at least 60 ° C. via the low temperature seawater box cooling device 2 by the low temperature cooling water circulating in the closed circulation circuit so that the organism is killed. Heated locally for a short time. After opening the closed inflow / drainage slits 8; 3, if necessary, the seawater box 1 is cleaned for a short time via the cleaning connection 5, and the low temperature seawater box cooling device 2 is listed above. The normal operation mode is restored again by carrying out the measures in the reverse order. FIG. 5 further shows a proposal which makes it possible to shorten the heating time by means of a heat exchanger 15 which is superheated with steam, hot oil or electrical energy, supplementarily integrated in the cold circulation circuit.
[0020]
FIG. 6 shows another application example of the elastic sliding plate 17 along the outer shell contour of the ship as a device for waterproof shut-off of the inflow / drain slits 8; 3. The hydrostatic pressure acting on the plate 17 from the outside presses the plate 17 against the outer shell built up as a double cover 18 in this region of the seawater box 1.
[0021]
FIG. 7 shows a seawater system consisting of a seawater box 1A; 1B and operatively connected to the incorporated shut-off equipment 21; 22, pump 20, mixing tank 19 through conduits and / or channels. In the seawater mode, the blocking equipment 21; 22 and the armor doors 4A; 4B in the seawater box 1A; 1B are opened.
[0022]
When navigating at a reduced speed at the port, at the anchoring point, or while anchored, the seawater system closes the armor door 4B in the seawater box 1B, and the shutoff equipment 22B belonging to it and the active seawater box 1A. Is opened, the system is divided into a passive partial system B (cleaning mode) and an active partial system A (seawater mode). The seawater box 1B is now locally overheated for a short time together with the connecting conduits, shutoff equipment 21B; 22B, seawater box cooling device 2B and pump 20B, thereby causing contamination by the growth of microorganisms, macro-organisms and their larvae. It is protected. When the cleaning mode in the seawater box 1B ends, the partial system is switched to the seawater mode by opening the armor door 4B. The seawater box 1A that was previously active in the seawater mode is now switched to the cleaning mode according to the above processing method. The partial system A is likewise locally heated for a short time in order to prevent the flora and fauna from growing.
[0023]
Other seawater boxes and piping systems that are operatively connected to them can also be protected from dirt caused by flora and fauna of each section by the same processing method.
[Brief description of the drawings]
FIG. 1 shows the principle structure of a seawater box having a sealable inflow slit and a drainage slit.
[Fig.2] Seawater box with drainage slit closed.
[Fig. 3] Seawater box armor for sealing the inflow slit.
FIG. 4 is a low-temperature seawater box cooling device in which a combined cooling device and a high-temperature seawater box cooling device are integrated as in FIG.
FIG. 5 is a schematic diagram of a high-temperature / low-temperature circuit with an external heat exchanger.
[Fig. 6] An elastic plate that can be rolled up to seal the inflow and drainage slits.
[Fig. 7] Seawater box switching structure in switching between seawater mode and washing mode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sea water box 1A Sea water box 1B Sea water box 2 Low temperature sea water box cooling device 2A Low temperature sea water box cooling device 2B Low temperature sea water box cooling device 3 Drain slit 4 Sea water box armor door 4A Sea water box armor door 4B Sea water box armor door 5 Ventilation 6 Cleaning connection 7 Zinc Anode 8 Inlet slit 9 Integrated high-temperature tube bundle 10 Armor door drive device 11 Guide rail 12 Armor door box 13 Main motor 14 Flat plate heat exchanger 15 Auxiliary heat exchanger 16 Temperature control valve 17 Elastic sliding plate 18 Double cover 19 Mixing tank 20A Seawater circulation pump, active state 20B Seawater circulation pump, passive state 21A; B cutoff equipment, seawater inflow, active; passive 22A; B cutoff equipment, seawater reverse flow, active; passive.

Claims (14)

船舶や沖合プラットフォームで使用されるような、海水箱の構成要素特に海水箱内に設置された冷却装置へのフジツボ、貝および他の繁殖生物の繁殖を防止するための方法であって、過熱によって繁殖生物を駆除することによるものであり、前記方法において、海水箱内の海水を周囲環境から隔離し、前記海水箱内に設置された冷却装置を冷却動作からはずし、海水箱冷却装置内を流れる高温冷却水によって、海水箱内部に閉じ込められた海水を加熱することを特徴とする、方法。  A method for preventing the breeding of barnacles, shellfish and other breeding organisms on components of seawater boxes, such as those installed in seawater boxes, such as those used on ships and offshore platforms, by overheating. In this method, the seawater in the seawater box is isolated from the surrounding environment, the cooling device installed in the seawater box is removed from the cooling operation, and flows in the seawater box cooling device. A method characterized by heating seawater confined in a seawater box with high-temperature cooling water. 海水箱(1A,1B)と、前記海水箱と海水箱冷却装置とを接続する導管と、前記海水箱に配置された海水箱冷却装置(2A)と、前記海水システム内において海水を循環させるポンプ(20A,20B)と、前記海水箱冷却装置に流入する海水の量を制御する制御器類(21A,22A)とを有する複数の海水システムにおいて、海水システム毎に、海水箱に閉じ込められた海水を短時間の間かつ局所的に、規則的に加熱する、請求項1に記載の方法。Seawater box (1A, 1B), a conduit connecting the seawater box and the seawater box cooling device, a seawater box cooling device (2A) arranged outside the seawater box, and circulating seawater in the seawater system In a plurality of seawater systems having a pump (20A, 20B) and controllers (21A, 22A) for controlling the amount of seawater flowing into the seawater box cooling device , each seawater system is confined in a seawater box. The method according to claim 1, wherein the seawater is heated regularly for a short time and locally. 予備冷却装置のない海水箱において、生物の繁殖に対する保護が、海水箱内に直接設置された追加の管束によって、局所的に短時間の間、かつ規則的に繰り返し可能に海水箱に閉じ込められた海水を加熱することにより行われることを特徴とする、請求項1および請求項2に記載の方法。  In a seawater box without a pre-cooling device, the protection against the propagation of organisms is confined in the seawater box locally for a short time and regularly repeatable by means of an additional tube bundle installed directly in the seawater box The method according to claim 1 or 2, wherein the method is performed by heating seawater. 洗浄用接続(6)を介して、遮断された冷却装置の淡水による洗浄を、局所的な過熱処理の終了の前または後に行なうことができることを特徴とする、請求項1から請求項3のいずれかに記載の方法。4. Any of the claims 1 to 3, characterized in that the fresh cooling of the shut-off cooling device can be performed via the cleaning connection (6) before or after the end of the local overheat treatment. The method of crab. 統合された測定・制御システムおよび調整装置を用いて、局所的でかつ短時間の過熱を規則的かつ自動的に実行し、自動的に監視することを特徴とする、請求項1から請求項4のいずれかに記載の方法。  5. A local and short-time overheating is regularly and automatically performed and automatically monitored using an integrated measurement and control system and regulator. The method in any one of. 請求項1から請求項5のいずれかに記載の方法を実施するための装置であって、動作状態を別々に制御可能な第1の海水システムと第2の海水システムとを備え、前記第1の海水システムは、第1の海水箱(1A)と、前記第1の海水箱(1A)と第1の海水箱冷却装置(2A)とに接続された第1の導管と、前記第1の海水箱(1A)外に配置された第1の海水箱冷却装置(2A)と、前記第1の海水システム内において海水を循環させるポンプ(20A)と、前記第1の海水箱冷却装置(2A)の周りを流れる海水の量を制御する制御器類(21A,22A)とを有し、前記第2の海水システムは、第2の海水箱(1B)と、前記第2の海水箱(1B)と他の海水箱冷却装置(2B)とに接続された第2の導管と、前記第2の海水箱(1B)外に配置された他の海水箱冷却装置(2B)と、前記第2の海水システム内において海水を循環させるポンプ(20B)と、前記他の海水箱冷却装置(2B)の周りを流れる海水の量を制御する制御器類(21B,22B)とを有する、装置。An apparatus for carrying out the method according to any one of claims 1 to 5, comprising a first seawater system and a second seawater system capable of separately controlling operating states, wherein The seawater system includes a first seawater box (1A), a first conduit connected to the first seawater box (1A) and the first seawater box cooling device (2A), and the first seawater box (1A). A first seawater box cooling device (2A) arranged outside the seawater box (1A), a pump (20A) for circulating seawater in the first seawater system, and the first seawater box cooling device (2A) ) And controllers (21A, 22A) for controlling the amount of seawater flowing around , the second seawater system includes a second seawater box (1B) and the second seawater box (1B) . ) and a second conduit connected to the other sea chest cooler (2B), the second sea chest (1 ) And other sea chest cooling device arranged on the outer (2B), a pump (20B) for circulating the seawater within the second seawater system, seawater flowing around the other sea chest cooler (2B) And a controller (21B, 22B) for controlling the amount of the device. 前記第1海水システムと前記第2海水システムとの各々は、互いに独
立して海水箱に外部から海水が流入する状態または海水箱に外部から海水が流入しない状
態に制御可能である、請求項6に記載の装置。
Each of the said 1st seawater system and the said 2nd seawater system is controllable independently in the state which seawater flows into the seawater box from the outside, or the state where seawater does not flow into the seawater box from the outside. The device described in 1.
海水箱(1)の外殻にある排水スリット(3)および/または流入スリット(8)を、個々にまたは一斉に、機械的に閉鎖することを特徴とする、請求項6に記載の装置。  7. Device according to claim 6, characterized in that the drainage slit (3) and / or the inflow slit (8) in the outer shell of the seawater box (1) are mechanically closed individually or simultaneously. 前記制御器類は閉鎖装置(4)を有し、閉鎖装置(4)が鎧戸であることを特徴とする、請求項6から請求項8のいずれかに記載の装置。  9. A device according to any one of claims 6 to 8, characterized in that the controllers comprise a closing device (4), the closing device (4) being an armor door. 前記制御器類は閉鎖装置(4)を有し、閉鎖装置(4)が弾力性のあるスライド式プレート(17)であることを特徴とする、請求項6から請求項9のいずれかに記載の装置。  10. The controller according to any one of claims 6 to 9, characterized in that the controller comprises a closing device (4), the closing device (4) being a resilient sliding plate (17). Equipment. 前記制御器類は閉鎖装置(4)を有し、閉鎖装置(4)が、個別または共通の駆動装置(10)によって動かされることを特徴とする、請求項6から請求項10のいずれかに記載の装置。  11. The control device according to any one of claims 6 to 10, characterized in that the controller comprises a closing device (4), which is moved by a separate or common drive device (10). The device described. 前記制御器類は閉鎖装置(4)を有し、閉鎖装置(4)が、生物の繁殖を防止し摩擦を削減する特殊素材でコーティングされていることを特徴とする、請求項6から請求項11のいずれかに記載の装置。  The control device comprises a closure device (4), the closure device (4) being coated with a special material that prevents the propagation of organisms and reduces friction. The apparatus according to any one of 11. 閉じ込められた海水の迅速な局所的加熱のために、メインエンジン(13)の高温の冷却水の熱を使用する追加の高温管束(9)が、海水箱冷却装置(1)内に設けられていることを特徴とする、請求項6から請求項12のいずれかに記載の装置。  An additional high temperature tube bundle (9) using the heat of the hot cooling water of the main engine (13) is provided in the sea water box cooling device (1) for rapid local heating of the trapped sea water. Device according to any of claims 6 to 12, characterized in that 海水箱(1)内に蒸気で加熱される熱交換機が設置されていることを特徴とする、請求項6から請求項13のいずれかに記載の装置。  14. A device according to any one of claims 6 to 13, characterized in that a heat exchanger heated with steam is installed in the seawater box (1).
JP2001504784A 1999-06-17 2000-06-14 Method and apparatus for preventing living organisms from growing on seawater boxes and seawater systems installed on ships, offshore platforms, etc. Expired - Fee Related JP4114769B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19921433A DE19921433C1 (en) 1999-06-17 1999-06-17 Prevention of biological growth formation on equipment of sea water systems on ships, offshore platforms etc. involves local, short-term repetitive heating of enclosed sea water
DE19921433.6 1999-06-17
DE19960037A DE19960037A1 (en) 1999-06-17 1999-12-13 Method and device for preventing fouling in sea boxes and sea water systems on ships, offshore platforms, etc.
DE19960037.6 1999-12-13
PCT/DE2000/001947 WO2000078605A1 (en) 1999-06-17 2000-06-14 Method and device for preventing organism growth on sea-cases and seawater systems on ships, offshore platforms, etc.

Publications (3)

Publication Number Publication Date
JP2003502072A JP2003502072A (en) 2003-01-21
JP2003502072A5 JP2003502072A5 (en) 2005-09-22
JP4114769B2 true JP4114769B2 (en) 2008-07-09

Family

ID=26053296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001504784A Expired - Fee Related JP4114769B2 (en) 1999-06-17 2000-06-14 Method and apparatus for preventing living organisms from growing on seawater boxes and seawater systems installed on ships, offshore platforms, etc.

Country Status (12)

Country Link
EP (1) EP1192075B1 (en)
JP (1) JP4114769B2 (en)
KR (1) KR100615788B1 (en)
CN (1) CN1131158C (en)
AT (1) ATE259737T1 (en)
AU (1) AU765103B2 (en)
DE (2) DE19960037A1 (en)
ES (1) ES2215693T3 (en)
HK (1) HK1047914B (en)
NO (1) NO320943B1 (en)
PL (1) PL352308A1 (en)
WO (1) WO2000078605A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1017403C2 (en) * 2001-02-19 2002-08-20 Bloksma B V Bin cooler.
GB0115968D0 (en) * 2001-06-29 2001-08-22 Wilson Taylor & Company Ltd Management of water ballast in marine vessels
WO2005056382A1 (en) 2003-12-09 2005-06-23 Keith Johnson A method and apparatus for treating marine growth on a surface
DE102005029988B3 (en) * 2005-06-28 2006-11-16 Peter Dipl.-Ing. Ninnemann Heat exchanger protection device against growth of organisms has movable funnels in distributor chamber and collection chamber
DE102007050107B4 (en) 2007-10-19 2009-10-22 Envi Con & Plant Engineering Gmbh Cooling water system for power plants and industrial plants
DE102008029464B4 (en) * 2008-06-20 2013-02-07 Gunter Höffer Sea chest coolers on ships and offshore platforms with integrated anti-fouling system to kill barnacles, shells and other fouling organisms by means of regularly repeatable overheating
NL2001902C (en) * 2008-08-20 2010-03-10 Bloksma B V VESSEL WITH HEAT EXCHANGERS BETWEEN ITS DOUBLE BOTTOM.
JP5979941B2 (en) * 2012-04-03 2016-08-31 株式会社 アメロイド日本サービス社 Facilities and methods for preventing marine organisms from growing on sea chests and the like provided at the bottom of a ship
CN104176207B (en) * 2014-07-16 2016-09-07 江苏南通申通机械有限公司 A kind of method suppressing marine micro-organisms to grow
NO20141141A1 (en) * 2014-09-19 2016-02-29 Multi Solutions As Procedure and system for cleaning cooling pipes in heat exchangers
RU2694977C2 (en) * 2014-12-12 2019-07-18 Конинклейке Филипс Н.В. Cooling device for cooling fluid medium by means of surface water
US10234207B2 (en) * 2014-12-12 2019-03-19 Koninklijke Philips N.V. Cooling apparatus for cooling a fluid by means of surface water
RU2694696C2 (en) * 2014-12-12 2019-07-16 Конинклейке Филипс Н.В. Cooling device for cooling of fluid medium by means of surface water
JP6927878B2 (en) * 2014-12-12 2021-09-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. A cooling device that cools a fluid using surface water
CN105781711B (en) * 2014-12-26 2018-05-11 中石化胜利石油工程有限公司钻井工艺研究院 A kind of ocean platform seawater cooling cycle cabin
EP3292367A1 (en) * 2015-05-06 2018-03-14 Koninklijke Philips N.V. Assembly comprising an object having a surface which is intended to be exposed to water and an anti-fouling protector arrangement
ES2906716T3 (en) * 2015-10-27 2022-04-20 Koninklijke Philips Nv Antifouling system, controller and control method of the antifouling system
CN116280041B (en) * 2023-02-27 2024-02-02 中国船舶科学研究中心 Mobile blue algae separating boat and blue algae treatment method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE124173C (en) *
US3309167A (en) 1963-05-21 1967-03-14 Galler Sidney Anti-fouling apparatus
US3650677A (en) 1969-09-25 1972-03-21 Drew Chem Corp Sea chest protection process
GB1581727A (en) 1976-12-21 1980-12-17 Shell Int Research Coated marine structure
JPS575837A (en) 1980-06-16 1982-01-12 Mitsubishi Heavy Ind Ltd Metallic material preventing fouling with marine organisms
DE3522817A1 (en) 1985-06-26 1987-01-02 Gruenwald Heinrich Dipl Chem Process for the production of protective coatings which prevent vegetative or animal colonisation and rodent or insect damage
JPS6241280A (en) 1985-08-19 1987-02-23 Nichiban Co Ltd Adhesive sheet for prevention of deposition of underwater organism
DE4109197C2 (en) 1991-03-18 1995-02-09 Stefan Dr Rer Nat Sandrock Process for the prevention of growth on submerged surfaces by sporadic, controlled changes in their physical properties
US5327848A (en) * 1991-03-25 1994-07-12 Hannon Jr John L Method and apparatus for keeping surfaces organism free
US5294351A (en) * 1993-03-25 1994-03-15 First Thermal Systems, Inc. Method for controlling zebra mussels in power and water plants
US5618214A (en) * 1994-01-28 1997-04-08 Wyss; Frederick B. Apparatus and method for eradicating zebra mussels in vessel raw water marine plumbing systems
US5692451A (en) * 1995-04-13 1997-12-02 Pastore; Joseph Sea chest covers

Also Published As

Publication number Publication date
ES2215693T3 (en) 2004-10-16
KR100615788B1 (en) 2006-08-25
EP1192075B1 (en) 2004-02-18
DE19960037A1 (en) 2001-06-21
HK1047914B (en) 2004-05-07
EP1192075A1 (en) 2002-04-03
JP2003502072A (en) 2003-01-21
PL352308A1 (en) 2003-08-11
ATE259737T1 (en) 2004-03-15
CN1356946A (en) 2002-07-03
DE50005337D1 (en) 2004-03-25
NO20016164L (en) 2002-02-18
KR20020025078A (en) 2002-04-03
NO20016164D0 (en) 2001-12-17
CN1131158C (en) 2003-12-17
AU765103B2 (en) 2003-09-11
AU2299702A (en) 2002-07-18
HK1047914A1 (en) 2003-03-14
WO2000078605A1 (en) 2000-12-28
NO320943B1 (en) 2006-02-13

Similar Documents

Publication Publication Date Title
JP4114769B2 (en) Method and apparatus for preventing living organisms from growing on seawater boxes and seawater systems installed on ships, offshore platforms, etc.
KR20110027699A (en) Sea chest cooler comprising an integrated antifouling system
US20070221362A1 (en) Disinfection System
JP2003502072A5 (en)
JP2010023691A (en) Ballast water treatment method and ballast water treatment apparatus
US5327848A (en) Method and apparatus for keeping surfaces organism free
JP2794537B2 (en) Method and apparatus for heat treatment of ballast tank
DE19921433C1 (en) Prevention of biological growth formation on equipment of sea water systems on ships, offshore platforms etc. involves local, short-term repetitive heating of enclosed sea water
US5618214A (en) Apparatus and method for eradicating zebra mussels in vessel raw water marine plumbing systems
US20180120031A1 (en) Assembly comprising an object having a surface which is intended to be exposed to water and an anti-fouling protector arrangement
JP3986517B2 (en) Ballast water heat sterilizer and heat sterilization method thereof
JP4409416B2 (en) Method for controlling attached organisms in cooling water coolers in power plants
RU2656385C1 (en) Complex for prevention of ice formation
JP2024099961A (en) Floating Structures
JP3874497B2 (en) Marine animal adhesion prevention method
JPH0972694A (en) Method and apparatus for cleaning plate type heat exchanger
JPH11257022A (en) Sea water system of power-generation plant
JP2005186765A (en) Ballast water sterilization facility for tanker
JPH074871A (en) Method for operating device for removing flowed in foreign material in heat exchanger
JPH01190906A (en) Cooling seawater device for machinery
JPH05171935A (en) Cooling system for cooled-fluid by cooler using sea water as coolant
JPH0343513A (en) Method of preventing marine organism from clinging to inner surface of sea water pipe line in cooling system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061107

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070713

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070723

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070816

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070914

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees