NO152955B - REAGENT FOR DETERMINING AN IMMUNOLOGICALLY ACTIVE MATERIAL - Google Patents

REAGENT FOR DETERMINING AN IMMUNOLOGICALLY ACTIVE MATERIAL Download PDF

Info

Publication number
NO152955B
NO152955B NO780902A NO780902A NO152955B NO 152955 B NO152955 B NO 152955B NO 780902 A NO780902 A NO 780902A NO 780902 A NO780902 A NO 780902A NO 152955 B NO152955 B NO 152955B
Authority
NO
Norway
Prior art keywords
ligand
enzyme
receptor
labeled
solution
Prior art date
Application number
NO780902A
Other languages
Norwegian (no)
Other versions
NO152955C (en
NO780902L (en
Inventor
Douglas E Hawley
Peter G Tonkes
Original Assignee
Hoffmann La Roche
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffmann La Roche filed Critical Hoffmann La Roche
Publication of NO780902L publication Critical patent/NO780902L/en
Publication of NO152955B publication Critical patent/NO152955B/en
Publication of NO152955C publication Critical patent/NO152955C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D475/00Heterocyclic compounds containing pteridine ring systems
    • C07D475/06Heterocyclic compounds containing pteridine ring systems with a nitrogen atom directly attached in position 4
    • C07D475/08Heterocyclic compounds containing pteridine ring systems with a nitrogen atom directly attached in position 4 with a nitrogen atom directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D489/00Heterocyclic compounds containing 4aH-8, 9 c- Iminoethano-phenanthro [4, 5-b, c, d] furan ring systems, e.g. derivatives of [4, 5-epoxy]-morphinan of the formula:
    • C07D489/02Heterocyclic compounds containing 4aH-8, 9 c- Iminoethano-phenanthro [4, 5-b, c, d] furan ring systems, e.g. derivatives of [4, 5-epoxy]-morphinan of the formula: with oxygen atoms attached in positions 3 and 6, e.g. morphine, morphinone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J43/00Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J43/003Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton not condensed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

Foreliggende oppfinnelse vedrører et reagens for bestemm- The present invention relates to a reagent for determining

else av et immunologisk aktivt materiale bestående av en reseptor, som binder det immunologisk aktive materiale, et enzym, et enzymsubstrat og det immunologisk aktive materi- production of an immunologically active material consisting of a receptor, which binds the immunologically active material, an enzyme, an enzyme substrate and the immunologically active material

ale som er merket med en forbindelse som er i stand til å modifisere aktiviteten i enzymet. ale which is labeled with a compound capable of modifying the activity of the enzyme.

I de siste årene er det utviklet mange analytiske systemer basert på kompetetiv protein-bindingsanalyse (også kalt metningsanalyse). In recent years, many analytical systems have been developed based on competitive protein binding analysis (also called saturation analysis).

Uttrykkene "metningsanalyse" og "kompetitiv protein-bindingsanalyse" som er synonyme referer til analytiske syste- The terms "saturation assay" and "competitive protein binding assay" which are synonymous refer to analytical systems

mer som anvendes for bestemmelse av immunologiske aktive materialer (ligander). Resultatene av disse bestemmelsene i biologiske væsker anvendes i medisinsk og veterinær- more that are used for the determination of immunologically active materials (ligands). The results of these determinations in biological fluids are used in medical and veterinary

medisinsk diagnose. Diagnosen avhenger av om mengden av substansen som skal bestemmes er normal eller patologisk. medical diagnosis. The diagnosis depends on whether the amount of the substance to be determined is normal or pathological.

Det analytiske prinsippet er f.eks. basert på konkurranse The analytical principle is e.g. based on competition

mellom en ligand og en merket ligand som et felles spesi- between a ligand and a labeled ligand as a common speci-

fikt bindingsmiddel (reseptor) som illustrert i den følg- fixed binding agent (receptor) as illustrated in the following

ende reaksjonslikningen: end the reaction equation:

Den primære reaksjonen er en kombinasjon av et molekyl av The primary reaction is a combination of a molecule of

ligand med et molekyl av reseptor som danner et bimoleky- ligand with a molecule of receptor that forms a bimolecular

lært ligand/reseptor-kompleks (1). En ytterligere reaksjon forårsakes ved tilsetning av merket ligand som på liknende måte forbindes med reseptoren under dannelse av et merket ligand/reseptor-kompleks (2). I metningsanalyse er kon-sentrasjonene av reseptoren og den merkede liganden kon- learned ligand/receptor complex (1). A further reaction is caused by the addition of labeled ligand, which similarly binds to the receptor, forming a labeled ligand/receptor complex (2). In saturation analysis, the concentrations of the receptor and the labeled ligand are con-

stant. Reseptorkonsentrasjonen er begrenset slik at den merkede liganden er i overskudd i forhold til reseptoren. steady. The receptor concentration is limited so that the labeled ligand is in excess in relation to the receptor.

Under disse betingelser forårsaker addisjon av liganden, konkurranse mellom ligand og merket ligand i binding med reseptoren. Derfor senker en økning i ligand konsentrasjonen mengden av merket ligand/reseptor-kompleks. Målings-prinsippet er basert på bestemmelse av andel av totalt merket ligand bundet til reseptoren. Denne andelen er om-vendt proporsjonalt med mengden av ligand som tilsettes reaksjonsblandingen fra prøven som skal måles eller fra standarden som brukes i målingen. Reduksjonen i konsentrasjonen av merket ligand/reseptor-kompleks eller økn- Under these conditions, addition of the ligand causes competition between ligand and labeled ligand in binding to the receptor. Therefore, an increase in ligand concentration lowers the amount of labeled ligand/receptor complex. The measurement principle is based on determining the proportion of total labeled ligand bound to the receptor. This proportion is inversely proportional to the amount of ligand added to the reaction mixture from the sample to be measured or from the standard used in the measurement. The reduction in the concentration of labeled ligand/receptor complex or increase

ingen i konsentrasjonen av merket ligand i reaksjonsblandingen kan brukes for å bestemme umerket ligandkonsentrasjonen. none of the concentration of labeled ligand in the reaction mixture can be used to determine the unlabeled ligand concentration.

Følsomheten til metningsanalysen avhenger av bruken av en reseptor som har en meget høy affinitet for den umerkede liganden og merkede ligand. Dertil avhenger følsomheten også av anvendelse av en markør som kan påvises i meget lav konsentrasjon. The sensitivity of the saturation assay depends on the use of a receptor that has a very high affinity for the unlabeled ligand and labeled ligand. In addition, the sensitivity also depends on the use of a marker that can be detected in a very low concentration.

Metninganalysens spesifisitet avhenger av reseptorens evne til utelukkende å binde umerkede ligander og merkede ligander, i en kompleks blanding av forskjellige molekyler. The specificity of the saturation assay depends on the receptor's ability to exclusively bind unlabeled ligands and labeled ligands, in a complex mixture of different molecules.

Metningsanalyse er blitt anvendt ved bruk av mange forskjellige teknikker, hvor forskjellene primært avhenger av typen markør som brukes. Generelt klassifiseres disse tek-nikkene som "radioaktiv måling" eller "ikke-radioaktiv måling" avhengig av om en radioaktiv tracer brukes som markør. Saturation analysis has been applied using many different techniques, the differences primarily depending on the type of marker used. In general, these techniques are classified as "radioactive measurement" or "non-radioactive measurement" depending on whether a radioactive tracer is used as a marker.

Radioaktiv måling har blitt anvendt i større utstrekning Radioactive measurement has been used to a greater extent

enn ikke-radioaktive målinger. Radioaktiv måling kan vi- than non-radioactive measurements. Radioactive measurement can we-

dere klassifiseres som radioaktiv-immuno-måling eller radioaktiv-reseptor-måling avhengig av typen reseptor som benyttes i målingen. I radioaktiv-immuno-måling anvendes et antistoff som spesifikt binder umerket ligand og merket ligand. Alternativt vedrører' radioaktiv-reseptor-analyse bruken av hvilken som helst annen type biologisk reseptor som på lignende måte spesifikt vil binde den umerkede lig- you are classified as radioactive-immuno-measurement or radioactive-receptor measurement depending on the type of receptor used in the measurement. In radioactive immunoassays, an antibody is used that specifically binds unlabeled ligand and labeled ligand. Alternatively, radioactive-receptor analysis involves the use of any other type of biological receptor that will similarly specifically bind the unlabeled ligand.

anden og den merkede liganden. the duck and the labeled ligand.

I alle radioaktive målingsteknikker er det vesentlig å adskille fysikalsk den bundne fraksjon (1 og 2 ifølge ligning 1) fra den ikke-bundne fraksjon (3 og 4 i ligning 1) i reaksjonsblandingen. En indeks på ligandkonsentrasjonen kan deretter oppnås ved å telle disse fraksjonene i et radioaktivt telleverk og sammenligne tellingene som oppnås for de ukjente prøvene med dem som oppnås for egnede stan-dardligand-prøver som underkastes den samme målingen. Mange forskjellige metoder er blitt beskrevet for adskillelse av de bundne og frie fraksjonene i den radioaktive målingsreaksjonsblandingen og disse benytter teknikker som gelfiltrering, absorpsjon og ionebytterkromatografi, frak-sjonert felling, fast fase eller elektroforese. In all radioactive measurement techniques, it is essential to physically separate the bound fraction (1 and 2 according to equation 1) from the non-bound fraction (3 and 4 in equation 1) in the reaction mixture. An index of the ligand concentration can then be obtained by counting these fractions in a radioactive counter and comparing the counts obtained for the unknown samples with those obtained for suitable standard ligand samples subjected to the same measurement. Many different methods have been described for the separation of the bound and free fractions in the radioactive measurement reaction mixture and these use techniques such as gel filtration, absorption and ion exchange chromatography, fractional precipitation, solid phase or electrophoresis.

Etter utviklingen av radioaktive målingsteknikker i metningsanalysen, er metoder som anvender ikke-radioaktive markører blitt utviklet. Metoder som anvender enzymer som markør er blitt vist. Disse metodene kan ha den fordel at fysikalsk adskillelse av bundne (1 + 2) og frie (3+4) fraksjoner av merket ligand ikke er nødvendig i måleprose-dyren. Following the development of radioactive measurement techniques in saturation analysis, methods using non-radioactive markers have been developed. Methods using enzymes as markers have been demonstrated. These methods may have the advantage that physical separation of bound (1 + 2) and free (3 + 4) fractions of the labeled ligand is not necessary in the measurement procedure.

Når antistoffer binder ligand som er merket med et enzym modifiseres aktiviteten til enzymet. Modifikasjonsgraden til enzymaktiviteten indikerer konsentrasjonen av den merkede liganden i den bundne fraksjonen og gir derfor en indeks på ligandkonsentrasjonen i reaksjonsblandingen. When antibodies bind ligands that are labeled with an enzyme, the activity of the enzyme is modified. The degree of modification of the enzyme activity indicates the concentration of the labeled ligand in the bound fraction and therefore provides an index of the ligand concentration in the reaction mixture.

Den kjemiske strukturen til ligandenzymkomplekset er vanskelig å klarlegge, og dette er en vesentlig ulempe ved enzymimmuno-målingen. Dette skyldes utvilsomt det store antall aminosyrekjeder på enzymoverflaten som danner kompleks med liganden. Dette gjør det vanskelig å reprodusere ligand-enzym under gjentatte fremstillinger av komplekset. Den generelle mangel på kontroll over komplekseringsreak-sjonen fører til at mange ligandmolekyler knyttes til et enzymmolekyl, skjønt det antas at binding av bare noen få av disse ligandmolekylene ved antistoffer inngår i inhi-beringen av enzymaktiviteten. Derfor resulterer ikke alle antistoff/merkede antigen-forbindelser i en modifisering av enzymaktiviteten, hvilket derved senker teknikkens sen-sibilitet. The chemical structure of the ligand-enzyme complex is difficult to clarify, and this is a major disadvantage of the enzyme immunomeasurement. This is undoubtedly due to the large number of amino acid chains on the enzyme surface that form a complex with the ligand. This makes it difficult to reproduce the ligand-enzyme during repeated preparations of the complex. The general lack of control over the complexation reaction leads to many ligand molecules being linked to an enzyme molecule, although it is assumed that binding of only a few of these ligand molecules by antibodies is part of the inhibition of the enzyme activity. Therefore, not all antibody/labeled antigen compounds result in a modification of the enzyme activity, which thereby lowers the sensitivity of the technique.

Protein-protein-sammenhengen mellom forskjellige anti-stoffmolekyler og antistoff og enzymmolekyler er en annen følge av antallet ligandmolekyler på enzymoverlfaten. Protein-protein-sammenhengen økes videre hvis liganden også er et polypeptid. Således induserer enzymmolekylet et lo-kalt mikromiljø med høy proteinkonsentrasjon. I slike situasjoner er det vist at proteinfellingen som opptrer, derved forårsaker tap av en av hovedfordelene ved enzym-immunomåling, fordi separasjon av antistoffbundne og frie fraksjoner ble nødvendig. The protein-protein connection between different antibody molecules and antibody and enzyme molecules is another consequence of the number of ligand molecules on the enzyme surface. The protein-protein affinity is further increased if the ligand is also a polypeptide. Thus, the enzyme molecule induces a local microenvironment with a high protein concentration. In such situations, it has been shown that the protein precipitation that occurs thereby causes a loss of one of the main advantages of enzyme-immunoassay, because separation of antibody-bound and free fractions became necessary.

Det er beskrevet en modifikasjon av enzymatisk 'immunomåling som delvis overvinner disse problemene ved at liganden merkes med et detektormolekyl som har en lav molekylvekt. I denne målingen hindrer antistoff-binding av merket lig-andbinding av et detektor-molekyl ved et annet antistoff som er spesifikt for detektormolekylet. Indeksgraden bestemmes ved konkurranse av binding av det frie ligandde-tektor-molekyl og detektor-molekyl-merket enzym med detektor-irolekyl-antistoff. Modifikasjonsgraden av enzymaktivitet bestemmes i normal enzymatisk immunomåling indikerer konsentrasjon av fritt ligand-detektor-molekyl som likeledes er en indikasjon på ligand-konsentrasjonen i reaksjonsblandingen. Fordelen med denne teknikken er at et lite molekyl fremfor et enzym knyttes til liganden, hvilket derved muliggjør at den kjemiske strukturen til den merkede liganden kan bestemmes og overvinner således mange av de ulemper som knyttet til de forut beskrevne enzymatiske immuno-målinger. Imidlertid overvinner dette systemet bare ulemper ved den primære bindingsreaksjonen som innbefatter liganden og merket ligand og overfører dem til detektorsystemet for bestemmelse av graden av bundet antistoff og fritt antistoff fra fraksjoner i den merkede A modification of enzymatic immunoassay has been described which partly overcomes these problems in that the ligand is labeled with a detector molecule which has a low molecular weight. In this measurement, antibody binding of the labeled ligand prevents binding of a detector molecule by another antibody that is specific for the detector molecule. The degree of index is determined by competition of binding of the free ligand-detector molecule and detector-molecule-labeled enzyme with detector-irolecyl antibody. The degree of modification of enzyme activity determined in normal enzymatic immunomeasurement indicates the concentration of free ligand-detector molecule which is likewise an indication of the ligand concentration in the reaction mixture. The advantage of this technique is that a small molecule rather than an enzyme is attached to the ligand, which thereby enables the chemical structure of the labeled ligand to be determined and thus overcomes many of the disadvantages associated with the previously described enzymatic immuno-measurements. However, this system only overcomes disadvantages of the primary binding reaction involving the ligand and labeled ligand and transfers them to the detector system for determining the degree of bound antibody and free antibody from fractions in the labeled

liganden. the ligand.

Ulempene ved de tidligere kjente metoder overvinnes ved foreliggende oppfinnelse hvor et enzym-modifiseringsmiddel brukes som markør. The disadvantages of the previously known methods are overcome by the present invention where an enzyme modifier is used as a marker.

Nærmere bestemt vedrører foreliggende oppfinnelse et reagens av den innledningsvis beskrevne art hvor det merkede immunologiske materiale er et antigen-enzyminhibitor-eller antigen-enzymaktivator-kompleks. More specifically, the present invention relates to a reagent of the kind described at the outset, where the labeled immunological material is an antigen-enzyme inhibitor or antigen-enzyme activator complex.

Reagenset kan anvendes i den fremgangsmåte som er gjen-stand for norsk patentansøkning nr. 84.4764. The reagent can be used in the method which is the subject of Norwegian patent application no. 84.4764.

Uttrykkene "immunologisk aktivt materiale" eller "ligand" The terms "immunologically active material" or "ligand"

i denne beskrivelsen referer til enhver immunologisk aktiv forbindelse eller del av den som er i stand til å bestemmes immunologisk f.eks. ved å bruke metningsanalyseteknik-ker. Det viktigste kravet er at der er en reseptor som spesifikt vil binde liganden. Når reseptoren er et antistoff vil liganden være et hapten eller et antigen slik at det spesifikke antistoffet kan dannes. En ligand i denne forbindelse er et hapten når det bare vil gi antistoff--dannelse ved tilknytning til antigen. Alternativt er en ligand i den forbindelse et antigen når de vil gi anti-stof f-dannelse uten kjemisk modifisering. Liganden kan variere sterkt i moelkylvekt fra 100 - 1 000 000. Dette molekylvektsområdet er ikke begrensende i målingen såfremt reseptoren er i stand til spesifikt å binde liganden. in this description refers to any immunologically active compound or part thereof capable of being determined immunologically e.g. by using saturation analysis techniques. The most important requirement is that there is a receptor that will specifically bind the ligand. When the receptor is an antibody, the ligand will be a hapten or an antigen so that the specific antibody can be formed. A ligand in this connection is a hapten when it will only cause antibody formation when attached to antigen. Alternatively, a ligand in that connection is an antigen when they will give anti-substance f formation without chemical modification. The ligand can vary greatly in molecular weight from 100 - 1,000,000. This molecular weight range is not limiting in the measurement provided the receptor is capable of specifically binding the ligand.

Liganden kan enten ha polymer- eller ikke-pølymer-struktur. Ved polymer-struktur vil liganden normalt være av biologisk opprinnelse og kan klassifiseres som en nukleinsyre-poly-sakkarid og/eller polypeptid. Alternativt vil liganden når den ikke er polymer generelt ha en molekylvekt mindre enn 2 000 og kan ha ganske forskjellige strukturer, funk-sjonelle grupper og fysiologiske egenskaper. The ligand can either have a polymer or non-polymer structure. In the case of a polymer structure, the ligand will normally be of biological origin and can be classified as a nucleic acid polysaccharide and/or polypeptide. Alternatively, when the ligand is not a polymer, it will generally have a molecular weight of less than 2,000 and may have quite different structures, functional groups and physiological properties.

Ligander av særlig betydning som kan brukes i foreliggende oppfinnelse er aminer, aminosyrer, peptider, proteiner, lipoproteiner, glykoproteiner, steroler, steroider, lipoider, nukleinsyrer, mono- og polysakkarider, alkaloider, vitaminer, droger, narkotika, antibiotika, metabolitter, pesticider, toksiner industrielle biprodukter, smaksmidler, hormoner, enzymer, koenzymer, cellulære eller ekstracellulære komponenter fra vev og isolerte antistoffer fra mennesker eller dyr. Målingen er imidlertid ikke begrenset til bare disse ligandene. Ligands of particular importance that can be used in the present invention are amines, amino acids, peptides, proteins, lipoproteins, glycoproteins, sterols, steroids, lipoids, nucleic acids, mono- and polysaccharides, alkaloids, vitamins, drugs, drugs, antibiotics, metabolites, pesticides, toxins industrial by-products, flavourings, hormones, enzymes, coenzymes, cellular or extracellular components from tissues and isolated antibodies from humans or animals. However, the measurement is not limited to only these ligands.

Komponenter som øyeblikkelig egner seg for analyse i systemet er hepatit B-overflate antigen, ferritin, tumor antigener som CEA, a-f øto protein, rheumatoid faktor, C-reaktive proteiner, immunoglobulin klasser IgG, IgM eller IgA, myoglobin, tyroid hormoner inklusive T., og , insulin, steroide hormoner innbefattende testosteron eller estra-diol, misbrukte droger innbefattende narkotiske sovemidler, som morfin, barbiturater, stimulanser som amfetamin, droger for behandling av epilepsi innbefattende difenyl-hydantion og fenobarbital, kretsløps glykocyter som digoksin, vitaminer som vitamin B-^ °<J folinsyre. Videre antistoffer som er øyeblikkelige egnet for analyse i systemet er slike som forekommer ved infeksjon av syfilis,gonoré, brucellosis, rubella og rheumatisme. Components that are immediately suitable for analysis in the system are hepatitis B surface antigen, ferritin, tumor antigens such as CEA, a-f öto protein, rheumatoid factor, C-reactive proteins, immunoglobulin classes IgG, IgM or IgA, myoglobin, thyroid hormones including T. , and , insulin, steroid hormones including testosterone or estradiol, drugs of abuse including narcotic hypnotics, such as morphine, barbiturates, stimulants such as amphetamine, drugs for the treatment of epilepsy including diphenylhydanthione and phenobarbital, circulating glycosides such as digoxin, vitamins such as vitamin B -^ °<J folic acid. Furthermore, antibodies that are immediately suitable for analysis in the system are those that occur during infection with syphilis, gonorrhea, brucellosis, rubella and rheumatism.

Uttrykket "merket immunologisk aktivt materiale" eller "market reseptor" i denne beskrivelse referer til en ligand , analog av en ligand eller en del av den eller til en reseptor som er merket med et enzymmodifiseringsmiddel. En, flere enn en og generelt mindre enn 100 riarkormolekyler kan knyttes til en ligand eller reseptormolekyl. Likeledes kan et, flere enn et og normalt mindre enn 5 ligander eller resentormolekyler knyttes til et markeringsmolekyl. Tilknytnina av ekstra marker'ingsmole-kyl til en ligand eller reseptormolekyl øker generelt målings-følsomhet forutsatt at de ekstra markeringene ikke påvirker bindingen. The term "labeled immunologically active material" or "labeled receptor" in this description refers to a ligand, analog of a ligand or part thereof or to a receptor that is labeled with an enzyme modifying agent. One, more than one and generally less than 100 riarchor molecules can be attached to a ligand or receptor molecule. Likewise, one, more than one and normally less than 5 ligands or resentor molecules can be attached to a marking molecule. The attachment of additional labeling molecules to a ligand or receptor molecule generally increases measurement sensitivity, provided that the additional labeling does not affect binding.

Tilknytning av et modifiseringsmolekyl til en ligand eller reseptormolekyl innbefatter dannelsen av intermolekylære bånd som i de fleste tilfeller, men ikke nødvendigvis er av kovalent natur. Tilknytningen kan i noen tilfeller ut-føres i nærvær av et koplingsmiddel ved innføring av en bindingsgruppe mellom markeringen og liganden eller reseptoren. Attachment of a modifier molecule to a ligand or receptor molecule involves the formation of intermolecular bonds which in most cases, but not necessarily, are covalent in nature. In some cases, the connection can be carried out in the presence of a coupling agent by introducing a binding group between the marker and the ligand or receptor.

Det modifiserende molekylet kan knyttes direkte til The modifying molecule can be linked directly to

liganden eller reseptormolekylet Imidlertid kan det være ønskelig å innføre kjemiske broer av forskjellige lengder mellom modifiseringsmolekylet og liganden eller reseptormolekylene avhengig av den spesifikke målingen som skal utføres. I noen tilfeller kan det også være en fordel å knytte modifiseringsmolekylet og liganden eller reseptormolekylene separat til det samme bærermolekylet, f.eks. et makromolekyl som et polypeptid eller et poly-sakkarid . the ligand or receptor molecule However, it may be desirable to introduce chemical bridges of different lengths between the modifier molecule and the ligand or receptor molecules depending on the specific measurement to be performed. In some cases, it may also be advantageous to attach the modifier molecule and the ligand or receptor molecules separately to the same carrier molecule, e.g. a macromolecule such as a polypeptide or a polysaccharide.

Uttrykket "reseptor" i denne beskrivelsen referer til enhver substans som spesifikt kan binde ligand og merket ligand eller en del av denne. Generelt er den anvendte reseptor i målingen et spesifikt antistoff for liganden som dannes i blodet hos virveldyr etter injeksjon av riktig hapten ca antigen. Alternativt kan reseptorer som opptrer i naturen også brukes i målingen. Denne siste gruppen innbefatter, men er ikke begrenset til dette, proteiner, nukleinsyrer og cellulære membraner. Slike reseptorer er blitt brukt i radioaktive måleteknikker for tyroksin, insulin, angiotensin og forskjellige steroidhormoner. The term "receptor" in this specification refers to any substance that can specifically bind ligand and labeled ligand or part thereof. In general, the receptor used in the measurement is a specific antibody for the ligand that is formed in the blood of vertebrates after injection of the correct hapten ca antigen. Alternatively, receptors that occur in nature can also be used in the measurement. This last group includes, but is not limited to, proteins, nucleic acids and cellular membranes. Such receptors have been used in radioactive measuring techniques for thyroxine, insulin, angiotensin and various steroid hormones.

I tilfelle liganden er et antistoff kan reseptoren være antigenet som brukes for å indusere dette antistoffet i et vertsdyr. I en annen utførelsesform kan reseptoren være et antistoff mot antistoffet som skal bestemmes. In the event that the ligand is an antibody, the receptor may be the antigen used to induce this antibody in a host animal. In another embodiment, the receptor can be an antibody against the antibody to be determined.

Det er ikke mulig å fastlegge med bestemthet reseptorens virkemåte, som ved binding av den merket liganden reduserer virkningen mellom enzym og modifiseringsmiddel. Den antatte forklaring er at enzymets affinitet til modifiseringsmiddelet nedsettes som en følge av en størrelses-forandring og netto ladning hos reseptor/ligand -modifiT seringskompleks sammenliknet med den for ligand -modifiseringen alene. It is not possible to determine with certainty the mode of action of the receptor, which, by binding the labeled ligand, reduces the effect between enzyme and modifier. The assumed explanation is that the affinity of the enzyme to the modifier is reduced as a result of a size change and net charge of the receptor/ligand modification complex compared to that of the ligand modification alone.

Uttrykket "modifiseringsmiddel" i denne beskrivelsen referer til enhver substans som er i stand til å innvirke på et enzym slik at graden eller typen av enzymaktivitet modifiseres. Denne modifiseringen kan resultere i en inhibering, akti-vering eller spesifisrtetsforandring eller enhver annen egen-skap hos enzymet som er påviselig enten direkte eller indirekte ved en forandring i enzymaktiviteten eller i måten av aktivitet, f.eks. en forandring i reaksjonsbe tingelser som ko-faktor behov eller pH-optimum , i kinetiske egenskaper eller i aktiveringsenergi. Modifiseringsmiddelet kan variere i størrelse fra et lite molekyl til et makromolekyl, og dets innvirkning på et enzymmolekyl kan enten være rever-sibelt eller irreversibelt avhengig av om den inter-molekylære assosiasjon er av ionisk eller kovalent natur. The term "modifying agent" in this specification refers to any substance capable of acting on an enzyme so as to modify the degree or type of enzyme activity. This modification can result in an inhibition, activation or change in specificity or any other property of the enzyme which is detectable either directly or indirectly by a change in the enzyme activity or in the mode of activity, e.g. a change in reaction conditions such as co-factor need or pH optimum, in kinetic properties or in activation energy. The modifier can vary in size from a small molecule to a macromolecule, and its effect on an enzyme molecule can be either reversible or irreversible depending on whether the inter-molecular association is of an ionic or covalent nature.

Målings ømfindtlighet er bl.a. avhengig av reseptorens affinitet overfor liganden og modifiseringsmiddelets evne til å fremkalle en forandring i grad eller type av enzymaktivitet. Fortrinnsvis er modifikasjonen av graden eller typen av enzymaktivitet oppnåelig med en minimal konsentrasjon av modifiseringsmiddelet. Jo nærmere denne konsentrasjonen ligger enzymets på molekylær basis, jo større vil måleømfindtligheten være. The sensitivity of the measurement is, among other things, depending on the affinity of the receptor towards the ligand and the ability of the modifier to induce a change in the degree or type of enzyme activity. Preferably, the modification of the degree or type of enzyme activity is achievable with a minimal concentration of the modifying agent. The closer to this concentration is the enzyme on a molecular basis, the greater the measurement sensitivity will be.

Fortrinnsvis vil modifiseringsmiddel være en enzyminhibitor som ved innvirkning på et enzym vil inhibere dets aktiv Virkningsmåten av inhibitoren kan være kompetetiv, ikke-kompetetiv, allosterisk eller en kombinasjon av to eller flere av disse måtene. Fortrinnsvis bør inhibitoren ha en inhiberingskonstant (nødvendig inhibitorkonsentrasjon for 50% inhibering av enzymsystemet) under lO<->"^ mol pr. Preferably, the modifier will be an enzyme inhibitor which, when acting on an enzyme, will inhibit its activity. The mode of action of the inhibitor can be competitive, non-competitive, allosteric or a combination of two or more of these modes. Preferably, the inhibitor should have an inhibition constant (necessary inhibitor concentration for 50% inhibition of the enzyme system) below lO<->"^ mol per

liter avhengig av den foreliggende måling. Særlig fore- liters depending on the current measurement. Especially for

-15 -5 -15 -5

trukket er inhiberingskonstanten mellom 10 og 10 drawn, the inhibition constant is between 10 and 10

Ethvert enzym kan brukes i målingen forutsatt at det eksi-sterer et modifiseringsmiddel som spesifikt vil modifisere enzymaktivitet på den ovenfor beskrevne måte. Aktuelle enzymer er stabile, lett tilgjengelige ved lave omkostninger og har sterk katalytisk evne og et enkelt målesystem. Fortrinnsvis er den katalytiske evne (molekylprodukt som dannes pr. enzymmolekyl pr. et minutt) over 100 avhengig av det spesifikke forsøk som utføres. Fortrinnsvis er overføringstallet så høyt som mulig og minst 200. Any enzyme can be used in the measurement provided that there exists a modifying agent which will specifically modify enzyme activity in the manner described above. Current enzymes are stable, easily available at low cost and have strong catalytic ability and a simple measurement system. Preferably, the catalytic ability (molecular product formed per enzyme molecule per minute) is over 100 depending on the specific experiment being carried out. Preferably, the transmission number is as high as possible and at least 200.

Enzymmodifiseringssystemet som er spesielt egnet for den foreliggende oppfinnelse er dihydrofolat reduktase/meto^-treksat, dihydrofolat reduktas/4-aminopteridin, dihydrofolat reduktase/andre spesifikke inhibitorer for dette enzymet, &-glukoronidase/4-deoksy-5-5imino-qlutarsyre eller deri-vater derav, biotin inneholdende enzymer/avidin som kar-boksylase/avidin, chymotrypsin/TPCK (TPCK = tosyl-L-fenyl-alanin-klormetylketon med formel The enzyme modification system which is particularly suitable for the present invention is dihydrofolate reductase/metho-trexate, dihydrofolate reductase/4-aminopteridine, dihydrofolate reductase/other specific inhibitors of this enzyme, β-glucoronidase/4-deoxy-5-5iminoglutaric acid or therein -vater thereof, biotin containing enzymes/avidin as carboxylase/avidin, chymotrypsin/TPCK (TPCK = tosyl-L-phenyl-alanine-chloromethyl ketone with formula

Y-cystationase/propargylglysin, alanin racemase/ trifluoralanin, tryptofanase/trifluoralanin, tryp-tofan syntetase/trifluoralanin, Ø-cystationase/ trifluoralanin, pyruvat-glutamat transaminase/trifluoralanin, melkesyre oksydase/2-hydroksy-3-butyn-syre, monoamin oksydase/N,N-dimetyl propargylamin og diamin-oksydase/H2N-CH2-C=CCH2-NH2. Y-cystathionase/propargylglycine, alanine racemase/trifluoroalanine, tryptophanase/trifluoroalanine, tryptophan synthetase/trifluoroalanine, Ø-cystathionase/trifluoroalanine, pyruvate-glutamate transaminase/trifluoroalanine, lactic acid oxidase/2-hydroxy-3-butynic acid, monoamine oxidase /N,N-dimethyl propargylamine and diamine oxidase/H2N-CH2-C=CCH2-NH2.

Bestemmelse av enzymaktivitet kan utføres ved å regulere direkte eller indirekte substratforbruket eller produk-sjonen av produkt ved passende pH og temperatur ved anvendelse av påvisningssysterner som innbefatter kolorimetri, spektrofotometri, fluorspektrofotometri, gasiometri, termo-metri (varmeutvikling), scintillasjonstelling. Determination of enzyme activity can be performed by directly or indirectly regulating substrate consumption or product production at appropriate pH and temperature using detection systems that include colorimetry, spectrophotometry, fluorescence spectrophotometry, gasiometry, thermometry (heat generation), scintillation counting.

For å øke systemets ømfindtlighet er det mulig å bruke bioluminescens og enzymcykliseringsteknikker, f.eks. de teknikker som er beskrevet av J. Lee et al in Ligiud Scintillation Couting: Recent Developments, Stanley P.E. and Scoggins, B.A., Academic Press, New York p. 403 og Lowry O.H. et al in J. Biol. Chem 236, p. 2746-2755. To increase the sensitivity of the system, it is possible to use bioluminescence and enzyme cyclization techniques, e.g. the techniques described by J. Lee et al in Ligiud Scintillation Couting: Recent Developments, Stanley P.E. and Scoggins, B.A., Academic Press, New York p. 403 and Lowry O.H. et al in J. Biol. Chem 236, pp. 2746-2755.

I en utførelsesform av den foreliggende oppfinnelse kan en merket ligand brukes for bestemmelsen av tilstedeværelsen av en ligand i en ukjent prøve ved den simultane eller etterfølgende tilsetning av den merkede ligand og den ukjente prøven til et vandig medium ved egnet pH som inneholder en spesifikk reseptor for den umerkede liganden og den merkede liganden. Etter en passende inkuberingstid bestemmes fordelingen av reseptoren bundet til umerket ligand og merket ligand ved tilsetning av enzym og subst-rater. Reseptoren som er spesifikk for liganden binder også den merkede liganden og reduserer derved innvirkn-ingen mellom modifiseringsmiddelet og enzymet og nedsetter derved modifiseringen av enzymaktiviteten. Tilsetning av umerket ligand til prøven resulterer i konkurranse med den merkede liganden i binding med reseptor og øker derved konsentrasjonen av fri merket ligand i målingen. Innvirkning mellom ligandmodifiseringsmiddel og enzym økes og enzymaktiviteten blir igjen påvirket. Modifiseringen av enzymaktiviteten er derfor en funksjon av ligandkonsentrasjonen i målingen og bevirkes av ubundet merket ligand. Følgelig er forskjellen mellom den resulterende enzymaktiviteten og kontrollen, et mål for konsentrasjonen av liganden i den ukjente prøven. In one embodiment of the present invention, a labeled ligand can be used for the determination of the presence of a ligand in an unknown sample by the simultaneous or subsequent addition of the labeled ligand and the unknown sample to an aqueous medium at a suitable pH containing a specific receptor for the unlabeled ligand and the labeled ligand. After a suitable incubation time, the distribution of the receptor bound to unlabelled ligand and labeled ligand is determined by addition of enzyme and substrates. The receptor that is specific for the ligand also binds the labeled ligand and thereby reduces the interaction between the modifying agent and the enzyme and thereby reduces the modification of the enzyme activity. Addition of unlabeled ligand to the sample results in competition with the labeled ligand in binding to the receptor and thereby increases the concentration of free labeled ligand in the measurement. Interaction between ligand modifier and enzyme is increased and enzyme activity is again affected. The modification of the enzyme activity is therefore a function of the ligand concentration in the measurement and is effected by unbound labeled ligand. Consequently, the difference between the resulting enzyme activity and the control is a measure of the concentration of the ligand in the unknown sample.

En av hovedfordelene ved denne metoden er at adskillelsen av bundne og frie fraksjoner er unødvendige i fremgangs-måten. Dette utelukker imidlertid ikke anvendelsen av et slikt separasjonstrinn i målingen etter inkuberingen av umerket ligand og merket ligand med reseptor og før stad-festelsen av enzymaktiviteten. Separasjon av fraksjoner kan være ønskelig i noen tilfeller for å fjerne substan-sene i prøven som kan innvirke på enzymmålingen. Adskillelsen kan oppnås ved å bruke hvilken som helst av de mange beskrevne teknikker for radioaktiv-immunomåling som omfat-ter gelfiltrering, adsorpsjon og elektroforese. One of the main advantages of this method is that the separation of bound and free fractions is unnecessary in the procedure. However, this does not preclude the use of such a separation step in the measurement after the incubation of unlabeled ligand and labeled ligand with receptor and before the confirmation of the enzyme activity. Separation of fractions may be desirable in some cases to remove the substances in the sample that may affect the enzyme measurement. The separation can be achieved using any of the many described radioimmunoassay techniques including gel filtration, adsorption and electrophoresis.

Denne målingen er selvfølgelig ikke begrenset til bestemmelse av haptener og antigener som liganden, men kan også tilpasses for identifisering og måling av antistoffer som This measurement is of course not limited to the determination of haptens and antigens such as the ligand, but can also be adapted for the identification and measurement of antibodies such as

liganden. the ligand.

Dette kan f.eks. utføres ved å merke antistoffet med et enzymmodifiseringsmiddel og måle graden av enzymaktivitet modifisering etter inkubering av merket antistoff og prøveantistoff med en begrensende konsentrasjon av antigen eller hapten. Modifiseringen av enzymaktivitet vedrører prøveantistoffkonsentrasjon. Om nødvendig kan de bundne og frie fraksjoner adskilles før tilsetning av enzymet og substratet. This can e.g. is performed by labeling the antibody with an enzyme modifier and measuring the degree of enzyme activity modification after incubation of labeled antibody and test antibody with a limiting concentration of antigen or hapten. The modification of enzyme activity relates to sample antibody concentration. If necessary, the bound and free fractions can be separated before adding the enzyme and substrate.

Oppfinnelsen muliggjør også bestemmelse av en ligand anvendelsen av en merket reseptor fremfor en merket ligand. Ligand i den ukjente prøven reagerer med overskudd-reseptor merket med et enzymmodifiseringsmiddel, og etter inkubering tilsettes overskudd fast fase insolubilisert ligand og reagerer med den fri gjenværende merkede reseptor. Etter separasjon av den faste fasen måles modifiseringen av enzymaktivitet som er knyttet til den løselige liganden og avhenger av ligandekonsentrasjonen. The invention also enables the determination of a ligand using a labeled receptor rather than a labeled ligand. Ligand in the unknown sample reacts with excess receptor labeled with an enzyme modifier, and after incubation excess solid phase insolubilized ligand is added and reacts with the free remaining labeled receptor. After separation of the solid phase, the modification of enzyme activity is measured which is linked to the soluble ligand and depends on the ligand concentration.

Reagensene i den forliggende oppfinnelse kan også brukes i en "sandwich"-teknikk forutsatt at liganden har minst to bindingssteder. Ligand reagerer med overskudd fast fase reseptor og etter inkubering fulgt av vask omsettes den faste fase reseptor bundne ligand med overskudd reseptor markert med en enzym-modifiseringsmiddel. Fri merket reseptor fjernes ved vask og graden av enzym-modifisering i de adskilte fraksjoner bestemmes. Dette gir så en indeks for ligandkonsentrasjonen. The reagents of the present invention can also be used in a "sandwich" technique provided that the ligand has at least two binding sites. Ligand reacts with excess solid phase receptor and after incubation followed by washing, the solid phase receptor bound ligand is reacted with excess receptor marked with an enzyme modifier. Free labeled receptor is removed by washing and the degree of enzyme modification in the separated fractions is determined. This then gives an index for the ligand concentration.

De følgende eksempler illustrerer oppfinnelsen. The following examples illustrate the invention.

EKSEMPEL 1 EXAMPLE 1

Fremstilling av " amino- digoksin" Preparation of "amino-digoxin"

En suspensjon av 156 mg (0,2 mmol) digoksin i 5 ml absolutt A suspension of 156 mg (0.2 mmol) digoxin in 5 ml absolute

etanol ble tilsatt 10 ml 0,2 M natriummetaperiodat under røring. Blandingen ble homogen etter 10 minutter og så ble fellingen langsomt dannet. Etter 2 timer ble 5 ml vann pluss 5 ml etanol tilsatt. 122 jul (2,2 mmol) etylenglykol ble tilsatt etter ytterligere 30 minutter og et tett nytt presipitat begynte straks å dannes. Etter 80 minutters røring ble 133 ul (2,0 mmol) etylendiamin tilsatt og den resulterende pH på 11,0 ble jusert til 9,5 med 0,1 M HC1 ethanol was added to 10 ml of 0.2 M sodium metaperiodate with stirring. The mixture became homogeneous after 10 minutes and then the precipitate slowly formed. After 2 hours, 5 ml of water plus 5 ml of ethanol were added. 122 µL (2.2 mmol) of ethylene glycol was added after a further 30 minutes and a dense new precipitate immediately began to form. After 80 minutes of stirring, 133 µl (2.0 mmol) of ethylenediamine was added and the resulting pH of 11.0 was adjusted to 9.5 with 0.1 M HCl

og reaksjonsblandingen fikk stå ved en temperatur i 18 and the reaction mixture was allowed to stand at a temperature of 18

timer. pH forandret seg ikke i dette tidsrommet. hours. The pH did not change during this time.

151,4 mg (4,0 mmol) natriumborhydrid ble så tilsatt og blandingen rørt i 3 1/2 time. pH ble så justert fra 10,5 151.4 mg (4.0 mmol) of sodium borohydride was then added and the mixture stirred for 3 1/2 hours. The pH was then adjusted from 10.5

til 6,5 med IM maur syre (ca. 3 ml) og tynnsjiktkromatografi av :denne blandingen viste en enkel hovedflekk med en Rf lik 0,15 (kisel- to 6.5 with 1M formic acid (about 3 ml) and thin-layer chromatography of :this mixture showed a single main spot with an Rf equal to 0.15 (silica

gel på aluminium utviklet i butanol:iseddik:vann/4:1:1). gel on aluminum developed in butanol:glacial vinegar:water/4:1:1).

Digoksin hadde en Rf 0,7 ved utvikling i samme system. Digoxin had an Rf of 0.7 when developed in the same system.

Løsningsmidlene ble avdampet nesten til tørrhet på en rotasjonsfordamper under vakuum ved anvendelse av et vann- The solvents were evaporated to near dryness on a rotary evaporator under vacuum using a water

bad på 60°C. De siste få ml vann ble fjernet ved til- bath at 60°C. The last few ml of water were removed by adding

setning av 95% etnol (3 x 2 0 ml) og gjentakelse av inndamp- adding 95% ethanol (3 x 20 ml) and repeating the evaporation

ningen som ovenfor. the same as above.

Det resulterende blekgule faste stoff ble ekstrahert tre The resulting pale yellow solid was extracted three times

ganger med absolutt etanol og disse kombinerte ekstraktene konsentrert i ca. 4 ml og sentrifugert for å adskille en liten mengde salt som ble kastet. Den blekgule superna-tantløsning ble inndampet til tørrhet under en strøm av tørt nitrogen og ga en gul olje som viste samme Rf på tynnsjiktkromatografi som reaksjonsblandingen som er beskrevet ovenfor. Produktet ble vist å inneholde en fri aminogruppe ved å omsette den med "Fluram" (4-fenylspiro[fluran-2(3H),1'-ftalan]-3,3'- times with absolute ethanol and these combined extracts concentrated in approx. 4 ml and centrifuged to separate a small amount of salt that was discarded. The pale yellow supernatant solution was evaporated to dryness under a stream of dry nitrogen to give a yellow oil which showed the same Rf on thin layer chromatography as the reaction mixture described above. The product was shown to contain a free amino group by reacting it with "Fluram" (4-phenylspiro[flurane-2(3H),1'-phthalan]-3,3'-

dion) under dannelse av en sterkt fluorescerende forbindelse. dione) while forming a strongly fluorescent compound.

Produktet hadde et spektrum i konsentrert svovelsyre i likhet med oligoksinets med absorpsjonstopper ved 385 og 495 myu. Produktet hadde også en sterk affinitet for spesifikk antisera (kanin) for digoksin. Den antatte struktur for det isolerte produktet er den følgende: The product had a spectrum in concentrated sulfuric acid similar to that of oligoxine with absorption peaks at 385 and 495 myu. The product also had a strong affinity for specific antisera (rabbit) for digoxin. The assumed structure of the isolated product is the following:

EKSEMPEL 2 EXAMPLE 2

Fremstilling av metotreksat - aminodigoksin- konjugat Preparation of methotrexate - aminodigoxin conjugate

11 mg metotreksat ble oppløst i 5 ml 1^0 og justert til 11 mg of methotrexate was dissolved in 5 ml of 1^0 and adjusted to

pH 6,5. 10 mg "aminodigoksin" ble oppløst i denne løsningen og volumet justert til 20 ml med ^O. pH ble rejustert til 6,5 og 484 mg N-etyl,N"-(3-dimetylamino) propyl-karbodiimid-hydroklorid oppløst i 5 ml H20 ble satt til reaksjonsblandingen. pH ble holdt på 6,2 i 24 timer ved romtemperatur. Konjugatet ble renset på en kiselgelkolonne ved anvendelse av 3% ammoniumsitrat som løsningsmiddel. Fraksjoner som inneholdt det ønskede produkt ble slått sammen og vist å pH 6.5. 10 mg of "aminodigoxin" was dissolved in this solution and the volume adjusted to 20 ml with ^O. The pH was readjusted to 6.5 and 484 mg of N-ethyl,N"-(3-dimethylamino)propyl carbodiimide hydrochloride dissolved in 5 ml of H 2 O was added to the reaction mixture. The pH was maintained at 6.2 for 24 hours at room temperature. The conjugate was purified on a silica gel column using 3% ammonium citrate as solvent.Fractions containing the desired product were pooled and shown to

ha samme dobbelte evne til å binde sterke antisera (kanin) spesifikke for digoksin og inhiberte også sterkt enzymet dihydrofolatredukstase (kyllinglever). Den antatte struktur for metotreksat-aminodigoksin-konjugatet er den følgende: have the same dual ability to bind strong antisera (rabbit) specific for digoxin and also strongly inhibited the enzyme dihydrofolate reductase (chicken liver). The assumed structure of the methotrexate-aminodigoxin conjugate is the following:

EKSEMPEL 3 EXAMPLE 3

Enzyminhibitor- immunomåling for digoksin Enzyme inhibitor immunoassay for digoxin

100 ul serum ble inkubert ved 30°C i 15 minutter med 100 ul antidigoksin antistoffløsning, 100 ul NADPH-løsning, 100 ul 2-merka<p>toetanol-løsning og 550 p. 1 natriumfosfat-fcuffer pH 7,5. 100 ul metotreksatdigoksin-konjugat for eksempel 2 (70 ug pr. ml) ble tilsatt og blandingen inkubert i 15 minutter hvoretter 100 pl dihydrofolat-reduktaseløsningen ble tilsatt. Dihydrofolatreduktase-fremstillingen som ble anvendt ble isolert fra kylling-lever ved metoden til Kaufman, B.T., & Gardiner, R.C., Journal of Biological Chemistry, Vol. 211, P 1319 (1966). Blandingen ble inkubert ytterligere 3 minutter og enzymaktiviteten bestemt ved tilsetning av 100 pl dihydrofolat- 100 µl serum was incubated at 30°C for 15 minutes with 100 µl antidigoxin antibody solution, 100 µl NADPH solution, 100 µl 2-merca<p>toethanol solution and 550 µl sodium phosphate fcuffer pH 7.5. 100 µl methotrexate digoxin conjugate of Example 2 (70 µg per ml) was added and the mixture incubated for 15 minutes after which 100 µl of the dihydrofolate reductase solution was added. The dihydrofolate reductase preparation used was isolated from chicken liver by the method of Kaufman, B.T., & Gardiner, R.C., Journal of Biological Chemistry, Vol. 211, P 1319 (1966). The mixture was incubated for a further 3 minutes and the enzyme activity determined by the addition of 100 µl of dihydrofolate

løsning og målt ved 340 nm i et variant spektrofotometer. Resultatene er vist i tabellen. solution and measured at 340 nm in a variant spectrophotometer. The results are shown in the table.

Reaktantene ble tilsatt i den ovenfor beskrevne rekkefølge. OD = optisk densitet. The reactants were added in the order described above. OD = optical density.

Det fremgår av de ovenstående resultater at noen få ng-digoksin i serum kan bestemmes i det beskrevne systemet. It appears from the above results that a few ng-digoxin in serum can be determined in the described system.

EKSEMPEL 4 EXAMPLE 4

Fremstilling av metotreksat- human serum- albuminkonjugat Preparation of methotrexate-human serum-albumin conjugate

45 mg metotreksat ble opnlrtst i 1,0 ml N,N-dimetylformamid og 2 5 mg N-hydreksysuccinimid ble tilsatt. 41 mg N,N-dicykloheksyl-ka.rbodiimid ble oppløst og blandingen holdt ved romtemperatur i 13 timer. Det uløselige urea-bi<p>roduktet ble fjernet ved filtrering og 100 pl av filtratet ble satt til en løsning som inneholdt 5 mg humant serum albumin i 800 ul 0,IM natriumfosf at^ uffer oH 7,5 pluss 100 ul dioksan. Denne reaksjonsblandingen ble holdt ved romtemperatur i 3 0 minutter og så satt nå en Sephadex G-25-kolonne som var ekvilibrert med 0,IM natriumfosfat-fcuffer pH 7,5. Kolonnen ble utviklet med denne bufferen og to elueringstODper som inneholdt metotreksat erholdtes hvorav den første inneholdt metotreksat-humant serumalbumin-konjugat. 45 mg of methotrexate was dissolved in 1.0 ml of N,N-dimethylformamide and 25 mg of N-hydroxysuccinimide was added. 41 mg of N,N-dicyclohexyl carbodiimide was dissolved and the mixture kept at room temperature for 13 hours. The insoluble urea by-product was removed by filtration and 100 µl of the filtrate was added to a solution containing 5 mg human serum albumin in 800 µl 0.1M sodium phosphate buffer oH 7.5 plus 100 µl dioxane. This reaction mixture was kept at room temperature for 30 minutes and then a Sephadex G-25 column equilibrated with 0.1M sodium phosphate buffer pH 7.5 was loaded. The column was developed with this buffer and two elution buffers containing methotrexate were obtained, the first of which contained methotrexate-human serum albumin conjugate.

EKSEMPEL 5 EXAMPLE 5

Engyminhibitor- immunomåling for human serumalbumin Enzyme inhibitor immunoassay for human serum albumin

100 ul fortynnet serum ble inkubert ved 30°C i 15 minutter med 100 ul antihuman serumalbumin-antistoff (kanin)-oppløs-ning, 100 ul NADPH-oppløsning, 100 ul 2-merkaptoetanol-oppløsning og 550 ul natriumfosfat- buffer pH 7,5. 100 ul metotreksathuman serumalbumin-konjugat (8 pg pr. ml) ble tilsatt og blandingen inkubert i 15 minutter hvoretter 100 pl dihydrofolat-reduktase-oppløsning ble tilsatt. Blandingen ble inkubert i ytterligere 3 minutter og enzymaktiviteten bestemt ved tilsetning av 100 pl dihydrofolat-oppløsning og målt ved 340 nm på et variant spektrofotometer. Resultatene er vist i tabell II. 100 µl of diluted serum was incubated at 30°C for 15 minutes with 100 µl of anti-human serum albumin antibody (rabbit) solution, 100 µl of NADPH solution, 100 µl of 2-mercaptoethanol solution and 550 µl of sodium phosphate buffer pH 7, 5. 100 µl methotrexate human serum albumin conjugate (8 pg per ml) was added and the mixture incubated for 15 minutes after which 100 µl dihydrofolate reductase solution was added. The mixture was incubated for a further 3 minutes and the enzyme activity determined by the addition of 100 µl of dihydrofolate solution and measured at 340 nm on a variant spectrophotometer. The results are shown in Table II.

Det fremgår av de ovenstående resultater at noen få pg human serumalbumin kan bestemmes i det beskrevne systemet. It appears from the above results that a few pg of human serum albumin can be determined in the described system.

EKSEMPEL 6 EXAMPLE 6

Syntese av metotreksat-aminoetylmorfin-konjugat Synthesis of methotrexate-aminoethylmorphine conjugate

a) Syntese av O^-arainoetylmorfin a) Synthesis of O^-arainoethylmorphine

I 10 ml tetrahydrof uran (THF) nettoop destillert over In 10 ml tetrahydrofuran (THF) nettop distilled over

litiumaluminiumhydrid (LAH) ble 400 mg LAH oppslemmet under nitrogen. En løsning av 400 mg morfin og 400 mg kloraceto-nitril i 4 ml friskt destillert THF ble tilsatt i løpet av 5 minutter etterfulgt av tilbakeløpskoking•i 1 time. Blandingen fikk kjøles og 0,6 ml vann ble tilsatt etterfulgt av 0,6 ml 10 vekt-% natriumhydroksyd og 2 ml vann. Etter filtrering av blandingen ble saltene vasket med THE, THF-fraksjonene slått sammen, tørket over magnesiumsulfat under nitrogen, filtrert og filtratet inndampet hvilket ga 380 mg O^-aminoetylmorfin. b) Syntese av N-t-butoksykarboksyl-y-(0 3-aminoetylmorfin) glutaminsyre-tx-benzylester. lithium aluminum hydride (LAH), 400 mg of LAH was slurried under nitrogen. A solution of 400 mg morphine and 400 mg chloroacetonitrile in 4 ml freshly distilled THF was added over 5 minutes followed by reflux for 1 hour. The mixture was allowed to cool and 0.6 ml of water was added followed by 0.6 ml of 10% by weight sodium hydroxide and 2 ml of water. After filtering the mixture, the salts were washed with THE, the THF fractions were combined, dried over magnesium sulfate under nitrogen, filtered and the filtrate evaporated to give 380 mg of O 3 -aminoethylmorphine. b) Synthesis of N-t-butoxycarboxyl-γ-(0 3-aminoethylmorphine) glutamic acid tx-benzyl ester.

En blanding av 0 3-aminoetylmorfin (50 mg fremstilt som ovenfor), N-t-BOC-glutaminsyre-a-benzyl-ester (34 mg) og dicykloheksylkarbodimid (25 mg) i diklormetan (5 ml) ble rørt 4 timer ved romtemperatur. Blandingen ble fortynnet med etylacetat og vasket med fortynnet natriumkarbonatløs-ning. Etylacetatløsningen ble så ekstrahert to ganger med 0,1 N saltsyre og de kombinerte sure ekstraktene ble behandlet med tilstrekkelig 10 vekt-% natriumhydroksyd-løsning til å justere pH til 8,0. Løsningen ble ekstrahert to ganger med etylacetat og det kombinerte etylacetatet ble vasket med koksaltløsning, tørket (trtrt natriumfosfat) og inndamnet til det ga en farcreløs olje (36 mg) . c) Syntese av glutaminsyre-a-(0 3-amidoetylmorfin)-a-benzyl-ester-trifluoreddiksyresalt. A mixture of 0 3-aminoethylmorphine (50 mg prepared as above), N-t-BOC-glutamic acid α-benzyl ester (34 mg) and dicyclohexylcarbodiimide (25 mg) in dichloromethane (5 ml) was stirred for 4 hours at room temperature. The mixture was diluted with ethyl acetate and washed with dilute sodium carbonate solution. The ethyl acetate solution was then extracted twice with 0.1 N hydrochloric acid and the combined acid extracts were treated with sufficient 10% by weight sodium hydroxide solution to adjust the pH to 8.0. The solution was extracted twice with ethyl acetate and the combined ethyl acetate was washed with brine, dried (sodium phosphate trihydrate) and concentrated to give a colorless oil (36 mg). c) Synthesis of glutamic acid-α-(0 3-amidoethylmorphine)-α-benzyl ester trifluoroacetic acid salt.

En løsning av N-t-BO'--glutaminsyre-morfinderivat (36 mg, fremstilt som ovenfor) i diklormetan (3 ml) ble rørt ved A solution of N-t-BO'-glutamic acid morphine derivative (36 mg, prepared as above) in dichloromethane (3 ml) was stirred at

<*>BOC = butyloksykarbonyl <*>BOC = butyloxycarbonyl

romtemperatur og trifluoreddiksyre (1 ml) ble tilsatt. Blandingen ble rørt 15 minutter og så inndampet til tørr-het. Resten var et fargeløst glass (40 mg). d) Syntese av metotreksat-y-(O^-aminoetylmorfin)-a-benzyl-ester. room temperature and trifluoroacetic acid (1 mL) was added. The mixture was stirred for 15 minutes and then evaporated to dryness. The residue was a colorless glass (40 mg). d) Synthesis of methotrexate-γ-(O 3 -aminoethylmorphine)-α-benzyl ester.

En løsning av 4-amino-4-deoksy-N"'"0-metylpteronsyre (37 mg) i 3 ml dimetylsulfoksyd (DMSO) ble under røring ved romtemperatur behandlet med trietylamin (28 pl) og i-butylklorformat (25 pl) og blandingen ble rørt 30 minutter. Den ble så satt til en blanding av morfinderivatet (75 mg fremstilt som beskrevet under c) og trietylamin (28 pl) i DMSO (2 ml) og blandingen ble rørt ved 6 0° i en time. Den av-kjølte blandingen ble fortynnet med vann og ekstrahert to ganger med etylacetat. De kombinerte etylacetat-ekstrakter ble vasket med vann og så ekstrahert to ganger med 0,1N saltsyre. De samlede sure ekstraktene ble behandlet med tilstrekkelig 10 vekt-% natriumhydroksyd til å heve pH til 8,0. Blandingen ble ekstrahert tre ganger med etylacetat og de samlede ekstraktene vasket med koksaltløsning, tørket (tørt natriumsulfat) og inndamnet hvilket ga en gul olje (15 mg). Denne ble renset ved preparativ tynnskiktskroma-tografi (TLC) på kiselgel med systemet kloroform/metanol, 4:1. Den ønskede forbindelsen erholdtes som et gult fast s~toff (4 mg) . e) Syntese av metotreksat-y-(O 3-amidoetylmorfin). A solution of 4-amino-4-deoxy-N"'"0-methylpteronic acid (37 mg) in 3 ml of dimethylsulfoxide (DMSO) was treated with triethylamine (28 µl) and i-butyl chloroformate (25 µl) while stirring at room temperature and the mixture was stirred for 30 minutes. It was then added to a mixture of the morphine derivative (75 mg prepared as described under c) and triethylamine (28 µl) in DMSO (2 ml) and the mixture was stirred at 60° for one hour. The cooled mixture was diluted with water and extracted twice with ethyl acetate. The combined ethyl acetate extracts were washed with water and then extracted twice with 0.1N hydrochloric acid. The pooled acid extracts were treated with sufficient 10% by weight sodium hydroxide to raise the pH to 8.0. The mixture was extracted three times with ethyl acetate and the combined extracts washed with brine, dried (dry sodium sulfate) and concentrated to give a yellow oil (15 mg). This was purified by preparative thin-layer chromatography (TLC) on silica gel with the system chloroform/methanol, 4:1. The desired compound was obtained as a yellow solid (4 mg). e) Synthesis of methotrexate-γ-(O 3-amidoethylmorphine).

Produktet fremstilt som beskrevet id (4 mg) ble blandet The product prepared as described id (4 mg) was mixed

med 0,IN natriumhydroksyd-løsning (5 ml) og blandingen ble rørt ved romtemperatur i 8 timer hvilket resulterte i en klar gul løsning. with 0.1N sodium hydroxide solution (5 mL) and the mixture was stirred at room temperature for 8 hours resulting in a clear yellow solution.

Denne ble tilsatt 0,IN saltsyre (5 ml) og blandingen fylt opp til 25 ml med natriumorthofosfat-buffer (0,05 M, pH 7,4) hvilket ga en løsning av den ønskede forbindelse som var egnet for bruk i enzymmålingen. To this was added 0.1N hydrochloric acid (5 ml) and the mixture filled up to 25 ml with sodium orthophosphate buffer (0.05 M, pH 7.4), which gave a solution of the desired compound which was suitable for use in the enzyme measurement.

EKSEMPEL 7 EXAMPLE 7

Enzyminhibitor-immunomåling for morfin Enzyme inhibitor immunoassay for morphine

En blanding av 10 ul morfinløsning i passende konsentrasjon, 50 ul metotreksat-y-(0 3-amidoetylmorfin)-løsning (4 ng/ 25 ml), 50 ul antimorfin-antistoffløsning, 10 ul NADPH-løsning, A mixture of 10 µl morphine solution at the appropriate concentration, 50 µl methotrexate-γ-(0 3-amidoethylmorphine) solution (4 ng/ 25 ml), 50 µl antimorphine antibody solution, 10 µl NADPH solution,

10 ul 2-merkaptoetanol-løsning, 50 ul kaliumklorid-løsning, 150 ul tris-HCl-buffer-løsning (pK 7,5) inneholdende EDTA og 10 ul dihydrofolatreduktase (E.casei) løsning ble inkubert 20 minutter ved 37°. Enzymaktiviteten i blandingen ble bestemt etter tilsetningen av 10 pl dihydrofolat-løsning ved måling av forandringen i ekstinksjon av løsningen ved 340 nm ved bruk av en "Centrifichem" sentrifugalanalyse. Resultatene er vist i tabell III 10 µl 2-mercaptoethanol solution, 50 µl potassium chloride solution, 150 µl tris-HCl buffer solution (pK 7.5) containing EDTA and 10 µl dihydrofolate reductase (E.casei) solution were incubated 20 minutes at 37°. The enzyme activity in the mixture was determined after the addition of 10 µl of dihydrofolate solution by measuring the change in extinction of the solution at 340 nm using a "Centrifichem" centrifugal assay. The results are shown in Table III

Den ovenstående tabell viser at med økende konsentrasjon av morfin avtar aktiviteten til dihydrofolat-reduktase. Slike løsninger av morfin som inneholder fra 4 pg nr. ml til 4 mg pr. ml morfin kunne bestemmes selv hvor bare 10 pl løsning var tilgjengelig. Dette betyr imidlertid ikke at dette er det krevede området, men snarere at den kan anvendes med hell. The above table shows that with increasing concentration of morphine the activity of dihydrofolate reductase decreases. Such solutions of morphine containing from 4 pg no. ml to 4 mg per ml of morphine could be determined even where only 10 pl of solution was available. However, this does not mean that this is the required area, but rather that it can be used successfully.

EKSEMPEL 8 EXAMPLE 8

Syntese av ferritin-metotreksat-konjugat. Synthesis of ferritin-methotrexate conjugate.

En løsning av humant leverferritin (1,3 mg) i natriumfosfat buffer (0,05 M, pH 8,0, 5 ml) og 1 ml dimetylformamid (DMF) ble rørt ved romtemperatur og 100 pl av en løsning oppnådd ved å behandle metotreksat (23 mg) i DMF (2 ml) A solution of human liver ferritin (1.3 mg) in sodium phosphate buffer (0.05 M, pH 8.0, 5 ml) and 1 ml of dimethylformamide (DMF) was stirred at room temperature and 100 μl of a solution obtained by treating methotrexate (23 mg) in DMF (2 mL)

med trietylamin (21 pl) og i-butylklorformat (15 pl) ved romtemperatur i 30 minutter ble tilsatt. Blandingen ble rørt ved romtemperatur i 2 timer og så dialysert mot 2x2 liter natriumorthofosfat-buffer (0,05 M, pH 7,4 inneholdende natriumklorid 0,IM og natriumazid 0,05 vekt-%) i 24 timer. Løsningen ble så sendt gjennom en kolonne av Sephadex G-25 innstilt med den samme buffer og de ferritinholdige fraksjoner slått sammen og fylt opp til 10 ml med buffer. with triethylamine (21 µl) and i-butyl chloroformate (15 µl) at room temperature for 30 minutes was added. The mixture was stirred at room temperature for 2 hours and then dialyzed against 2x2 liters of sodium orthophosphate buffer (0.05 M, pH 7.4 containing sodium chloride 0.1M and sodium azide 0.05% by weight) for 24 hours. The solution was then passed through a column of Sephadex G-25 adjusted with the same buffer and the ferritin-containing fractions pooled and made up to 10 ml with buffer.

Den resulterende løsning er egnet for bruk i en enzyminnumo-måling for bestemmelsen av ferritin. The resulting solution is suitable for use in an enzyme innumo measurement for the determination of ferritin.

Claims (1)

Reagens for bestemmelse av et immunologisk aktivt materiale bestående av en reseptor, som binder det immunologisk aktive materiale, et enzym, et enzymsubstrat og det immunologisk aktive materiale som er merket med en forbindelse som er i stand til å modifisere aktiviteten i enzymet,Reagent for the determination of an immunologically active material consisting of a receptor, which binds the immunologically active material, an enzyme, an enzyme substrate and the immunologically active material labeled with a compound capable of modifying the activity of the enzyme, karakterisert ved at det merkede immunologiske materiale er et antigen-enzyminhibitor- eller antigen-enzymaktivator-kompleks.characterized in that the labeled immunological material is an antigen-enzyme inhibitor or antigen-enzyme activator complex.
NO780902A 1977-03-15 1978-03-14 REAGENT FOR DETERMINING AN IMMUNOLOGICALLY ACTIVE MATERIAL NO152955C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB10859/77A GB1595101A (en) 1977-03-15 1977-03-15 Enzyme modifier immunoassay

Publications (3)

Publication Number Publication Date
NO780902L NO780902L (en) 1978-09-18
NO152955B true NO152955B (en) 1985-09-09
NO152955C NO152955C (en) 1985-12-18

Family

ID=9975639

Family Applications (2)

Application Number Title Priority Date Filing Date
NO780902A NO152955C (en) 1977-03-15 1978-03-14 REAGENT FOR DETERMINING AN IMMUNOLOGICALLY ACTIVE MATERIAL
NO84844764A NO154814C (en) 1977-03-15 1984-11-29 PROCEDURE FOR IMMUNOLOGICAL DETERMINATION.

Family Applications After (1)

Application Number Title Priority Date Filing Date
NO84844764A NO154814C (en) 1977-03-15 1984-11-29 PROCEDURE FOR IMMUNOLOGICAL DETERMINATION.

Country Status (16)

Country Link
JP (1) JPS53115814A (en)
AT (1) AT367203B (en)
AU (1) AU519326B2 (en)
BE (1) BE864856A (en)
CA (1) CA1102789A (en)
CH (1) CH641570A5 (en)
DE (1) DE2811257A1 (en)
DK (1) DK152313C (en)
ES (2) ES467831A1 (en)
FR (1) FR2384262A1 (en)
GB (1) GB1595101A (en)
IL (1) IL54234A0 (en)
IT (1) IT1158665B (en)
NL (1) NL7802845A (en)
NO (2) NO152955C (en)
SE (1) SE447026B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273866A (en) 1979-02-05 1981-06-16 Abbott Laboratories Ligand analog-irreversible enzyme inhibitor conjugates and methods for use
GB2059421A (en) * 1979-10-03 1981-04-23 Self C H Assay method and reagents therefor
DE3006709A1 (en) * 1980-02-22 1981-08-27 Hans A. Dipl.-Chem. Dr. 8000 München Thoma HOMOGENEOUS METHOD FOR COMPETITIVE DETERMINATION OF LIGANDS
US4341865A (en) 1980-07-21 1982-07-27 Abbott Laboratories Determination of thyroxine binding globulin
FR2502786B1 (en) * 1981-03-24 1985-06-21 Stallergenes Laboratoire METHOD FOR FIXING ANTIGENS AND ANTIBODIES TO POLYSACCHARIDE SUPPORT, AND USE OF THE PRODUCT OBTAINED THEREFOR FOR IMMUNOASSAYS
GB2116979B (en) * 1982-02-25 1985-05-15 Ward Page Faulk Conjugates of proteins with anti-tumour agents
AU574646B2 (en) * 1982-07-19 1988-07-14 Cooperbiomedical Inc. Enzyme assay method
GB2135773B (en) * 1983-01-31 1985-12-04 Boots Celltech Diagnostics Enzyme inhibitor labelled immunoassay
US4650751A (en) * 1983-04-29 1987-03-17 Technicon Instruments Corporation Protected binding assay avoiding non-specific protein interference
JPS607362A (en) * 1983-06-27 1985-01-16 Fujirebio Inc Measurement of antigen determinant-containing substance using enzyme
US4837395A (en) * 1985-05-10 1989-06-06 Syntex (U.S.A.) Inc. Single step heterogeneous assay
CA1330378C (en) * 1986-05-08 1994-06-21 Daniel J. Coughlin Amine derivatives of folic acid analogs
US4939264A (en) * 1986-07-14 1990-07-03 Abbott Laboratories Immunoassay for opiate alkaloids and their metabolites; tracers, immunogens and antibodies
IL85596A (en) * 1987-05-18 1992-06-21 Technicon Instr Method for a specific binding enzyme immunoassay
US5972630A (en) * 1991-08-19 1999-10-26 Dade Behring Marburg Gmbh Homogeneous immunoassays using enzyme inhibitors
US5965106A (en) * 1992-03-04 1999-10-12 Perimmune Holdings, Inc. In vivo binding pair pretargeting
EP0590109A4 (en) * 1992-03-04 1995-04-19 Akzo Nv -i(IN VIVO) BINDING PAIR PRETARGETING.
EP1079231A4 (en) * 1998-05-15 2003-07-23 Sekisui Chemical Co Ltd Immunoassay reagents and immunoassay method
US6811998B2 (en) 1999-06-25 2004-11-02 Roche Diagnostics Operations, Inc. Conjugates of uncompetitive inhibitors of inosine monophosphate dehydrogenase
US8394813B2 (en) * 2000-11-14 2013-03-12 Shire Llc Active agent delivery systems and methods for protecting and administering active agents
US8664181B2 (en) * 2007-02-16 2014-03-04 Ktb Tumorforschungsgesellschaft Mbh Dual acting prodrugs

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2308005A1 (en) * 1975-04-15 1976-11-12 Hadaway Robert Drive in wall plug fastener - has body provided with indentations and covered with pliable externally smooth coating

Also Published As

Publication number Publication date
NO154814B (en) 1986-09-15
ES467831A1 (en) 1979-09-01
GB1595101A (en) 1981-08-05
FR2384262A1 (en) 1978-10-13
CA1102789A (en) 1981-06-09
DK152313B (en) 1988-02-15
AT367203B (en) 1982-06-11
SE447026B (en) 1986-10-20
NL7802845A (en) 1978-09-19
NO844764L (en) 1978-09-18
NO152955C (en) 1985-12-18
NO154814C (en) 1986-12-29
ATA182178A (en) 1981-10-15
ES475984A1 (en) 1979-06-16
DE2811257A1 (en) 1978-09-21
NO780902L (en) 1978-09-18
DK114778A (en) 1978-09-16
DK152313C (en) 1988-09-26
IL54234A0 (en) 1978-06-15
JPS53115814A (en) 1978-10-09
BE864856A (en) 1978-09-14
FR2384262B1 (en) 1983-04-08
IT1158665B (en) 1987-02-25
AU519326B2 (en) 1981-11-26
AU3396578A (en) 1979-09-13
CH641570A5 (en) 1984-02-29
SE7802923L (en) 1978-09-16
IT7821256A0 (en) 1978-03-15

Similar Documents

Publication Publication Date Title
NO152955B (en) REAGENT FOR DETERMINING AN IMMUNOLOGICALLY ACTIVE MATERIAL
US4476229A (en) Substituted carboxyfluoresceins
US4510251A (en) Fluorescent polarization assay for ligands using aminomethylfluorescein derivatives as tracers
US4228237A (en) Methods for the detection and determination of ligands
US5661019A (en) Trifunctional conjugates
US7875467B2 (en) Applications of acridinium compounds and derivatives in homogeneous assays
US5492841A (en) Quaternary ammonium immunogenic conjugates and immunoassay reagents
EP0108400B1 (en) Determination of unsaturated thyroxine binding protein sites using fluorescence polarization techniques
US3935074A (en) Antibody steric hindrance immunoassay with two antibodies
US4506009A (en) Heterogeneous immunoassay method
US4902630A (en) Fluorescence polarization immunoassy and reagents for measurement of c-reactive protein
JPS6018940B2 (en) Immunological analysis method
US20050255528A1 (en) Hydrophilic chemiluminescent acridinium labeling reagents
CN1993618B (en) Probe complex
CN104704366A (en) Hydroxamate substituted azaindoline-cyanine dyes and bioconjugates of the same
US5614368A (en) Chromophoric reagents for incorporation of biotin or other haptens into macromolecules
US10138267B2 (en) Bioconjugates of heterocyclic compounds
US4614823A (en) Aminomethylfluorescein derivatives
EP0593956B1 (en) Agglutination assays using multivalent ligands
Mattox et al. A comparison of procedures for attaching steroidal glucosiduronic acids to bovine serum albumin
JP2953501B2 (en) Interference elimination reagent for measuring analytes using luminescent metal complexes
FI78787C (en) IMMUNOMETRISK METHOD FOR THE END OF HAPPEN.
CN114014774A (en) Fluoroamidone artificial hapten, artificial antigen, and preparation method and application thereof
CA1300808C (en) Fluorescence polarization immunnoassay and reagents for measurement of c-reactive protein
US20230131000A1 (en) UV Excitable Polyfluorene Based Conjugates and Their Use in Methods of Analyte Detection