NO176904B - Fremgangsmåte for katalytisk omdanning av et hydrokarbonråstoff - Google Patents
Fremgangsmåte for katalytisk omdanning av et hydrokarbonråstoff Download PDFInfo
- Publication number
- NO176904B NO176904B NO884172A NO884172A NO176904B NO 176904 B NO176904 B NO 176904B NO 884172 A NO884172 A NO 884172A NO 884172 A NO884172 A NO 884172A NO 176904 B NO176904 B NO 176904B
- Authority
- NO
- Norway
- Prior art keywords
- catalyst
- reaction zone
- particles
- steps
- product
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 93
- 238000000034 method Methods 0.000 title claims description 35
- 230000008569 process Effects 0.000 title claims description 14
- 230000003197 catalytic effect Effects 0.000 title claims description 11
- 229930195733 hydrocarbon Natural products 0.000 title claims description 7
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 7
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 5
- 239000003054 catalyst Substances 0.000 claims description 117
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 103
- 239000002245 particle Substances 0.000 claims description 55
- 239000002994 raw material Substances 0.000 claims description 37
- 230000008929 regeneration Effects 0.000 claims description 37
- 238000011069 regeneration method Methods 0.000 claims description 37
- 239000007787 solid Substances 0.000 claims description 36
- 238000011010 flushing procedure Methods 0.000 claims description 24
- 150000001336 alkenes Chemical class 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 22
- 239000002808 molecular sieve Substances 0.000 claims description 21
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 17
- 239000011148 porous material Substances 0.000 claims description 17
- 239000003085 diluting agent Substances 0.000 claims description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims description 14
- -1 ethylene, propylene, butylene Chemical group 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 9
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 150000001728 carbonyl compounds Chemical class 0.000 claims description 2
- 150000002170 ethers Chemical class 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- 150000003568 thioethers Chemical class 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 2
- 150000001412 amines Chemical class 0.000 claims 1
- 239000000047 product Substances 0.000 description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 27
- 239000000126 substance Substances 0.000 description 17
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 239000002002 slurry Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910001868 water Inorganic materials 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000011949 solid catalyst Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 239000002156 adsorbate Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000012013 faujasite Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- HSJKGGMUJITCBW-UHFFFAOYSA-N 3-hydroxybutanal Chemical compound CC(O)CC=O HSJKGGMUJITCBW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 241000269350 Anura Species 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 125000004122 cyclic group Chemical class 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052675 erionite Inorganic materials 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000007420 reactivation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000005549 size reduction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- YPFNIPKMNMDDDB-UHFFFAOYSA-K 2-[2-[bis(carboxylatomethyl)amino]ethyl-(2-hydroxyethyl)amino]acetate;iron(3+) Chemical compound [Fe+3].OCCN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O YPFNIPKMNMDDDB-UHFFFAOYSA-K 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002530 Cu-Y Inorganic materials 0.000 description 1
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- 229910017717 NH4X Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- ZGUQGPFMMTZGBQ-UHFFFAOYSA-N [Al].[Al].[Zr] Chemical compound [Al].[Al].[Zr] ZGUQGPFMMTZGBQ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- JEWHCPOELGJVCB-UHFFFAOYSA-N aluminum;calcium;oxido-[oxido(oxo)silyl]oxy-oxosilane;potassium;sodium;tridecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.[Na].[Al].[K].[Ca].[O-][Si](=O)O[Si]([O-])=O JEWHCPOELGJVCB-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910052908 analcime Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910001683 gmelinite Inorganic materials 0.000 description 1
- 229910001690 harmotome Inorganic materials 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052677 heulandite Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910001711 laumontite Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001723 mesolite Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052674 natrolite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910001743 phillipsite Inorganic materials 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052679 scolecite Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052665 sodalite Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052678 stilbite Inorganic materials 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
- C10G3/48—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
- C10G3/49—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/50—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/60—Controlling or regulating the processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/62—Catalyst regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/42—Addition of matrix or binder particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
- B01J29/85—Silicoaluminophosphates [SAPO compounds]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4006—Temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/70—Catalyst aspects
- C10G2300/708—Coking aspect, coke content and composition of deposits
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/80—Additives
- C10G2300/802—Diluents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/80—Additives
- C10G2300/805—Water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/40—Ethylene production
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
Foreliggende oppfinnelse angår en fremgangsmåte for katalytisk omdanning av et hydrokarbonråstoff inneholdende 1 til 10 karbonatomer pr. molekyl til et produkt inneholdende minst et lett olefin i en hvirvelsjiktreaksjonssone.
Kjemiske omdanninger som benytter faste katalysatorer gjennomføres ofte ved bruk av faste eller fluidiserte sjikt av katalysatorpartikler. Dette vil si at materialet som skal omdannes bringes i kontakt med en fast katalysator som er tilstede i et fast eller et hvirvelsjikt av partikler. Imidlertid har hver av disse to driftsmåter alvorlige mangler. For eksempel resulterer bruken av faste katalysatorsjikt ofte i temperaturkontrollproblemer med ugunstig virkning på katalysatorydelsen. Regenerering og/eller reaktivering av et fast katalysatorsjikt kan resultere i vesentlig prosess-stillstandstid fordi den kjemiske omdanning må stanses for på sikker måte å behandle katalysatoren, for eksempel mens katalysatoren forblir i beholderen. Det å oppnå en enhetlig katalysatoraktivitetsfordeling er også vanskelig med faste katalysatorsjikt, spesielt i situasjoner der hyppig regenerering er nødvendig.
Fluidiserte eller hvirvelsjikt gir generelt bedre temperaturkontroll enn faste katalysatorsjikt. Imidlertid kan fluidiserte katalysatorsjiktsystemer være mer komplekse enn faste systemer. For eksempel involverer hvirvelsjiktkatalysator-systemer vanligvis minst to separate beholdere som hver inneholder et fluidlsert katalysatorsj ikt, ett der man gjennomfører den kjemiske omdanning og ett der man regene-rerer katalysatoren. Katalysatorpartiklene overføres, for eksempel i det vesentlige kontinuerlig, mellom de to separate beholdere. Separeringsanordninger, for eksempel cyklonseparatorer, og glideventilanordninger, er ofte nødvendige i begge beholdere for å separere katalysatorpartikler fra råstoff/- reaksjonsprodukt og regenereringsmediet og for å kontrollere strømmen av katalysator mellom de to beholdere. Slike innretninger har en tendens til å gi øket katalysatortap på grunn av partikkelnedslitning fordi partikkelhastighetene i disse separatorer ofte er heller høy.
"Hydrocarbons from Methanol", utgitt av Clarence D. Chang, presenterer en oversikt og oppsummering av teknologien som er beskrevet. Chang diskuterte omdanningen metanol -+ olefin i nærvær av molekylsikter på sidene 21 til 26. De eksempler Chang har gitt som egnede molekylsikter for omdanning av metanol til olefiner er kabazitt, erionitt og syntetisk zeolitt ZK-5. Kanaldimensjonen er beregnet ut fra en teoretisk modell.
Katalysatorer omfattende en eller flere krystallinske mikroporøse tredimensjonale stoffer eller CMSM'er, inkluderer naturlig forekommende molekylsikter og syntetiske molekylsikter, sammen kalt "molekylsikter", samt sjiktleirer.
Blant de CMSM typer som kan benyttes for å fremme omdanning av metanol til olefiner er ikke-zeolittiske molekylsikter eller NZMS'er som aluminiumfosfat eller ALPO, spesielt silikoaluminofosfater eller SAPO'er som beskrevet i US-PS 4 440 871. US-PS 4 499 327 beskriver en fremgangsmåte for katalytisk omdanning av metanol til lette olefiner ved bruk av SAP0'er ved effektive prosessbetingelser.
■4
Foreliggende oppfinnelse har til hensikt å forbedre den kjente teknikk og angår således en fremgangsmåte av den innledningsvis nevnte art og denne fremgangsmåte karakteriseres ved følgende sekvens av trinn: a) kontakt mellom råstoffet og en fluidisert masse av faste partikler omfattende en krystallinsk, mikroporøs, tredimensjonal, ikke-zeolittisk, molekylsikt-katalysator i reaksjonssonen under betingelser som bevirker omdanning av råstoffet til produktet og som gir et karbonholdig
avsatt materiale på katalysatoren;
b) kontakt mellom partiklene og et første spylemedium i reaksjonssone for å redusere mengden av minst et av
råstoffene og produktet i kontakt med partiklene; og
c) kontakt mellom partiklene og et regenereringsmedium i reaksjonssonen under betingelser som gir fjerning av en
del av det karbonholdige avsatte materialet fra katalysatoren ,
idet trinnene a), b) og c) gjentas periodisk.
Den herværende katalytiske omdanningsprosess gir vesentlige fordeler. Fordi for eksempel partiklene befinner seg i fluidisert tilstand oppnår man effektiv prosesskontroll, spesielt temperaturkontroll og kontroll av katalytisk aktivitet og/eller selektivitet mot det ønskede produkt ved den kjemiske omdanning. Videre kan denne fluidiserings-bevegelse forbedre effektiviteten for spyletrinnet, det vil si trinnene (b) og (d), ved å gjennomføre spylingen relativt hurtigere. Vesentlig er at i det vesentlige hele prosessen kan gjennomføres i samme reaksjonssone eller -beholder. Således er den katalytiske aktivitet for hele katalysator-massen i det vesentlige enhetlig på ethvert gitt tidspunkt i prosessen. Videre blir den fysikalske og mekaniske slitasje og nedbrytning av CMSC på grunn av transport av katalysator mellom en separat reaktor og en separat regenerator, eliminert. På grunn av dette kan sammensetningen for de faste pårtikler justeres for derved å forbedre katalytisk ydelse uten at dette medfører vesentlig fysikalsk tap av katalysator. Ved bruk av en enkelt beholder i stedet for et to-beholdersystem reduseres også mengden utstyr som er nødvendig for å gjennomføre den kjemiske omdanning og for å separere de forskjellige komponenter, for eksempel råstoff, produkt, regenereringsmedium og så videre, fra de faste partikler. Stillstandstiden reduseres når man slik det er foretrukken gjentar trinnene (a), (b), (c) og (d) periodisk og fortrinnsvis på en i det vesentlige kontinuerlig basis.
Som angitt ovenfor blir trinnene (a), (b), (c) og (d) periodisk gjentatt, for eksempel for å forbedre effektiviteten av katalysatoren, i trinn (a). Disse trinn blir mer foretrukket gjentatt i sekvens, det vil si (a), (b), (c) og (d). I en utførelsesform der katalysatoren underkastes kun en regenerering eller reaktivering før den kasseres blir trinn (a) gjentatt efter trinn (d). I denne utførelsesform og efter at katalysatoren ikke lenger er aksepterbar for bruk i trinn (a) , kan katalysatoren kasseres eller transporteres for annen behandling, for eksempel for å revitalisere katalysatoren, før gjeninnføring av katalysatoren til reaksjonssonen.
Betingelsene ved hvilke hvert av trinnene (a), (b), (c) og (d) gjennomføres, kan velges uavhengig forutsatt at hvert trinn er effektivt som her beskrevet. Det foreliggende system er spesielt effektivt i situasjoner der trinn (a) skjer ved en midlere temperatur innen ca. 100°C, helst innen ca. 50° C og aller helst innen ca. 20°C fra den midlere temperatur der trinn (c) skjer. Disse foretrukne temperaturpar tillater lett overgang mellom trinnene (a) og (c) og reduserer de termiske belastninger på katalysatoren og på prosessutstyret. Hvis ett av disse temperaturpar benyttes, er det foretrukket at den midlere temperatur ved hvilken trinnene (b) og (d) skjer er i det vesentlige innen samme område. Fortrinnsvis er den midlere temperatur ved hvilken hvert av trinnene (a), (b), (c) og (d) skjer, innenfor ca. 100°C og aller helst innen ca. 50°C og fortrinnsvis innen ca. 20°C av den midlere temperatur ved hvilken alle andre slike trinn skjer.
I en spesielt brukbar utførelsesform blir betingelsene ved hvilken trinnene (a), (b) og (c), fortrinnsvis trinnene (a), (b) , (c) og (d), gjennomført og frekvensen av periodiske gjentagelse av slike trinn valgt for å regulere temperaturen i reaksjonssonen under slike trinn til innenfor et på forhånd angitt område, fortrinnsvis innen et område som defineres av ett av de ovenfor angitte temperaturpar. Korte cykler, for eksempel cykler på minutter, timer eller dager i stedet for måneder eller år, er spesielt attraktive når man gjennomfører oppfinnelsen. Slike korte cykler er hensiktsmessig for nøyaktig kontroll av reaksjonssonebetingelsene under alle trinnene (a), (b), (c) og (d) og tillater i tillegg mer effektiv optimalisering av katalysatortilstanden. Slike korte cykler understøtter også opprettholdelse av en relativt konstant temperatur, for eksempel som definert her, i reaksjonssonen under alle trinnene (a), (b) og (c) eller (a), (b), (c) og (d).
For å gjennomføre foreliggende fremgangsmåte ved høy effektivitetsgrad kan det være ønskelig i det minste periodisk og fortrinnsvis i det vesentlige kontinuerlig å trekke av en del av katalysatoren fra reaksjonssonen for ytterligere behandling for å forbedre minst en katalytisk egenskap av den avtrukne katalysator. På grunn av temperatur-belastningen under hvilken reaksjonssonen drives kan det være vanskelig helt ut å regenerere (reaktivere) katalysatoren med regenereringsmediet. En del eller slippstrøm av katalysator, for eksempel ca. 1 til 50% av total katalysatormengde pr. reaksjonssonecyklus, trekkes av fra reaksjonssonen og bringes i kontakt med et medium, fortrinnsvis inneholdende oksygen, under betingelser og fortrinnsvis alvorlige betingelser, for eksempel for tid, temperatur og/eller oksygenkonsentrasjon, enn det som foreligger i trinn (c) for derved å forbedre minst en katalytisk egenskap i katalysatoren for å fremstille en behandlet katalysator. Denne gjeninnføres eller tilbake-føres til reaksjonssonen for ytterligere bruk ved foreliggende fremgangsmåte.
Som nevnt ovenfor er CMSCer katalysatorer som fremmer kjemisk reaksjon av molekyler med valgt størrelse, form eller overgangstilstand. Det vil si at slike CMSCer er katalysatorer som fremmer kjemiske reaksjoner av råstoff-molekyler som stemmer overens med en gitt molekylstørrelse, form eller overgangstilstand. Forskjellige CMSCer har forskj ellige størrelses-/form-/overgangstilstandsegenskaper avhengig av den fysikalske struktur og den kjemiske sammensetning, for eksempel den effektive diameter for katalysa-torens porer. Således avhenger den spesielle CMSC som velges av det spesielle råstoff som benyttes samt den spesielle kjemiske reaksjon eller omsetning og det ønskede produkt. Fortrinnsvis har den anvendte CMSC en i det vesentlige enhetlig porestruktur, for eksempel i det vesentlig formet og størrelsesgitt. Slike CMSCer inkluderer for eksempel sjiktleirer; zeolittiske molekylsikter samt ikke-zeolittiske molekylsikter eller NZMS'er.
De her brukbare MZMS'er inkluderer molekylsikter som omfattes av en empirisk kjemisk sammensetning som på vannfri basis uttrykkes ved formelen:
der Q betyr minst et element som er tilstede som en ramme-verksoksyd enhet QO2<11> med ladningen n der n kan være -3, -2, -1, 0 eller +1; R betyr minst et organisk sjablonmiddel tilstede på det intrakrystallinske poresystem; m betyr den molare mengde av R som er tilstede pr. mol (QwAlxPvSiz)02 og har en verdi fra 0 til ca. 0,3; og w, x, y og z betyr molandelene QO2<11>, A102_, PC"2+ og SiC"2» tilstede som ramme-verksoksyd enheter. Q karakteriseres som et element med en midlere T-0 avstand i tetraedrisk oksydstrukturer på mellom 1*51 og 2,06 Å. Q har en kationelektronegativitet mellom ca. 125 og 310 kcal/gramatom og Q er i stand til å danne stabile Q-0-P- Q-0-A1- eller Q-O-Q-bindinger i krystallinske tredimensjonale oksydstrukturer med en Q-0 bindings dissosia-sjonsbindingsenergi på over ca. 59 kcal/gramatom ved 298° K<1 >(se diskusjonen på side 8a, b og c i EP-publ. 0159624 når det gjelder karakteriseringen av EL og M). Slike er ekviva-lenter Q som her benyttet; og w, x, y og z betyr molandelene av Q, aluminium, fosfor og silisium, tilstede som rammeverks-oksyder idet molfraksjonene ligger innenfor de begrensende sammensetningsverdier eller punkter som følger:
w er lik 0 til 99 mol-%
y er lik 1 til 99 mol-%
x er lik 1 til 99 mol-# og
z er lik 0 til 99 mol-#.
Q i QAPSO-molekylsiktene med formel (I) kan defineres til å representere minst et element i stand til å danne et ramme-verks-tetraederoksyd og kan være et av elementene arsen, beryllium, bor, krom, kobolt, gallium, germanium, jern, litium, magnesium, mangan, titan, vanadium og sink. Kombinasjoner av elementene er også omfattet av Q og i den grad slike kombinasjoner er tilstede i strukturen for QAPSO kan de være tilstede i molandeler i Q komponenten innen området 1 til 99$. Det skal påpekes at formel (I) tar sikte på ikke-eksistens av Q og Si. I et slikt tilfelle vil den operative struktur være den til aluminofosfat eller AIPO4. Der z har en positiv verdi er den operative struktur den til silikoalu-minofosfat eller SAPO. Således representerer uttrykket QAPSO ikke nødvendigvis at elementene Q og S (i virkeligheten Si) er tilstede. Når Q er en multiplisitet av elementer, er elementene i en viss grad tilstede som her angitt og den operative struktur er den til ELAPSO'er eller ELAPCer eller MeAPO'er eller MeAPSCer som her beskrevet. Under den betraktning at molekylsiktene av QAPSO varieteten foreligger der Q er et annet element eller andre elementer, er det meningen å omfatte disse som en egnet molekylsikt for gjennomføring av oppfinnelsen.
Illustrerende for QAPSO sammensetninger og strukturer er de forskjellige blandinger og strukturer som er beskrevet i de patenter og søknader som er angitt i Tabell A nedenfor og av Flanigen et al. i artikkelen "Aluminophosphate Molecular Sieves and the Periodic Table", publisert i "New Developments and Zeolite Science Technology" utgitt av Y. Murakami, A. Sijima og J.M. Ward, sidene 103-112 (1986).
Zeolittiske molekylsikter kan representeres ved formelen:
der Me er et metallkation, x/n er et helt tall av utbyttbare metallkationer med valensen n, x også er antallet aluminium-ioner, bundet i form av aluminat, y er antallet silisium-atomer og z er antallet vannmolekyler, hvis fjerning gir det karakteristiske pore- eller kanalsystem. Forholdet z:x er et tall fra 1 til 5 og vanligvis fra 1 til 2.
Karakteristisk for de zeolittiske molekylsiktene er kabasitt, faujasitt, levynitt, Linde type A, gismondin, erionitt, sodalitt, Linde type X og Y, analcim, gmelinitt, harmotom, levynitt, mordenitt, epistilbitt, heulanditt, stilbitt, edingtonitt, mesolitt, natrolitt, scolecitt, thomsonitt, brewsteritt, laumontitt, fillipsitt, ZSM'ene [for eksempel ZSM-5 (se US-PS 3 207 886), ZSM-20 (se US-PS 3 972 983), ZSM-12 (se US-PS 3 832 449), ZSM-34 (se US-PS 4 079 095) etc] og Beta (se US-PS 3 308 069 og US-RE 28 341) og lignende. Karakteristiske for egnede zeolittiske molekylsikter som kan benyttes ved gjennomføring av oppfinnelsen er de følgende: Zeolitter- A, AgX, AgY, A1HY, alkylammonium X og Y, BAX, BAY, BeY, Ca-A, Ca-nær faujasitt, Ca-HX, Ca-X, Ca-Y, CdX, CdY, CeY, CoA, CoX, CoY, CrY, CsL, CsX, CsY, Cu-X, Cu-Y, Cu-dietylammonium Y, Cu-etylammonium Y, Fe-X, Fe-Y, gruppe IAX, gruppe IAY, gruppe IIAY, HY, KL, KX, KY, L, La-X, La-Y, LiA, LiX, LiY, LZ-10, LZ-210, MgHY, MgNa, MgNH4Y, MgX, MgY, MnX, MnY, Na-A, Na-nær faujasitt, Na-L, Na-X, Na-Y, NH4L, NH4X, NH4Y, Ni-A, Ni-X, Ni-Y, omega, PdY, fosfat, Pt, ultra-stabil Y, tetrametylammonium Y, TIX, trietylammonium Y, X, Y, Y-82, ZK-5, Zn-mordenitt, Zn-X, An-Y, ZSM'ene, som nevnt ovenfor og lignende.
Andre zeolittiske CMSCer som kan benyttes ifølge oppfinnelsen omfatter borbehandlede aluminosilikater som beskrevet i US-PS 4 613 720. Andre NZMS'er er silisiumdioksydmolekyl-siktene slik som silikalitt som angitt i US-PS 4 061 724.
Den midlere diameter for porene i de her brukbare CMSCer ligger fortrinnsvis innen området ca. 3 til 15 Å, bestemt i henhold til "Zeolite Molecular Sieves" av Donald W. Breck, publisert av John Wiley & Sons, New York, 1974. Denne midlere diameter kalles som den midlere effektive diameter. Når råstoffet og det ønskede produkt eller produkter er relativt lite, for eksempel organiske komponenter inneholdende 1 til ca. 10 og fortrinnsvis 1 til ca. 4 karbonatomer pr. molekyl, har CMSC-materiale fortrinnsvis porer der minst en del og fortrinnsvis hovedandelen har en midlere effektiv diameter som karakteriseres ved at kapasiteten, målt ved standard McBain-Bakr-gravimetrisk adsorpsjon ved bruk av et gitt adsorbatmolekyl), viser en adsorpsjon for oksygen med midlere kinetisk diameter på ca. 0,346 nm, fortrinnsvis for xenon med midlere kinetisk diameter på 0,4 nm og aller helst n-heksan med midlere kinetisk diameter på 0,43 nm med samtidig neglisjerbar adsorpsjon for isobutan. Neglisjerbar adsorpsjon for et gitt adsorbat er adsorpsjon av mindre enn 3 vekt-# CMSC og adsorpsjonen utgjør over 3 vekt-56 av adsorbatet basert på vekten av CMSC. Visse av de CMSCer som kan benyttes ifølge oppfinnelsen har porer med en midlere effektiv diameter innen området ca. 3 til 5 Å.
De her brukbare katalysatorer innarbeides i faste partikler hvori katalysatoren er tilstede i en mengde som fremmer ønsket kjemisk omdanning. I en utførelsesform omfatter de faste partikler en katalytisk effektiv mengde av katalysatoren og minst et fyllmateriale samt et bindemiddel som gir ønskede egenskaper, for eksempel ønsket katalysatorfortyn-ning, mekanisk styrke og lignende, for de faste partikler. Slike fyllstoffer og bindemidler, det vil si matriksmateriale er i en viss grad porøs av art og kan eventuelt bevirke fremming av den ønskede kjemiske omdanning. Slike matriksmaterialer er for eksempel syntetiske og naturlig forekommende stoffer, metalloksyder, leirer, silisiumdioksyder, aluminiumoksyder, samt oksyder av aluminium, magnesium, zirkonium, thorium, beryllium, titan, aluminium-thorium, aluminium-zirkon og blandinger av disse sammen med silisium-dioksyd.
Hvis ett eller flere matriksmaterialer er innarbeidet i de faste partikler omfatter katalysatoren fortrinnsvis ca. 1 til ca. 99, og helst ca. 5 til 90 og aller helst ca. 10 til 80 vekt-# av de faste partikler.
Fremstillingen av faste partikler omfattende CMSC og matriksmaterialer er konvensjonell og velkjent i denne teknikk og skal derfor ikke diskuteres i detalj. Hvis slike frem-stillingsprosedyrer er beskrevet i patentene og søknadene som nevnt ovenfor så vel som i US-PS 3 140 253 og US-reissue 27 639. CMSC'ene som dannes under og/eller som del av metodene for fremstilling av de faste partikler ligger innenfor oppfinnelsens ramme.
<.
Da faste partikler inkludert katalysatorene kan være av en hvilken som helst størrelse som funksjonelt er egnet ifølge oppfinnelsen. Katalysatoren kan benyttes i et fast sjikt, et brusende sjikt, et bevegelig sjikt eller et hvirvelsjikt-system så vel som i en katalysator/væskeoppslemming. Katalysatoren benyttes fortrinnsvis i fluidisert tilstand eller i et katalysator/væskeoppslemmingsreaksjonssystem og aller helst i fluidisert tilstand for derved å lette kontroll av aktiviteten av katalysatoren efter ønske. For at katalysatoren skal kunne benyttes mere effektivt er de faste partikler fortrinnsvis små i forhold til fastsjikt faststoffpartiklene som benyttes for å fremme tilsvarende kjemisk omdanning. Mere spesielt har de faste partikler en maksimal tverrdimensjon, for eksempel diameter, innen området ca. 1 til 500 pm og helst ca. 25 til 200 jjm.
Katalysatoren og/eller de faste partikler kan underkastes mekanisk størrelsesredusering som oppmaling, knusing, nedsliping og lignende for å oppnå den ønskede partikkel-størrelse. Imidlertid er det foretrukket at de faste partikler som inkluderer katalysatoren er glatte og ennu bedre sfæriske i forhold til faste partikler av tilsvarende sammensetning, oppnådd ved mekanisk størrelsesreduksjon. Slik partikkelglatthet og sfærisitet har en tendens til å forbedre den brukbare levetid for katalysatoren og, når det benyttes et oppslemmingssystem, kan også tillate øket faststoff oppfylling i oppsiemmingen hvis dette er ønskelig. Et spesielt brukbart behandlingstrinn for å oppnå slik glatthet og sfærisitet er å benytte spraytørking som en del av fastpartikkel fremstillingsprosessen for derved å danne de faste partikler eller forløpere for de faste partikler. Ytterligere fordeler ved å anvende slik spraytørking er at betingelsene for dette trinn kan kontrolleres slik at de faste fremstilte partikler har en ønsket partikkelstørrelse eller et ønsket område. Bruken av spraytørking ved slik partikkelfremstilling er konvensjonell og velkjent og skal ikke diskuteres nærmere her.
Ikke-zeolittiske molekylsikter eller NZMS'er er spesielt brukbare ved gjennomføring av oppfinnelsen. Blant disse er SAPCene spesielt brukbare. SAPO-17 og SAPO-34 som er beskrevet i detalj i eksempel 38 i US-PS 4 440 871, er spesielt foretrukne katalysatorer for å fremme omsetningen av molekyler inneholdende et karbonatom, for eksempel metan, metanol, metylhalogenid og lignende, for derved å gi produkter med opp til 6 og fortrinnsvis opp til 4 karbonatomer pr. molekyl, for eksempel etylen, propylen, butylen og lignende. Vanligvis er SAPO-34 mest foretrukket.
Mengden katalysator eller faste partikler i reaksjonssonen kan variere innen vide områder avhengig for eksempel av de spesielle anvendelser.
Oppfinnelsen gjennomføres slik at katalysatoren er tilstede i fluidisert tilstand, i en utførelsesform som hvirvelsjikt av faste partikler.
Den kjemiske omdanning eller reaksjon som oppnås ved gjennomføring av oppfinnelsen kan variere innen vide grenser og avhenger for eksempel av råstoffet og katalysator som benyttes og av råstoff/katalysator-kontaktbetingelser. I det vesentlige enhver kjemisk omdanning eller reaksjon som er i stand til å kunne katalyseres av en CMSC kan gjennomføres under gjennomføring av oppfinnelsen. Eksempler på reaksjoner som kan oppnås inkluderer krakking, disproporsjonering, olefinfremstilling fra ikke-olefinråstoffer; olefin-inter-konversjon; aldol-, for eksempel aldehyd-aldehyd-, keton-keton-, aldehyd-keton- og aldehyd- eller keton-aromatisk komponent, -kondensasjon; kondensasjonsreaksjoner for fremstilling av cykliske laktamer, isoprendannelse, alky-lering (aromatisk som benzen-, toluen- og fenolalkylering); og isomerisering som xylenisomerisering. En spesielt foretrukken kjemisk omdanning eller reaksjon involverer olefinfremstilling fra ikke-olefinråstoffer og mer spesielt råstoffer omfattende alifatiske heteroforbindelser.
I det vesentlige ethvert råstoff eller en kombinasjon av råstoffer kan benyttes ifølge oppfinnelsen. Et slikt råstoff, for eksempel reaktantkomponent eller -komponenter, kan være gassformige, fast eller flytende ved omgivelsestemperatur, det vil si ca. 20°C og atmosfærisk trykk. Råstoffene kan være uorganiske, organiske eller en kombinasjon. Det foreliggende reaksjonssystem kan spesielt anvendes på organiske råstoffer, spesielt med molekyler omfattende karbon og hydrogen og aller helst minst ett ytterligere element som fortrinnsvis velges blant oksygen, svovel, halogen, nitrogen, fosfor og blandinger derav, idet oksygen er spesielt foretrukket.
Som antydet tidligere er foreliggende oppfinnelse spesielt brukbar ved omdanning av råstoffer med relativt små molekyler, det vil si molekyler med relativt små kinetiske diametere. Således inneholder råstoffet fortrinnsvis 1 til 10 og helst 1 til 4 karbonatomer pr. molekyl. Alifatiske heteroforbindelser er spesielt foretrukne råstoffer for bruk ifølge oppfinnelsen, spesielt når lette olefiner, det vil si olefiner inneholdende 2 til ca. 6 og helst 2 til 4 karbonatomer pr. molekyl, skal fremstilles. Når lette olefiner er det ønskede produkt fremstilles slike olefiner fortrinnsvis som hovedhydrokarbonproduktet, det vil si at over 50 mol-# av hydrokarbonproduktet er lette olefiner. Uttrykket "alifatiske heteroforbindelser" benyttes for å inkludere alkoholer, halogenider, merkaptaner, sulfider, amider, etere og karbonylforbindelser (aldehyder, ketoner, karboksylsyrer og lignende). Den alifatiske del inneholder fortrinnsvis fra 1 til ca. 10 karbonatomer og inneholder mere spesielt fra 1 til ca. 4 karbonatomer. Egnede reaktanter er lavere rette eller forgrenede alkanoler, disses umettede motstykker, og nitrogen-, halogen- og svovelanaloger av slike. Represen-tative for egnede alifatiske heteroforbindelser er metanol; metylmerkaptan; metylsulfid; metylamin; dimetyleter; etanol; etylmerkaptan; etylklorid; dietyleter; metyletyleter; form-aldehyd; dimetylketon; eddiksyre; n-alkylaminer; n-alkyl-halogenider og n-alkylsulfider med n-alkylgrupper med 3-10 karbonatomer; og blandinger derav. Komponenter inneholdende 1 karbonatom/molekyl er spesielt attraktive som råstoffer ifølge oppfinnelsen. I en utførelsesform der for eksempel lette olefiner er de ønskede produkter, velges råstoffet fortrinnsvis blant metanol, etanol, dimetyleter, dietyleter og blandinger derav i det metanol er spesielt foretrukket.
I visse tilfeller er det foretrukket at råstoff/katalysator-kontaktbetingelsene er slik at kontakttemperaturen over-skrider den kritiske temperatur for råstoff. Med andre ord er under visse utførelsesformer råstoffet fortrinnsvis i superkritisk tilstand i trinn (a). Det å ha råstoffet i superkritisk tilstand er spesielt "brukbart når råstoffet inneholder 1 til ca. 10 og helst 1 til ca. 4 karbonatomer pr. molekyl.
Produktet eller produktene som oppnås fra trinn (a) kontakten vil selvfølgelig for eksempel avhenge av råstoff, katalysator og valgte betingelser. Fortrinnsvis er det ønskede produkt organisk. Imidlertid skal det påpekes at et nødvendig og derfor ønskelig reaksjonsfri produkt kan være uorganisk selv når primærproduktet som tilstrebes er organisk. Dette eksemplifiseres ved omdanning av metanol til lette olefiner pluss vann. Det organiske produkt eller produktene har molekyler som fortrinnsvis inkluderer karbon og hydrogen. I en utførelsesform inneholder det ønskede produkt fortrinnsvis 1 og opptil 10 og helst 1 til ca. 4 karbonatomer pr. molekyl. Det eller de ønskede produkter har fortrinnsvis kinetiske diametere som tillater at produktet eller produktene kan fjernes fra eller unnslippe fra porene til CMSC.
I tillegg til råstoffet kan et fortynningsmiddel benyttes i forbindelse med råstoffet hvis dette er ønskelig og/eller fordelaktig for den totale prosess. Et slikt fortynningsmiddel kan være blandet eller kombinert med råstoffet før trinn (a) råstoff/katalysatorkontakten eller innføres til reaksjonssonen separat derfra. Fortrinnsvis blir begge i det vesentlige kontinuerlig matet til reaksjonssonen under trinn (a) . En slik fortynning bevirker fortrinnsvis en moderering av hastigheten og fortrinnsvis også av graden av råstoff-kjemisk omdanning og kan også bevirke en temperaturkontroll. I visse utførelsesformer blir fortynningsmidlet fortrinnsvis kontinuerlig matet til reaksjonssonen i minst ett av trinnene (b) , (c) og (d) hvis trinn (d) benyttes, helst under alle trinnene. Bruken av fortynningsmidlet under prosessen forskjellig fra under trinn (a) har en tendens til å være fordelaktig for katalysatoren og forbedre prosesskontrollen. Nærværet av et slikt fortynningsmiddel på en i det vesentlige kontinuerlig basis kan gi en glattere overgang fra ett trinn i prosessen til det neste.
Typisk for tynningsmidlene som kan benyttes i foreliggende fremgangsmåte er helium, argon, nitrogen, karbonmonoksyd, karbondioksyd, hydrogen, vann, hydrokarboner og blandinger derav. Når råstoffet inneholder 1 til 6 karbonatomer pr. molekyl, blir fortynningsmidlet fortrinnsvis valgt blant helium, argon, nitrogen, karbonmonoksyd, karbondioksyd, hydrogen, vann og blandinger av derav med vann, idet nitrogen og blandinger derav, spesielt vann, er mest foretrukket. Mengden benyttet fortynningsmiddel kan variere innen vide områder avhengig av anvendelsen. For eksempel kan mengden fortynningsmiddel ligge innen området 0,1 til mindre enn ca. 99$ eller mer av antall mol råstoff.
Trinn (a) i foreliggende prosess resulterer ofte i at katalysatoren mister i det minste en del av en ønsket egenskap, for eksempel katalytisk evne. Katalysatoren bringes i kontakt med regenereringsmedium i trinn (c) fortrinnsvis for i det vesentlige å opprettholde eller forbedre effektiviteten for katalysatoren for derved å fremme den ønskede kjemiske omdanning. For eksempel kan katalysatoren bli mindre effektiv på grunn av dannelse av karbonholdige avsetninger eller forløpere av slike i porene eller andre deler av katalysatoren og/eller de faste partikler i trinn (a). I en utførelsesform bevirker regenereringsmediet i trinn (c) en reduksjon av den midlere kinetiske diameter for molekylene som er tilstede i porene i katalysatoren. En slik reduksjon i kinetisk diameter for disse molekyler er fortrinnsvis tilstrekkelig til å tillate at de resulterende molekyler forlater eller trer ut av katalysatorporene for derved å gi flere porer og/eller mer porevolum for ønsket kjemisk omdanning. I trinnet (c) blir katalysatoren i reaksjonssonen regenerert, for eksempel ved å fjerne karbonholdig avsatt materiale ved oksydasjon i en oksygenholdig atmosfære.
I en utførelsesform inkluderer katalysatoren minst en tilsatt komponent som bevirker å fremme virkningen av regenereringsmediet. For eksempel kan katalysatoren inkludere minst en metallkomponent som fremmer oksydasjon av karbonholdig avsatt materiale. Selvfølgelig må en slik metallkomponent ikke ha noen i det vesentlige ugunstig virkning på den ønskede kjemiske omdanning. Denne spesifikke tilsatte katalysator-komponent avhenger av kravene for de spesielle anvendelser. Eksempler på slike tilsatte komponenter er komponenter av overgangsmetaller som nikkel, kobolt, jern, mangan, kobber og lignende, platina-gruppemetaller som platina, palladium, rhodium og lignende samt sjeldne jordartsmetaller som cerium, lantan og lignende, videre blandinger derav. Hvis en tilsatt metallkomponent benyttes, er det foretrukket av denne komponent er tilstede som en mindre mengde, helst ca. 1 ppm til ca. 20$, alt på vektbasis, beregnet som elementært metall, inkludert matriksmaterialer som benyttes.
Alternativt til den oksydative katalysatorregenerering kan et reduserende medium benyttes i trinn (c) for derved å regenerere katalysatoren. Et slikt medium, fortrinnsvis valgt blant hydrogen, karbonmonoksyd og blandinger derav, i særdeleshet hydrogen, kan for eksempel benyttes for omsetning med molekyler av for eksempel karbonholdig avsetningsmate-rialers forløpere i porene i katalysatoren, for derved å gi molekyler med redusert kinetisk diameter slik at slike fremstilte molekyler kan tre ut av katalysatorporene. I en utførelsesform er det reduserende medium hydrogen og katalysatoren inkluderer minst en komponent, fortrinnsvis en metallkomponent, som fremmer hydrogenering og/eller hydro-krakking av molekyler som er tilstede på katalysatoren, for eksempel i dennes porer under betingelsene for den reduktive regenerering i trinn (c).
Kombinasjoner av oksydativ og reduktiv katalysatorregenerering kan benyttes. For eksempel kan bruken av et reduserende medium i trinn (a), for eksempel som fortynningsmiddel som her diskutert, i det minste delvis regenerere katalysatoren og derved forlenge den brukbare cykluslevetid før katalysatoren underkastes en mer total oksydativ regenerering. Selvfølgelig kan oksydativ regenerering og reduktiv regenerering av katalysatoren benyttes alene alt efter behov.
Mellom trinnene (a) og (c) kan katalysatoren underkastes spyling for å minimalisere og fortrinnsvis eliminere kontakt mellom råstoffproduktet fra trinn (a) og regenereringsmedium/ regenerer ingsmediumprodukt i trinn (c). Et slikt spyletrinn eller ikke-spyletrinn kreves ofte for å unngå en heftig og sågar eksplosiv reaksjon mellom de forskjellige stoffer. Det første spylemedium i trinn (b) og det andre spylemedium i trinn (d) velges for effektivt å spyle katalysatoren som her beskrevet. Slike medier har ingen vesentlig ugunstig virkning på katalysatoren eller på den ønskede kjemiske omdanning eller reaksjon. Det første spylemedium er fortrinnsvis i det vesentlige kjemisk inert overfor råstoff og produkt (og eventuelt fortynningsmiddel) ved de betingelser der trinn (a) gjennomføres. Det andre spylemedium er fortrinnsvis kjemisk inert i forhold til regenereringsmediet og regenereringsmediumproduktet ved de betingelser der trinn (c) inntrer.
Det første og andre spylemedium er fortrinnsvis gassformig ved betingelsene for trinnene (a) og (c). Mengden og strømningshastighet for disse medier kan variere innen vide områder, forutsatt at mengden og strømningshastigheten er tilstrekkelig til å gjennomføre trinnene (b) og (d) som ønsket. For store mengder og strømningshastighet for slike medier bør unngås for å kontrollere spyletid og -omkost-ninger. Selvfølgelig bør tilstrekkelig spylemedium benyttes for effektivt å eliminere enhver farlig tilstand i reaksjonssonen. Spylemediet blir fortrinnsvis innført i reaksjonssonen i tilstrekkelig høy hastighet til å understøtte bevegelse av de faste partikler i reaksjonssonen. Denne bevegelse for de faste partikler letter effektiv og grundig spyling av reaksj onssonen.
Sammensetningen av det første og andre spylemedium som kan benyttes ifølge oppfinnelsen kan variere avhengig av den spesielle anvendelse. Hvis det er hensiktsmessig, kan det første og andre medium uavhengig velges blant de stoffer fra hvilke fortynningsmidlet som her beskrevet, velges. Fortrinnsvis blir minst ett og aller helst begge de to spyle-medier og fortynningsmidler valgt blant det samme materiale. I visse utførelsesformer blir det første og andre spylemedium fortrinnsvis uavhengig valgt blant vann, nitrogen og blandinger derav, fortrinnsvis dog vann.
Foreliggende fremgangsmåte kan gjennomføres i en enkelt reaksjonssone eller et antall slike arrangert i serie eller i parallell. Efter at det ønskede produkt eller produkter separeres fra de faste partikler for eksempel ved bruk av faststoff:gass-separeringsanordninger som cyklonseparatorer kan forskjellige teknikker som destillasjon, adsorpsjon og lignende benyttes for å gjenvinne eller rense produktet eller produktene. Den samme faststoff/gass-separeringsenhet benyttes fortrinnsvis for å separere faststoffpartiklene fra det første og andre spylemedium, regenereringsmediet og de eventuelle produkter. Denne multippelbruk av slike innretninger er en vesentlig omkostningsbesparende faktor ifølge oppfinnelsen. På grunn av den cykliske art av foreliggende fremgangsmåte er det en utførelsesform foretrukket at et antall reaksjonssoner benyttes. Det er foretrukket at tidsavstemmingen for trinnene (a), (b), (c) og (d) bestemmes på forhånd slik at en relativt konstant mengde produkt gå fra reaksjonene til produktsepareringssystemene. Derved kan disse arbeide effektivt på relativt stabil basis.
Betingelsene for trinn (a) kan variere innen vide grenser, for eksempel avhengig av det spesielle råstoff og den benyttede katalysator og av det spesifikke produkt som ønskes. Foreliggende fremgangsmåte er spesielt anvendelig der trinn (a) kontakttemperaturene ligger over ca. 200 og fortrinnsvis over ca. 300°C, og med trykk utover 68,95 x 10<3>Pa man. og fortrinnsvis over 344,75 x 10<3>Pa man. Hvis lette olefiner skal fremstilles og inneholdende ca. 1 til 4 karbonatomer ligger trinn (a) temperaturene fortrinnsvis innen området 200 til 600"C eller sågar 700°C, fortrinnsvis 350 til 550°C og aller helst 400 til 500°C, mens trykket i trinn (a) fortrinnsvis ligger under ca. 10,34 x lO^Pa man. Det trykk ved hvilket trinnene (b), (c) og (d) skjer ligger fortrinnsvis innen ca. 689,5 x 10<3>Pa man., aller helst innen 344,75 x 10<3>Pa man. fra trinn (a)-trykket. I visse ut-førelsesformer blir trykket i reaksjonssonen holdt i det vesentlige konstant gjennom trinnene (a), (b), (c) og (d). Oppholdstiden for råstoffet i reaksjonssonen kan uavhengig velges for eksempel avhengig av det spesielle råstoff og den benyttede katalysator, eller avhengig av det ønskede produkt.
De følgende ikke-begrensende eksempler skal illustrere oppfinnelsen.
Eksempel 1
Et materiale inkludert en katalysator for omdanning av metanol til olefin ble benyttet i visse av de følgende eksempler og ble fremstilt på følgende måte.
En første oppslemming av 50 vekt-56 SAPO-34-krystaller og 50 vekt-# vann ble fremstilt og underkastet kontinuerlig blanding. I en separat beholder ble en vandig oppslemming av kaolinleire og aluminiumhydroksydklorid (inkludert ekviva-lenten til 23,4 vekt-# aluminiumoksyd, beregnet som AI2O3) fremstilt. Den første oppslemming ble satt til den andre for derved å gi en kombinert oppslemming som ble blandet i ca. 10 minutter. Den kombinerte oppslemming ble så oppmalt for å oppnå en i det vesentlige enhetlig partikkelfordeling.
Den oppmalte oppslemming ble så spraytørket for å gi partikler med en midlere partikkelstørrelse på ca. 70 pm. De spraytørkede partikler ble kalsinert i 2 timer ved 600°C.
Blandingen fra den første og andre oppslemming ble valgt slik at sluttpartiklene inneholdt 60 vekt-# SAPO-34, 23 vekt-# kaolinleire og 17 vekt-# AI2O3.
Eksempel 2 til 26
En forsøksapparatur var som følger:
Reaktoren var en hvirvelsjiktreaktor av rustfritt stål med en ytre diameter 2,5 cm og med en utvidet utslippssone øverst. Reaktoren var på forhånd belagt innvendig med natriumsilikat for å minimalisere katalysatoraktiviteten i selve reaktoren. Reaktoren ble fylt med 97 g materiale som fremstilt i eksempel 1. Reaktortemperaturen ble kontrollert ved hjelp av et Techne SBL2-D fluidisert sandbad i hvilket reaktoren var anbragt. Metanol av analytisk kvalitet ble matet til ved bruk av en 150 rpm FMI-doseringspumpe med RHOCKC-mikrohode. Metanolen ble fordampet og forvarmet i matelinjene til reaktoren ved bruk av varmetape. Metanolstrømmen ble målt ved periodisk overvåking av nivåforandringen i en byrette i pumpesuglinjen. Et lite rotameter ble også benyttet for å kontrollere metanolstrømmen.
Nitrogenfortynningsmidlet ble matet til fra høytrykks-sylindere. Denne ble blandet med metanolen oppstrøms reaktoren. Nitrogenstrømmen ble kontrollert med en Veriflow-kontrollapparatur og målt ved hjelp av et rotameter.
Trykket i reaktoren ble kontrollert ved bruk av en Grove-trykkregulator på reaktorutløpet. Trykket ble redusert efter reaktorutløpet til ca. 34,47 x 10<3>Pa man. for å unngå kondensasjon i prøvelinjene. Fra reaktoren førte damp-kapperørledninger til gasskromatografen og så til turbin-strømningsmåleren for måling av gasstrømmen. Koblinger og andre potensielt kalde områder var oppvarmet elektrisk og isolert for å forhindre enhver kondensasjon av vann eller tyngre produkter i prøveledningene. Gasstrømmen ble luftet mot en kondensator gjennom en våtmåler og ble sendt tilbake til en kappe.
Regenereringen ble kontrollert ved hjelp av et sett av lavstrømstyrke ASCO-solenoid koblingsventiler, som ble styrt av en IBMPC-drevet ISAAC-datainnretning med tilhørende kontrollsystem. Ved begynnelsen av regenereringscyklusen ble metanolråstoffet koblet bort fra reaktoren og ført via en resirkuleringsledning tilbake til matetanken. Samtidig ble en nitrogenspylingstrøm koblet inn i reaktoren og regeneringen ble påbegynt.
Reaksjonsproduktet ble analysert ved hjelp av en Varian 3700 gasskromatograf med to kolonner, Carbosieve S2 og Poropack R med termisk konduktivitet og flammeionisering som de respektive detektorer. Systemet ga full strømanalyse for alle hovedkomponenter.
Det ble gjennomført en serie forsøk ved å variere reaksjons-temperatur og trykk samt metanol- og nitrogenstrømnings-hastigheter.
Ved den ovenfor angitte variasjon varierte man også partial-trykkene for reaktanter og produkter. Katalysatoraktiviteten var "fiksert". Dette ble oppnådd ved full regenerering av katalysatoren før påbegynning av hvert reaksjonsforsøk og ved å velge prøvetiden for derved å gi et produkt med en vekt-time-romhastighet, WHSV, og en prøvetagningstid som, basert på tidligere forsøk, hadde gitt gode resultater.
Regenereringen ble påbegynt umiddelbart efter at gasskromato-grafprøven var tatt. Temperaturen i det fluidiserte sandbad ble hevet til ca. 500" C og luft ble matet til reaktoren. Regenereringen varte i 2 timer. Nitrogenfortynningsmidlet fortsatte å strømme til reaktoren under regenereringen. Nitrogen ble matet per se til reaktoren i 2 minutter før lufttilmatning ble påbegynt og igjen før reaktoren ble tilbakeført til reaksjonsmodellen. Dette for å unngå uønskede reaksjoner mellom oksygen og metanol.
Resultatene fra disse forsøk er gitt i tabell 1.
Disse forsøk viser muligheten for å gjennomføre forskjellige kjemiske omdanninger, for eksempel av metanol til lette olefiner, i et flytende, for eksempel hvirvelsjiktkataly-satorsystem i en enkelt reaksjonsbeholder. Megen slitasje og nedbrytning av katalysatoren unngås fordi katalysatoren ikke må transporteres mellom en reaksjonsbeholder og en separat regenereringsbeholder. Fordi det kun er nødvendig med en beholder, kan man oppnå vesentlige kapitalbesparelser.
Eksempel 27
Den eksperimentelle apparatur som ble benyttet i eksempel 27 var den samme som ble benyttet i eksemplene 2 til 26 bortsett fra at reaktoren var et 2,5 cm kvartsrør med innvendige filtre og en utvidet 7,5 cm tilbakeholdelsessone på toppen. Reaktoren ble fylt med en mengde av det materiale som var fremstilt i eksempel 1.
Reaktoren ble gjentatt operert i følgende cyklus:
Metanolreaksjonstid 15 minutter
Spyletid 4 minutter
Katalyttregenereringstid 7 minutter
Spyletid 4 minutter
Trykket i reaktoren ble holdt ved 151,69 - 154,49 x 10<3>Pa abs. Temperaturen ble opprettholdt ved 480<0>C under cyklusen. Under metanolreaksjonen var metanol WHSV 1,83 til 1,87 time-<1>. En i det vesentlige konstant strøm av nitrogengass ble tilveiebragt gjennom cyklusen slik at nitrogenet under metanolreaksjonstiden utgjorde 78,3 til 78,6 mol-% av det totale råstoff til reaktoren. Oksygen ble benyttet som regenereringsmedium og partialtrykket for oksygen under katalysatorregenereringen var 10,62 - 10,76 x 10<3>Pa abs.
En prøve på reaksjonsproduktet ble tatt 6 minutter inn i metanolreaksjonssegmentet av hver cyklus og analysert. Valgte resultater fra disse analyser er angitt i tabell 2.
Disse resultater viser at det å gjennomføre den kjemiske omdanning, for eksempel metanol til lette olefiner, i en enkelt reaksjonsbeholder ved bruk av en fluidisert katalysator, kan gi en i det vesentlige stabil drift. Denne type operasjon tillater effektiv og virkningsfull nedstrøms viderebearbeiding, for eksempel separering, av reaksjons-produktene.
Eksempel 28
En kommersielt dimensjonert hvirvelsjiktreaktor konstrueres for fremstilling av 5000 fat pr. dag blandet etylen og propylen fra metanol. Systemet inkluderer tre reaktorbeholdere i parallell. Hver av reaksjonsbeholderne er utstyrt med et antall cyklonseparatorer for å understøtte fjerning av gasser fra reaktorbeholderen, mens man holder katalysatoren Innvendig. Systemet inkluderer også et konvensjonelt produktbehandlings/separeringsundersystem for å gjenvinne og rense produktene i den ønskede grad.
Matesystemet til hver av reaktorbeholderne inkluderer et separat dampinnløp. Damp blir i det vesentlige kontinuerlig matet til hver av disse beholdere. Et med ventil utstyrt metanol- og et luftinnløp er også tilveiebragt for hver av beholderne. Metanol- og luftinnløpene kontrolleres slik at kun en av metanol eller luft mates til en av reaktorene på et gitt tidspunkt.
Hver av disse reaktorbeholdere arbeider i henhold til følgende reaksjons/regenereringscyklus. Katalysatoren som i sammensetning tilsvarer den fra eksempel 1, er anbragt i reaksjonsbeholderen og oppvarmet til en temperatur på 500°C. Fordampet og oppvarmet metanol mates til beholderen (sammen med dampfortynningsmiddel) for derved å gi lette olefiner som fjernes fra beholderen gjennom cyklonseparatorene. På dette punkt begynner cyklusen igjen. Under hele cyklusen blir katalysatoren holdt ved en temperatur på ca. 500°C og et trykk på ca. 551 ,6 x 10<3>Pa man. Efter et gitt tidsrom blir metanolstrømmen stanset og damp spyler ren for metanol. Efter spylingen blir luft innført i reaktorbeholderen for å regenerere katalysatoren. Efter den ønskede katalysatorregenerering blir strømmen stanset og damp spyler ut luft. På dette punkt starter cyklusen igjen. Tidssekvensen for denne cykliske drift er slik at ikke mindre enn to av reaktorene arbeider i reaksjonsdrift på ethvert tidspunkt.
Denne cykliske drift er effektiv med henblikk på fremstilling av etylen og propylen, spesielt etylen, fra metanol.
Claims (11)
1.
Fremgangsmåte for katalytisk omdanning av et hydrokarbonråstoff inneholdende 1 til 10 karbonatomer pr. molekyl til et produkt inneholdende minst et lett olefin i en hvirvel-s j iktreaksjonssone , karakterisert ved følgende sekvens av trinn: a) kontakt mellom råstoffet og en fluidisert masse av faste partikler omfattende en krystallinsk, mikroporøs, tredimensjonal, ikke-zeolittisk, molekylsikt-katalysator i reaksjonssonen under betingelser som bevirker omdanning av råstoffet til produktet og som gir et karbonholdig avsatt materiale på katalysatoren; b) kontakt mellom partiklene og et første spylemedium i reaksjonssone for å redusere mengden av minst et av råstoffene og produktet i kontakt med partiklene; og c) kontakt mellom partiklene og et regenereringsmedium i reaksjonssonen under betingelser som gir fjerning av en del av det karbonholdige avsatte materialet fra katalysatoren,
idet trinnene a), b) og c) gjentas periodisk.
2.
Fremgangsmåte ifølge krav 1, karakterisert ved betingelsene for trinnene a), b) og c) gjennomføres og frekvensen av de periodisk repeterende trinn a), b) og c) velges for å kontrollere temperaturen i reaksjonssonen under trinnene a), b) og c) til et temperaturområde rundt ca. 100°C.
3.
Fremgangsmåte ifølge krav 1, karakterisert ved at den videre omfatter å trekke av en del av katalysatoren fra reaksjonssonen, bringe den avtrukne katalysator i kontakt med regenereringsmediet under be-handlingsbetingelser som gir ytterligere fjerning av det karbonholdige avsatte materiale fra den avtrukne katalysator for derved å oppnå en behandlet katalysator, og å tilbakeføre den behandlede katalysator til reaksjonssonen.
4.
Fremgangsmåte ifølge krav 1, karakterisert ved at partiklene har en partikkeldiameter i størrelses-orden 1 til 500 pm.
5-
Fremgangsmåte ifølge kravene 1 til 4, karakterisert ved at råstoffet inneholder en eller flere forbindelser valgt blant alkoholer, halogenider, merkaptaner, sulfider, aminer, etere og karbonylforbindelser idet forbindelsene har 1 til 4 karbonatomer pr. molekyl, og at katalysatoren er en fluidisert masse av faste partikler omfattende krystallinsk mikroporøs, silikoaluminofosfat-molekylsiktkatalysator med porer med en effektiv diameter mindre enn ca. 0,5 nm (5 Ångstrøm).
6.
Fremgangsmåte ifølge et av krav 1 eller 5, karakterisert ved at den videre omfatter d) kontakt mellom partiklene og et andre spylemedium i reaksjonssonen f6r å redusere mengden av minst en av regenereringsmedium og regenereringsmediumprodukt i kontakt med partiklene, forutsatt at trinnene a), b), c) og d) gjentas periodisk.
7.
Fremgangsmåte ifølge krav 5, karakterisert ved at katalysatoren er valgt blant SAPO-34, SAPO-17 og blandinger derav.
8.
Fremgangsmåte ifølge krav 5, karakterisert ved at man som råstoff benytter metanol, etanol, dimetyleter, dietyletere eller blandinger derav.
9.
Fremgangsmåte ifølge krav 8, karakterisert ved at produktet inneholder etylen, propylen, butylen og blandinger derav.
10.
Fremgangsmåte ifølge krav 5, karakterisert ved at katalysatoren omfatter minst en tilsatt komponent som bevirker fremming av fjerning av det karbonholdige avsatte materiale under trinn c).
11.
Fremgangsmåte ifølge krav 5, karakterisert ved at trinn a) gjennomføres i nærvær av minst et fortynningsmiddel.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000577174A CA1315300C (en) | 1987-07-07 | 1988-09-12 | Chemical conversion process |
DE8888115321T DE3876624T2 (de) | 1987-07-07 | 1988-09-19 | Chemisches umwandlungsverfahren. |
EP88115321A EP0359843B1 (en) | 1987-07-07 | 1988-09-19 | Chemical conversion process |
NO884172A NO176904C (no) | 1987-07-07 | 1988-09-20 | Fremgangsmåte for katalytisk omdanning av et hydrokarbonråstoff |
AU22394/88A AU609186B2 (en) | 1987-07-07 | 1988-09-20 | Chemical conversion process |
DK527688A DK527688A (da) | 1987-07-07 | 1988-09-22 | Fremgangsmaade til katalytisk omdannelse af et udgangsmateriale |
ZA887238A ZA887238B (en) | 1987-07-07 | 1988-09-27 | Chemical conversion process |
JP63249162A JPH0745015B2 (ja) | 1987-07-07 | 1988-10-04 | 化学転化方法 |
CN88107254A CN1029840C (zh) | 1987-07-07 | 1988-10-20 | 化学转化方法 |
US07/309,927 US4973792A (en) | 1987-07-07 | 1989-02-13 | Chemical conversion process |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7057487A | 1987-07-07 | 1987-07-07 | |
CA000577174A CA1315300C (en) | 1987-07-07 | 1988-09-12 | Chemical conversion process |
EP88115321A EP0359843B1 (en) | 1987-07-07 | 1988-09-19 | Chemical conversion process |
NO884172A NO176904C (no) | 1987-07-07 | 1988-09-20 | Fremgangsmåte for katalytisk omdanning av et hydrokarbonråstoff |
DK527688A DK527688A (da) | 1987-07-07 | 1988-09-22 | Fremgangsmaade til katalytisk omdannelse af et udgangsmateriale |
ZA887238A ZA887238B (en) | 1987-07-07 | 1988-09-27 | Chemical conversion process |
JP63249162A JPH0745015B2 (ja) | 1987-07-07 | 1988-10-04 | 化学転化方法 |
Publications (4)
Publication Number | Publication Date |
---|---|
NO884172D0 NO884172D0 (no) | 1988-09-20 |
NO884172L NO884172L (no) | 1990-03-21 |
NO176904B true NO176904B (no) | 1995-03-13 |
NO176904C NO176904C (no) | 1995-06-21 |
Family
ID=27560933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO884172A NO176904C (no) | 1987-07-07 | 1988-09-20 | Fremgangsmåte for katalytisk omdanning av et hydrokarbonråstoff |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0359843B1 (no) |
JP (1) | JPH0745015B2 (no) |
CN (1) | CN1029840C (no) |
AU (1) | AU609186B2 (no) |
CA (1) | CA1315300C (no) |
DE (1) | DE3876624T2 (no) |
DK (1) | DK527688A (no) |
NO (1) | NO176904C (no) |
ZA (1) | ZA887238B (no) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19834876A1 (de) * | 1998-08-01 | 2000-02-03 | Aventis Res & Tech Gmbh & Co | Verfahren zur Herstellung sphärischer Teilchen bei der Kristallisation |
US6437208B1 (en) | 1999-09-29 | 2002-08-20 | Exxonmobil Chemical Patents Inc. | Making an olefin product from an oxygenate |
US6440894B1 (en) * | 2001-06-25 | 2002-08-27 | Exxonmobil Chemical Patents, Inc. | Methods of removing halogen from non-zeolitic molecular sieve catalysts |
WO2003000413A1 (en) * | 2001-06-25 | 2003-01-03 | Exxonmobil Chemical Patents Inc. | Molecular sieve catalyst composition, its making and use in conversion processes |
US6710008B2 (en) * | 2002-01-17 | 2004-03-23 | Exxonmobil Chemical Patents Inc. | Method of making molecular sieve catalyst |
ES2282488T3 (es) | 2001-07-02 | 2007-10-16 | Exxonmobil Chemical Patents Inc. | Inhibicion de la formacion de coque en un catalizador en la fabricacion de una olefina. |
DE10161665A1 (de) * | 2001-12-14 | 2003-06-26 | Lurgi Ag | Verfahren zur thermischen Entkokung eines Zeolith-Katalysators |
US7053260B2 (en) * | 2002-01-07 | 2006-05-30 | Exxonmobil Chemical Patents Inc. | Reducing temperature differences within the regenerator of an oxygenate to olefin process |
US6872680B2 (en) | 2002-03-20 | 2005-03-29 | Exxonmobil Chemical Patents Inc. | Molecular sieve catalyst composition, its making and use in conversion processes |
US7829750B2 (en) | 2004-12-30 | 2010-11-09 | Exxonmobil Chemical Patents Inc. | Fluidizing a population of catalyst particles having a low catalyst fines content |
US7829030B2 (en) * | 2004-12-30 | 2010-11-09 | Exxonmobil Chemical Patents Inc. | Fluidizing a population of catalyst particles having a low catalyst fines content |
JP2008266245A (ja) * | 2007-04-24 | 2008-11-06 | Mitsubishi Chemicals Corp | 芳香族炭化水素の製造方法 |
EP2377613B1 (en) * | 2009-12-18 | 2014-10-15 | JGC Catalysts and Chemicals Ltd. | Metal-supported crystalline silica aluminophosphate catalyst and process for producing the same |
CN102876370B (zh) * | 2011-07-11 | 2015-02-18 | 中国石油化工股份有限公司 | 一种渣油加氢裂化方法 |
JP5772387B2 (ja) * | 2011-08-23 | 2015-09-02 | トヨタ自動車株式会社 | マグネシウムを有するシリコアルミノリン酸塩モレキュラーシーブ及びその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56500877A (no) * | 1979-07-09 | 1981-07-02 | ||
US4454025A (en) * | 1981-05-13 | 1984-06-12 | Ashland Oil, Inc. | Passivating heavy metals in carbo-metallic oil conversion |
DE3130065A1 (de) * | 1981-07-30 | 1983-02-17 | Bayer Ag, 5090 Leverkusen | Verfahren zur regeneration von katalysatoren |
US4574044A (en) * | 1982-03-31 | 1986-03-04 | Chevron Research Company | Method for spent catalyst treating for fluidized catalytic cracking systems |
US4499327A (en) * | 1982-10-04 | 1985-02-12 | Union Carbide Corporation | Production of light olefins |
US4677243A (en) * | 1982-10-04 | 1987-06-30 | Union Carbide Corporation | Production of light olefins from aliphatic hetero compounds |
US4677242A (en) * | 1982-10-04 | 1987-06-30 | Union Carbide Corporation | Production of light olefins |
-
1988
- 1988-09-12 CA CA000577174A patent/CA1315300C/en not_active Expired - Fee Related
- 1988-09-19 DE DE8888115321T patent/DE3876624T2/de not_active Expired - Fee Related
- 1988-09-19 EP EP88115321A patent/EP0359843B1/en not_active Expired - Lifetime
- 1988-09-20 NO NO884172A patent/NO176904C/no unknown
- 1988-09-20 AU AU22394/88A patent/AU609186B2/en not_active Ceased
- 1988-09-22 DK DK527688A patent/DK527688A/da not_active Application Discontinuation
- 1988-09-27 ZA ZA887238A patent/ZA887238B/xx unknown
- 1988-10-04 JP JP63249162A patent/JPH0745015B2/ja not_active Expired - Fee Related
- 1988-10-20 CN CN88107254A patent/CN1029840C/zh not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
NO176904C (no) | 1995-06-21 |
AU2239488A (en) | 1990-03-29 |
ZA887238B (en) | 1989-10-25 |
DE3876624T2 (de) | 1993-06-09 |
NO884172D0 (no) | 1988-09-20 |
CA1315300C (en) | 1993-03-30 |
DK527688A (da) | 1990-03-23 |
AU609186B2 (en) | 1991-04-26 |
JPH02102726A (ja) | 1990-04-16 |
CN1029840C (zh) | 1995-09-27 |
NO884172L (no) | 1990-03-21 |
EP0359843A1 (en) | 1990-03-28 |
DK527688D0 (da) | 1988-09-22 |
EP0359843B1 (en) | 1992-12-09 |
DE3876624D1 (de) | 1993-01-21 |
JPH0745015B2 (ja) | 1995-05-17 |
CN1041932A (zh) | 1990-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4973792A (en) | Chemical conversion process | |
EP0359841B1 (en) | Chemical conversion process | |
EP0318282B1 (en) | Olefins production process | |
EP0642485B1 (en) | Production of high purity olefins | |
NO176904B (no) | Fremgangsmåte for katalytisk omdanning av et hydrokarbonråstoff | |
US5157181A (en) | Moving bed hydrocarbon conversion process | |
US4873390A (en) | Chemical conversion process | |
US7803330B2 (en) | Process for enhanced olefin production | |
JP4036553B2 (ja) | オレフイン類の製造 | |
US4814541A (en) | Chemical conversion process | |
WO2007123977A2 (en) | Production of aromatics from methane | |
JPH08502025A (ja) | 酸素化物から炭化水素への転化におけるゼオライトの使用 | |
NO321269B1 (no) | Fremgangsmate for selektiv konvertering av oksygenater til etylen og propylen som er katalysert av en molekylsiktkatalysatorer | |
AU2008327923A1 (en) | Process for the preparation of an olefinic product | |
WO2003000826A2 (en) | Circulating catalyst system and method for conversion of light hydrocarbons to aromatics | |
US10240094B2 (en) | Conversion of oxygenates to hydrocarbons with variable catalyst composition | |
WO2017094806A1 (ja) | プロピレンまたは芳香族炭化水素の製造方法 | |
WO2006000449A1 (en) | Zeolite catalysts | |
EA009011B1 (ru) | Способ отключения реакционной системы | |
Costa et al. | Conversion of n-butanol-acetone mixtures to C1-C10 hydrocarbons on HZSM-5 type zeolites | |
NO174956B (no) | Fremgangsmåte for katalytisk konvertering av et råstoff med 1-4 karbonatomer pr. molekyl | |
Inui et al. | High quality gasoline synthesis by selective oligomerization of light olefins and successive hydrogenation | |
RU2203875C2 (ru) | Способ получения легких олефинов из потока кислородсодержащего исходного сырья | |
JPH0699328B2 (ja) | 化学転化方法 |