NO150657B - DISPENSER FOR ELECTRICAL ACCUMULATORS CONSISTING OF A MICROPOROUS BASIC MATERIAL, AND PROCEDURE FOR THE PREPARATION OF THE DISPENSER - Google Patents

DISPENSER FOR ELECTRICAL ACCUMULATORS CONSISTING OF A MICROPOROUS BASIC MATERIAL, AND PROCEDURE FOR THE PREPARATION OF THE DISPENSER Download PDF

Info

Publication number
NO150657B
NO150657B NO793514A NO793514A NO150657B NO 150657 B NO150657 B NO 150657B NO 793514 A NO793514 A NO 793514A NO 793514 A NO793514 A NO 793514A NO 150657 B NO150657 B NO 150657B
Authority
NO
Norway
Prior art keywords
dispenser
stretch
stretch plastic
procedure
preparation
Prior art date
Application number
NO793514A
Other languages
Norwegian (no)
Other versions
NO150657C (en
NO793514L (en
Inventor
Hans-Joachim Golz
Original Assignee
Varta Batterie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varta Batterie filed Critical Varta Batterie
Publication of NO793514L publication Critical patent/NO793514L/en
Publication of NO150657B publication Critical patent/NO150657B/en
Publication of NO150657C publication Critical patent/NO150657C/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Materials For Medical Uses (AREA)

Description

Oppfinnelsen angår en skilleanordning for elektriske akkumulatorer, særlig blyakkumulatorer, av et porøst materiale hvor den mot den positive elektrode vendte side er forbundet med en nettstruktur av strekkunststoff, samt fremgangsmåte for fremstilling av skilleanordningen. The invention relates to a separating device for electric accumulators, in particular lead accumulators, of a porous material where the side facing the positive electrode is connected to a net structure of stretch plastic, as well as a method for producing the separating device.

Anvendelsen av skilleanordninger i akkumulatortek-nikken omfatter alt etter celloppbygging og elektrodeform et utstrakt spektrum av diafragmaer, som utstrekker seg fra enkle avstandsholdere til mikroporøse romstrukturer. I overveiende grad er skilleanordningene i dag, særlig for bruk i blyakkumulatorer, fremstilt av syrebestandige termoplastiske kunststoffer . The use of separating devices in accumulator technology includes, depending on the cell structure and electrode shape, an extensive spectrum of diaphragms, which extends from simple spacers to microporous space structures. The separation devices today, especially for use in lead accumulators, are predominantly made of acid-resistant thermoplastic plastics.

Den enkleste metode til fremstilling av slike skilleanordninger er sintring av kunststoffpulvere. I dette tilfelle blir f. eks. polyvinylklorid-pulver påført et stålbånd i et tynt sjikt og ført gjennom en sintringsovn. Ved en luftempera-tur i ovnen på 200 - 350°C blir pulverbåndet sintret sammen til et fast legeme med relativt høy porøsitet. The simplest method for producing such separators is sintering plastic powders. In this case, e.g. polyvinyl chloride powder applied to a steel strip in a thin layer and passed through a sintering furnace. At an air temperature in the oven of 200 - 350°C, the powder band is sintered together into a solid body with a relatively high porosity.

Ved utskjæring eller stansing kan platene gis en ønsket innbyggingsstørrelse, som imidlertid ved tett, flate-messig berøring med elektrodeplatene ikke lar det bli noen plass for en uhindret unnviking av de gasser som fremkommer ved ladning. By cutting or punching, the plates can be given a desired built-in size, which, however, in close, surface-wise contact with the electrode plates, leaves no room for an unimpeded escape of the gases that arise during charging.

Det sintrede pulverbånd blir derfor før oppskjærin-gen ved redusert temperatur etterformet mellom valser til et bølget legeme, eller det får en profilering ved hjelp av ribber eller steg som før sintringen tilformes ved hjelp av form-ingsvalser eller strykekniver (rakelkniver) fra båndet eller ribbene påføres etterpå. The sintered powder band is therefore, prior to cutting at a reduced temperature, reshaped between rollers into a wavy body, or it is given a profile using ribs or steps which, before sintering, are shaped using shaping rollers or ironing knives (squeegee knives) from the band or ribs applied afterwards.

Vanligvis er det tilstrekkelig at det bare befinner seg ribber på en side av skilleanordningen, hvilken side er vendt mot den positive elektrode, mens den andre side av skilleanordningen ligger umiddelbart mot den negative elektrode. An-ordninger såvel av denne type som også med bølgende folier mellom de positive og negative batterielektroder er f. eks. kjent fra DE-AS 1771227. Ribbene, henholdsvis avstandsholderne blir her tilveiebragt ved utstansing av et foliemateriale med ønsket tykkelse og påklebet, påsveiset eller trykket inn med kraft i parallelt forløpende baner på den egentlige separator. Ifølge en annen kjent metode ifølge De-AS 1269212 påfører man en var-meherdende kunstharpiksblanding ved hjelp av en ekstruder i form av parallelle strenger på den egentlige porøse skillefolie og fører produktet gjennom en luftsirkulasjonsovn med innstilt temperatur, ved hvilken strengene smelter på underlaget og her-der fullstendig ut samtidig med dette som er impregnert med delvis herdet fenolformaldehyd-kunstharpiks. Usually it is sufficient that there are only ribs on one side of the separating device, which side faces the positive electrode, while the other side of the separating device lies immediately against the negative electrode. Arrangements both of this type and also with undulating foils between the positive and negative battery electrodes are e.g. known from DE-AS 1771227. The ribs, respectively the spacers, are provided here by punching out a foil material of the desired thickness and glued, welded on or pressed in with force in parallel running paths on the actual separator. According to another known method according to De-AS 1269212, a heat-hardening synthetic resin mixture is applied by means of an extruder in the form of parallel strands to the actual porous separating film and the product is passed through an air circulation oven with a set temperature, in which the strands melt on the substrate and here - there completely out at the same time as this which is impregnated with partially hardened phenol-formaldehyde synthetic resin.

Da ribbene bare kan forløpe i langsgående baner for As the ribs can only run in longitudinal paths for

å sikre de oppstigende oksygenbobler en nødvendig gjennomgang, har skilleanordningen bare en god mekanisk stabilitet i en retning, mens den i den andre retning lett kan foldes eller inn-trykkes . to ensure the rising oxygen bubbles a necessary passage, the separating device only has a good mechanical stability in one direction, while in the other direction it can easily be folded or pressed in.

Den oppgave som derfor ligger til grunn for oppfinnelsen er å tilveiebringe en skilleanordning, særlig for blyakkumulatorer, henholdsvis startbatterier, som foruten sin egentlige funksjon som høyporøst diafragma også har en god stiv- The task that is therefore the basis of the invention is to provide a separation device, particularly for lead accumulators, respectively starter batteries, which, in addition to its actual function as a highly porous diaphragm, also has a good rigid

het over hele flateutstrekningen og til tross for en tett inn-bygging muliggjør en unnviking uten problemer for ladegassene fra elektrolytten. hot over the entire surface area and, despite a tight installation, enables the charging gases from the electrolyte to escape without problems.

Denne oppgaven blir løst ifølge oppfinnelsen ved en anordning av den innledningsvis nevnte art, hvis karakteristi-ske trekk fremgår av søknadens krav. This task is solved according to the invention by a device of the type mentioned at the outset, the characteristic features of which appear from the application's requirements.

Forbindelsen med det egentlige grunnmateriale skal The connection with the actual base material must

i og for seg bare opprettholdes så lenge til skilleanordningen har inntatt sin plass for bestandig i cellen mellom elektroder med forskjellig polaritet. Nettverket har til oppgave å fast-gjøre et eventuelt ytterst fleksibelt grunnmateriale manupuler-bart til den stive skilleanordning i løpet av fabrikasjonen. in and of itself is only maintained until the separating device has taken its place permanently in the cell between electrodes of different polarity. The network has the task of attaching an extremely flexible base material that can be manipulated to the rigid separation device during fabrication.

Grunnmaterialet i skilleanordningen kan være The basic material in the separating device can be

en høyporøs folie, som består av et mot syre bestandig, termoplastisk kunststoff. Som egnet materiale kommer på tale a highly porous foil, which consists of an acid-resistant, thermoplastic plastic. As suitable material comes into question

polyetylen, fortrinnsvis imidlertid polypropylen. En kjent polypropylenfolie har f. eks. en tykkelse på ca. 25 li og en porøsitet på 3 5 %, hvorved diameteren for porene er mindre enn 0,1 y. Porene til denne folie kan forstås som diskrete, lett krummede kanaler fra en overflate til den andre. Den derav til-veiebragte, særlig jevne struktur gir folien for det påtenkte anvendelsesformål overordentlig gunstige mekaniske og elektriske egenskaper. polyethylene, preferably, however, polypropylene. A known polypropylene film has e.g. a thickness of approx. 25 li and a porosity of 3 5%, whereby the diameter of the pores is less than 0.1 y. The pores of this foil can be understood as discrete, slightly curved channels from one surface to the other. The resulting particularly even structure gives the foil extremely favorable mechanical and electrical properties for the intended purpose of use.

På en side av grunnmaterialet til skilleanordningen og fast forbundet med denne er det påført en nettstruktur av et kunststoff, som hensiktsmessig er valgt fra den samme gruppe termoplaster, men eventuelt også kan være en herdeplast. On one side of the base material for the separation device and permanently connected to it, a net structure of a synthetic material is applied, which is suitably selected from the same group of thermoplastics, but can optionally also be a thermosetting plastic.

Nettstrukturen spiller rollen til en avstandsholder, hvorved skilleanordningen totalt i alle flateretninger får en øket bøyefasthet som de kjente laminære strukturer i de innledningsvis nevnte stegskilleanordninger bare har i ufullstendig grad. Først i forbindelse med det nettlignende avstandsholder-sjikt over hvilket den hudtynne folie på en måte er oppspent, kan anordningen optimalt utføre sin skillefunksjon. The net structure plays the role of a spacer, whereby the separation device in all surface directions gets an increased bending strength which the known laminar structures in the initially mentioned step separation devices only have to an incomplete extent. Only in connection with the net-like spacer layer over which the skin-thin foil is stretched in a way, can the device optimally perform its separation function.

Nettstrukturen selv kan være dannet av innbyrdes kryssende parallelle skarer av kunststoffstaver eller -tråder. The net structure itself can be formed from mutually intersecting parallel bands of plastic rods or threads.

Nettstrukturen kan være et strekkunststoff som blir fremstilt av et glatt båndmateriale på samme måte som et strekkmetall. Til grunn for denne strekkbearbeidelse ligger en i og for seg kjent strekkprosess som gir kunststoffmate-rialet, som danner nettstrukturen, dets formstabilitet. Ved strekking får nemlig de fleste lineærpolymere kunststoffer en betydelig fasthetsøkning ved samtidig tilbakegang av ut-videlsen. Fastgjøringen beror på at de vanligvis sammen-klumpede trådmolekyler under påvirkning av en strekkspen- The mesh structure can be a stretch plastic which is produced from a smooth strip material in the same way as a stretch metal. The basis for this stretch processing is a stretch process known in and of itself which gives the plastic material, which forms the net structure, its shape stability. When stretched, most linear polymeric plastics experience a significant increase in strength with a simultaneous decrease in expansion. The fixation is due to the fact that the usually clumped thread molecules under the influence of a tensile stress

ning ordner seg til krystallignende strukturer innenfor hvilke de mellommolekylære bindingskrefter blir sterkere virk-somme . ning arranges itself into crystal-like structures within which the intermolecular binding forces become more effective.

En deformering ved strekking er mulig ved såvel glassamorfe termoplaster som også ved romtemperatur delkrystal-line termoplaster som polyetylen og polypropylen. Ved den sistnevnte er det gunstig å foreta strekkingen ved en høyere temperatur i området ved 100 - 150°C (varmformtemperatur), som allerede ligger i nærheten av emelteområdet for krystallittene. I ethvert tilfelle bør deformeringstemperaturen velges så høy at det deretter kan foretas en bråkjøling til under den såkalte innfrysningstemperatur, hvorved det termoelastiske tilstands-område underskrides. Formforandringen blir derved fast til krystallsmeltéområdet, i hvert fall ved de vanlige brukstempe-raturer. Deformation during stretching is possible with glass-amorphous thermoplastics as well as semi-crystalline thermoplastics such as polyethylene and polypropylene at room temperature. With the latter, it is advantageous to carry out the stretching at a higher temperature in the range of 100 - 150°C (hot form temperature), which is already close to the melting range for the crystallites. In any case, the deformation temperature should be chosen so high that a rapid cooling can then be carried out to below the so-called freezing temperature, whereby the thermoelastic state range is undercut. The change in shape is thereby fixed to the crystal melting area, at least at the usual operating temperatures.

Steg med mindre tykkelse er anordnet innenfor strekkrasteret, slik at det i de foretrukkede retninger fremkommer passerings-strekninger for unnvikelse av elektrolysegassene etter at skilleanordningen er tett innebygd mellom elektrodeplatene. En slik utforming av strekkunststoffet er mulig på forskjellig måte. F. eks. kan slissene med hvilke kunststoffolien er ut-styrt helt på tilsvarende måte som ved et metallisk båndmateriale som skal strekkes, være forskjøvet innbyrdes i henhold til et forutbestemt mønster på en slik måte at ved hjelp av strekkverktøyets kniver de mellom slissene anordnede flater trykkes ut delvis sterkere, delvis mindre sterkt til sidene. Derved kan det oppnås baner med mindre tykke steg med siksak-formet forløp. En annen mulighet for tilveiebringelse av større og mindre stegtykkelser ved siden av hverandre består deri at de ellers like, kamlignende anordnede slissekniver i strekk-verktøyet delvis og i en bestemt rekkefølge skiftes ut med stansekniver. Steps with a smaller thickness are arranged within the stretch grid, so that in the preferred directions passing stretches appear for avoiding the electrolytic gases after the separation device is tightly embedded between the electrode plates. Such a design of the stretch plastic is possible in different ways. For example the slots with which the plastic foil is equipped in a completely similar way as in the case of a metallic strip material to be stretched, can be offset from each other according to a predetermined pattern in such a way that with the help of the knives of the stretching tool the surfaces arranged between the slots are pressed out partially stronger , partly less strongly to the sides. Thereby, paths with less thick steps with a zigzag-shaped course can be achieved. Another possibility for providing larger and smaller step thicknesses next to each other is that the otherwise similar, comb-like arranged slotting knives in the stretching tool are partially and in a specific order replaced by punching knives.

Forbindelsen av nettstrukturen med det mikroporøse grunnmateriale til et enhetlig legeme kan på grunn av de spesi-elle egenskaper til de termoplastiske kunststoffer skje på den måte at man oppvarmer de flater som skal forbindes til begynn-ende oppmykning og sammentrykker dem under svakt presstrykk, henholdsvis at grunnmaterialet strykes på nettstrukturen. Opp-varmingstiden bør imidlertid gjøres så kort og temperaturen inn-stilles slik at overflaten akkurat er klebedyktig og ved trykk-anvendelse bevirke en sammensveising. The connection of the net structure with the microporous base material into a uniform body can, due to the special properties of the thermoplastic plastics, take place in such a way that the surfaces to be connected are heated to initial softening and compressed under weak pressure, respectively that the base material is ironed onto the mesh structure. However, the heating time should be made so short and the temperature set so that the surface is just adhesive and when pressure is applied causes a weld together.

Til dette formål er det fordelaktig å føre det mikro-porøse grunnmateriale og strekkunststoffet, begge i båndform, adskilt overoppvarmbare ruller, som gir de den for sammenkleb-ingen nødvendige temperatur på anleggssiden mot valseflaten. Båndene blir umiddelbart deretter opptatt av to tett hbsliggende ombøyningsruller og lett sammentrykket mellom disse. Spaltbred-den mellom ombøyningsrullene bør være noe smalere enn høyden til det ferdige produkt for å unngå en uønsket flatvalsing av det fastgjorte strekkunststoff. For this purpose, it is advantageous to feed the micro-porous base material and the stretch plastic, both in strip form, over separate superheatable rollers, which give them the temperature required for bonding on the contact side against the roll surface. The strips are immediately then taken up by two closely spaced bending rolls and lightly compressed between them. The gap width between the bending rolls should be somewhat narrower than the height of the finished product to avoid an unwanted flat rolling of the attached stretch plastic.

Fig. 1 viser en sammensatt separator ifølge oppfinnelsen, bestående av den mikroporøse grunnfolie 1 og et strekk-kunststofflag 2. De stiplede linjer fører over foretrukkede passasjer for gass, som er dannet ved reduksjon av stegtykkel-sen i disse områder. Fig. 1 shows a composite separator according to the invention, consisting of the microporous base foil 1 and a stretch plastic layer 2. The dashed lines lead over preferred passages for gas, which are formed by reducing the step thickness in these areas.

Hele sjikttykkelsen til separatoren svarer til tykk-elsen på vanlige separatorer i startbatteriet. The entire layer thickness of the separator corresponds to the thickness of normal separators in the starter battery.

Claims (3)

1. Skilleanordning for elektriske akkumulatorer, særlig for blyakkumulatorer, av et porøst grunnmateriale, hvor den mot den positive elektrode vendte side er forbundet med en nettstruktur av et strekkunststoff, karakterisert ved at strekkunststoffet har steg med forskjellig tykkelse, hvorved det i foretrukkede retninger bare er anordnet steg med mindre tykkelse.1. Separation device for electric accumulators, in particular for lead accumulators, of a porous base material, where the side facing the positive electrode is connected to a net structure of a stretch plastic material, characterized in that the stretch plastic material has steps of different thickness, whereby in preferred directions only arranged step with less thickness. 2. Fremgangsmåte til fremstilling av en skilleanordning ifølge krav 1 for elektriske akkumulatorer, særlig blyakkumulatorer, av et porøst grunnmateriale, hvor den mot den positive elektrode vendte side er forbundet med en nettstruktur av strekkunststoff, karakterisert ved at strekk-kunststoffet forbindes termisk med det mikroporøse grunnmaterialet .2. Method for producing a separation device according to claim 1 for electric accumulators, in particular lead accumulators, from a porous base material, where the side facing the positive electrode is connected to a net structure of stretch plastic, characterized in that the stretch plastic is thermally connected to the microporous the basic material. 3. Fremgangsmåte til fremstilling av en skilleanordning ifølge krav 2,karakterisert ved at strekkunststoffet strekkes under utformingen av forskjellige tykke steg.3. Method for manufacturing a separation device according to claim 2, characterized in that the stretch plastic is stretched during the design of different thick steps.
NO793514A 1978-11-02 1979-11-01 DISPENSER FOR ELECTRICAL ACCUMULATORS CONSISTING OF A MICROPOROUS BASIC MATERIAL, AND PROCEDURE FOR THE PREPARATION OF THE DISPENSER NO150657C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2847463A DE2847463C2 (en) 1978-11-02 1978-11-02 Separator for electrical accumulators made from a microporous base material

Publications (3)

Publication Number Publication Date
NO793514L NO793514L (en) 1980-05-05
NO150657B true NO150657B (en) 1984-08-13
NO150657C NO150657C (en) 1984-11-21

Family

ID=6053638

Family Applications (1)

Application Number Title Priority Date Filing Date
NO793514A NO150657C (en) 1978-11-02 1979-11-01 DISPENSER FOR ELECTRICAL ACCUMULATORS CONSISTING OF A MICROPOROUS BASIC MATERIAL, AND PROCEDURE FOR THE PREPARATION OF THE DISPENSER

Country Status (14)

Country Link
JP (1) JPS5564363A (en)
AT (1) AT373444B (en)
BE (1) BE879707A (en)
CA (1) CA1135331A (en)
DE (1) DE2847463C2 (en)
DK (1) DK458179A (en)
ES (1) ES246498Y (en)
FI (1) FI793419A (en)
FR (1) FR2441274A1 (en)
GB (1) GB2038715B (en)
IT (1) IT1124909B (en)
NL (1) NL7908014A (en)
NO (1) NO150657C (en)
SE (1) SE436312B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121775A (en) * 1982-12-28 1984-07-13 Shin Kobe Electric Mach Co Ltd Sealed type lead storage battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1348420A (en) * 1964-04-10
US2360658A (en) * 1943-05-27 1944-10-17 Carlile & Doughty Inc Separator for batteries
US2531504A (en) * 1944-06-12 1950-11-28 Richardson Co Separator for electric storage batteries
DE1681854U (en) * 1952-04-22 1954-08-19 Gottfried Hagen A G COMPOSITE SEPARATOR.
CH314111A (en) * 1952-06-28 1956-05-31 Bosch Gmbh Robert Separator for electrical collector batteries
FR1067287A (en) * 1952-11-29 1954-06-14 Accumulator separator
FR94909E (en) * 1965-07-29 1970-01-23 Accumulateurs Fixes Process for separating the electrodes of batteries from primary cells or from electric accumulators, in particular from cells said to be primed with seawater, and batteries obtained by this process.

Also Published As

Publication number Publication date
DK458179A (en) 1980-05-03
FI793419A (en) 1980-05-03
BE879707A (en) 1980-02-15
ES246498U (en) 1980-02-16
ATA702979A (en) 1983-05-15
AT373444B (en) 1984-01-25
NO150657C (en) 1984-11-21
DE2847463C2 (en) 1986-02-06
NL7908014A (en) 1980-05-07
GB2038715B (en) 1983-02-09
IT7927016A0 (en) 1979-11-02
JPS5564363A (en) 1980-05-15
NO793514L (en) 1980-05-05
IT1124909B (en) 1986-05-14
SE436312B (en) 1984-11-26
ES246498Y (en) 1980-08-16
SE7907260L (en) 1980-05-03
CA1135331A (en) 1982-11-09
DE2847463A1 (en) 1980-05-14
FR2441274B3 (en) 1981-08-14
FR2441274A1 (en) 1980-06-06
GB2038715A (en) 1980-07-30

Similar Documents

Publication Publication Date Title
CN110869179B (en) Method for producing dry film, roll press device, dry film, and electrochemical storage element or electrochemical converter
CN111212734B (en) Polyolefin microporous membrane and lithium ion secondary battery using same
JP5337366B2 (en) Battery manufacturing method and battery
KR20120081997A (en) Battery manufacturing using laminated assemblies
KR101628483B1 (en) Manufacture method of MEA
JP2003223906A (en) Manufacturing method of conductive component and manufacturing method of separator for fuel cell
KR20160085812A (en) Laminating method
JP2007172929A5 (en)
CA2591542A1 (en) Sheet molding material for fuel cell bipolar plate, method of producing same and bipolar plate or fuel cell
KR20150071889A (en) Manufacture method of MEA for fuel cell
TW201815921A (en) Microporous membrane, lithium ion secondary battery, and microporous membrane production method
JP5946305B2 (en) Hollow structure plate manufacturing method and manufacturing apparatus
US3354247A (en) Method of producing porous separators
JP2009134953A (en) Membrane electrode assembly with frame, and method of continuously manufacturing fuel battery cell
JP4441950B2 (en) Manufacturing method of fuel cell separator
JP2024525291A (en) Dry battery plates and batteries
JPH0661857B2 (en) Method for manufacturing expanded fiber composite structure
NO150657B (en) DISPENSER FOR ELECTRICAL ACCUMULATORS CONSISTING OF A MICROPOROUS BASIC MATERIAL, AND PROCEDURE FOR THE PREPARATION OF THE DISPENSER
JP6673241B2 (en) Band-like member bonding method and band-like member bonding apparatus
US10164232B2 (en) Manufacturing method and manufacturing apparatus of electrode body
KR102552154B1 (en) manufacturing device of membrane electrode assembly with excellent mass transfer characteristics and durability, and method using thereof
CN108466415B (en) Wet diaphragm membrane preparation device and preparation method
JP2003109583A (en) Manufacturing method of joined body for polymer secondary battery, and manufacturing device for the same
JP3970215B2 (en) Method for producing tetrafluoroethylene resin sheet
KR20180004575A (en) Wrinkle Structure for Membrane Electrode Assembly of Fuel Cell and Manufacturing Method Therefor