NO150657B - DISPENSER FOR ELECTRICAL ACCUMULATORS CONSISTING OF A MICROPOROUS BASIC MATERIAL, AND PROCEDURE FOR THE PREPARATION OF THE DISPENSER - Google Patents
DISPENSER FOR ELECTRICAL ACCUMULATORS CONSISTING OF A MICROPOROUS BASIC MATERIAL, AND PROCEDURE FOR THE PREPARATION OF THE DISPENSER Download PDFInfo
- Publication number
- NO150657B NO150657B NO793514A NO793514A NO150657B NO 150657 B NO150657 B NO 150657B NO 793514 A NO793514 A NO 793514A NO 793514 A NO793514 A NO 793514A NO 150657 B NO150657 B NO 150657B
- Authority
- NO
- Norway
- Prior art keywords
- dispenser
- stretch
- stretch plastic
- procedure
- preparation
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims description 18
- 238000000034 method Methods 0.000 title claims description 4
- 239000004033 plastic Substances 0.000 claims description 16
- 229920003023 plastic Polymers 0.000 claims description 16
- 238000000926 separation method Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000011888 foil Substances 0.000 description 8
- 229920001169 thermoplastic Polymers 0.000 description 6
- -1 polyethylene Polymers 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/266—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0012—Mechanical treatment, e.g. roughening, deforming, stretching
- B32B2038/0028—Stretching, elongating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/04—Polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/10—Polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/10—Batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Separators (AREA)
- Materials For Medical Uses (AREA)
Description
Oppfinnelsen angår en skilleanordning for elektriske akkumulatorer, særlig blyakkumulatorer, av et porøst materiale hvor den mot den positive elektrode vendte side er forbundet med en nettstruktur av strekkunststoff, samt fremgangsmåte for fremstilling av skilleanordningen. The invention relates to a separating device for electric accumulators, in particular lead accumulators, of a porous material where the side facing the positive electrode is connected to a net structure of stretch plastic, as well as a method for producing the separating device.
Anvendelsen av skilleanordninger i akkumulatortek-nikken omfatter alt etter celloppbygging og elektrodeform et utstrakt spektrum av diafragmaer, som utstrekker seg fra enkle avstandsholdere til mikroporøse romstrukturer. I overveiende grad er skilleanordningene i dag, særlig for bruk i blyakkumulatorer, fremstilt av syrebestandige termoplastiske kunststoffer . The use of separating devices in accumulator technology includes, depending on the cell structure and electrode shape, an extensive spectrum of diaphragms, which extends from simple spacers to microporous space structures. The separation devices today, especially for use in lead accumulators, are predominantly made of acid-resistant thermoplastic plastics.
Den enkleste metode til fremstilling av slike skilleanordninger er sintring av kunststoffpulvere. I dette tilfelle blir f. eks. polyvinylklorid-pulver påført et stålbånd i et tynt sjikt og ført gjennom en sintringsovn. Ved en luftempera-tur i ovnen på 200 - 350°C blir pulverbåndet sintret sammen til et fast legeme med relativt høy porøsitet. The simplest method for producing such separators is sintering plastic powders. In this case, e.g. polyvinyl chloride powder applied to a steel strip in a thin layer and passed through a sintering furnace. At an air temperature in the oven of 200 - 350°C, the powder band is sintered together into a solid body with a relatively high porosity.
Ved utskjæring eller stansing kan platene gis en ønsket innbyggingsstørrelse, som imidlertid ved tett, flate-messig berøring med elektrodeplatene ikke lar det bli noen plass for en uhindret unnviking av de gasser som fremkommer ved ladning. By cutting or punching, the plates can be given a desired built-in size, which, however, in close, surface-wise contact with the electrode plates, leaves no room for an unimpeded escape of the gases that arise during charging.
Det sintrede pulverbånd blir derfor før oppskjærin-gen ved redusert temperatur etterformet mellom valser til et bølget legeme, eller det får en profilering ved hjelp av ribber eller steg som før sintringen tilformes ved hjelp av form-ingsvalser eller strykekniver (rakelkniver) fra båndet eller ribbene påføres etterpå. The sintered powder band is therefore, prior to cutting at a reduced temperature, reshaped between rollers into a wavy body, or it is given a profile using ribs or steps which, before sintering, are shaped using shaping rollers or ironing knives (squeegee knives) from the band or ribs applied afterwards.
Vanligvis er det tilstrekkelig at det bare befinner seg ribber på en side av skilleanordningen, hvilken side er vendt mot den positive elektrode, mens den andre side av skilleanordningen ligger umiddelbart mot den negative elektrode. An-ordninger såvel av denne type som også med bølgende folier mellom de positive og negative batterielektroder er f. eks. kjent fra DE-AS 1771227. Ribbene, henholdsvis avstandsholderne blir her tilveiebragt ved utstansing av et foliemateriale med ønsket tykkelse og påklebet, påsveiset eller trykket inn med kraft i parallelt forløpende baner på den egentlige separator. Ifølge en annen kjent metode ifølge De-AS 1269212 påfører man en var-meherdende kunstharpiksblanding ved hjelp av en ekstruder i form av parallelle strenger på den egentlige porøse skillefolie og fører produktet gjennom en luftsirkulasjonsovn med innstilt temperatur, ved hvilken strengene smelter på underlaget og her-der fullstendig ut samtidig med dette som er impregnert med delvis herdet fenolformaldehyd-kunstharpiks. Usually it is sufficient that there are only ribs on one side of the separating device, which side faces the positive electrode, while the other side of the separating device lies immediately against the negative electrode. Arrangements both of this type and also with undulating foils between the positive and negative battery electrodes are e.g. known from DE-AS 1771227. The ribs, respectively the spacers, are provided here by punching out a foil material of the desired thickness and glued, welded on or pressed in with force in parallel running paths on the actual separator. According to another known method according to De-AS 1269212, a heat-hardening synthetic resin mixture is applied by means of an extruder in the form of parallel strands to the actual porous separating film and the product is passed through an air circulation oven with a set temperature, in which the strands melt on the substrate and here - there completely out at the same time as this which is impregnated with partially hardened phenol-formaldehyde synthetic resin.
Da ribbene bare kan forløpe i langsgående baner for As the ribs can only run in longitudinal paths for
å sikre de oppstigende oksygenbobler en nødvendig gjennomgang, har skilleanordningen bare en god mekanisk stabilitet i en retning, mens den i den andre retning lett kan foldes eller inn-trykkes . to ensure the rising oxygen bubbles a necessary passage, the separating device only has a good mechanical stability in one direction, while in the other direction it can easily be folded or pressed in.
Den oppgave som derfor ligger til grunn for oppfinnelsen er å tilveiebringe en skilleanordning, særlig for blyakkumulatorer, henholdsvis startbatterier, som foruten sin egentlige funksjon som høyporøst diafragma også har en god stiv- The task that is therefore the basis of the invention is to provide a separation device, particularly for lead accumulators, respectively starter batteries, which, in addition to its actual function as a highly porous diaphragm, also has a good rigid
het over hele flateutstrekningen og til tross for en tett inn-bygging muliggjør en unnviking uten problemer for ladegassene fra elektrolytten. hot over the entire surface area and, despite a tight installation, enables the charging gases from the electrolyte to escape without problems.
Denne oppgaven blir løst ifølge oppfinnelsen ved en anordning av den innledningsvis nevnte art, hvis karakteristi-ske trekk fremgår av søknadens krav. This task is solved according to the invention by a device of the type mentioned at the outset, the characteristic features of which appear from the application's requirements.
Forbindelsen med det egentlige grunnmateriale skal The connection with the actual base material must
i og for seg bare opprettholdes så lenge til skilleanordningen har inntatt sin plass for bestandig i cellen mellom elektroder med forskjellig polaritet. Nettverket har til oppgave å fast-gjøre et eventuelt ytterst fleksibelt grunnmateriale manupuler-bart til den stive skilleanordning i løpet av fabrikasjonen. in and of itself is only maintained until the separating device has taken its place permanently in the cell between electrodes of different polarity. The network has the task of attaching an extremely flexible base material that can be manipulated to the rigid separation device during fabrication.
Grunnmaterialet i skilleanordningen kan være The basic material in the separating device can be
en høyporøs folie, som består av et mot syre bestandig, termoplastisk kunststoff. Som egnet materiale kommer på tale a highly porous foil, which consists of an acid-resistant, thermoplastic plastic. As suitable material comes into question
polyetylen, fortrinnsvis imidlertid polypropylen. En kjent polypropylenfolie har f. eks. en tykkelse på ca. 25 li og en porøsitet på 3 5 %, hvorved diameteren for porene er mindre enn 0,1 y. Porene til denne folie kan forstås som diskrete, lett krummede kanaler fra en overflate til den andre. Den derav til-veiebragte, særlig jevne struktur gir folien for det påtenkte anvendelsesformål overordentlig gunstige mekaniske og elektriske egenskaper. polyethylene, preferably, however, polypropylene. A known polypropylene film has e.g. a thickness of approx. 25 li and a porosity of 3 5%, whereby the diameter of the pores is less than 0.1 y. The pores of this foil can be understood as discrete, slightly curved channels from one surface to the other. The resulting particularly even structure gives the foil extremely favorable mechanical and electrical properties for the intended purpose of use.
På en side av grunnmaterialet til skilleanordningen og fast forbundet med denne er det påført en nettstruktur av et kunststoff, som hensiktsmessig er valgt fra den samme gruppe termoplaster, men eventuelt også kan være en herdeplast. On one side of the base material for the separation device and permanently connected to it, a net structure of a synthetic material is applied, which is suitably selected from the same group of thermoplastics, but can optionally also be a thermosetting plastic.
Nettstrukturen spiller rollen til en avstandsholder, hvorved skilleanordningen totalt i alle flateretninger får en øket bøyefasthet som de kjente laminære strukturer i de innledningsvis nevnte stegskilleanordninger bare har i ufullstendig grad. Først i forbindelse med det nettlignende avstandsholder-sjikt over hvilket den hudtynne folie på en måte er oppspent, kan anordningen optimalt utføre sin skillefunksjon. The net structure plays the role of a spacer, whereby the separation device in all surface directions gets an increased bending strength which the known laminar structures in the initially mentioned step separation devices only have to an incomplete extent. Only in connection with the net-like spacer layer over which the skin-thin foil is stretched in a way, can the device optimally perform its separation function.
Nettstrukturen selv kan være dannet av innbyrdes kryssende parallelle skarer av kunststoffstaver eller -tråder. The net structure itself can be formed from mutually intersecting parallel bands of plastic rods or threads.
Nettstrukturen kan være et strekkunststoff som blir fremstilt av et glatt båndmateriale på samme måte som et strekkmetall. Til grunn for denne strekkbearbeidelse ligger en i og for seg kjent strekkprosess som gir kunststoffmate-rialet, som danner nettstrukturen, dets formstabilitet. Ved strekking får nemlig de fleste lineærpolymere kunststoffer en betydelig fasthetsøkning ved samtidig tilbakegang av ut-videlsen. Fastgjøringen beror på at de vanligvis sammen-klumpede trådmolekyler under påvirkning av en strekkspen- The mesh structure can be a stretch plastic which is produced from a smooth strip material in the same way as a stretch metal. The basis for this stretch processing is a stretch process known in and of itself which gives the plastic material, which forms the net structure, its shape stability. When stretched, most linear polymeric plastics experience a significant increase in strength with a simultaneous decrease in expansion. The fixation is due to the fact that the usually clumped thread molecules under the influence of a tensile stress
ning ordner seg til krystallignende strukturer innenfor hvilke de mellommolekylære bindingskrefter blir sterkere virk-somme . ning arranges itself into crystal-like structures within which the intermolecular binding forces become more effective.
En deformering ved strekking er mulig ved såvel glassamorfe termoplaster som også ved romtemperatur delkrystal-line termoplaster som polyetylen og polypropylen. Ved den sistnevnte er det gunstig å foreta strekkingen ved en høyere temperatur i området ved 100 - 150°C (varmformtemperatur), som allerede ligger i nærheten av emelteområdet for krystallittene. I ethvert tilfelle bør deformeringstemperaturen velges så høy at det deretter kan foretas en bråkjøling til under den såkalte innfrysningstemperatur, hvorved det termoelastiske tilstands-område underskrides. Formforandringen blir derved fast til krystallsmeltéområdet, i hvert fall ved de vanlige brukstempe-raturer. Deformation during stretching is possible with glass-amorphous thermoplastics as well as semi-crystalline thermoplastics such as polyethylene and polypropylene at room temperature. With the latter, it is advantageous to carry out the stretching at a higher temperature in the range of 100 - 150°C (hot form temperature), which is already close to the melting range for the crystallites. In any case, the deformation temperature should be chosen so high that a rapid cooling can then be carried out to below the so-called freezing temperature, whereby the thermoelastic state range is undercut. The change in shape is thereby fixed to the crystal melting area, at least at the usual operating temperatures.
Steg med mindre tykkelse er anordnet innenfor strekkrasteret, slik at det i de foretrukkede retninger fremkommer passerings-strekninger for unnvikelse av elektrolysegassene etter at skilleanordningen er tett innebygd mellom elektrodeplatene. En slik utforming av strekkunststoffet er mulig på forskjellig måte. F. eks. kan slissene med hvilke kunststoffolien er ut-styrt helt på tilsvarende måte som ved et metallisk båndmateriale som skal strekkes, være forskjøvet innbyrdes i henhold til et forutbestemt mønster på en slik måte at ved hjelp av strekkverktøyets kniver de mellom slissene anordnede flater trykkes ut delvis sterkere, delvis mindre sterkt til sidene. Derved kan det oppnås baner med mindre tykke steg med siksak-formet forløp. En annen mulighet for tilveiebringelse av større og mindre stegtykkelser ved siden av hverandre består deri at de ellers like, kamlignende anordnede slissekniver i strekk-verktøyet delvis og i en bestemt rekkefølge skiftes ut med stansekniver. Steps with a smaller thickness are arranged within the stretch grid, so that in the preferred directions passing stretches appear for avoiding the electrolytic gases after the separation device is tightly embedded between the electrode plates. Such a design of the stretch plastic is possible in different ways. For example the slots with which the plastic foil is equipped in a completely similar way as in the case of a metallic strip material to be stretched, can be offset from each other according to a predetermined pattern in such a way that with the help of the knives of the stretching tool the surfaces arranged between the slots are pressed out partially stronger , partly less strongly to the sides. Thereby, paths with less thick steps with a zigzag-shaped course can be achieved. Another possibility for providing larger and smaller step thicknesses next to each other is that the otherwise similar, comb-like arranged slotting knives in the stretching tool are partially and in a specific order replaced by punching knives.
Forbindelsen av nettstrukturen med det mikroporøse grunnmateriale til et enhetlig legeme kan på grunn av de spesi-elle egenskaper til de termoplastiske kunststoffer skje på den måte at man oppvarmer de flater som skal forbindes til begynn-ende oppmykning og sammentrykker dem under svakt presstrykk, henholdsvis at grunnmaterialet strykes på nettstrukturen. Opp-varmingstiden bør imidlertid gjøres så kort og temperaturen inn-stilles slik at overflaten akkurat er klebedyktig og ved trykk-anvendelse bevirke en sammensveising. The connection of the net structure with the microporous base material into a uniform body can, due to the special properties of the thermoplastic plastics, take place in such a way that the surfaces to be connected are heated to initial softening and compressed under weak pressure, respectively that the base material is ironed onto the mesh structure. However, the heating time should be made so short and the temperature set so that the surface is just adhesive and when pressure is applied causes a weld together.
Til dette formål er det fordelaktig å føre det mikro-porøse grunnmateriale og strekkunststoffet, begge i båndform, adskilt overoppvarmbare ruller, som gir de den for sammenkleb-ingen nødvendige temperatur på anleggssiden mot valseflaten. Båndene blir umiddelbart deretter opptatt av to tett hbsliggende ombøyningsruller og lett sammentrykket mellom disse. Spaltbred-den mellom ombøyningsrullene bør være noe smalere enn høyden til det ferdige produkt for å unngå en uønsket flatvalsing av det fastgjorte strekkunststoff. For this purpose, it is advantageous to feed the micro-porous base material and the stretch plastic, both in strip form, over separate superheatable rollers, which give them the temperature required for bonding on the contact side against the roll surface. The strips are immediately then taken up by two closely spaced bending rolls and lightly compressed between them. The gap width between the bending rolls should be somewhat narrower than the height of the finished product to avoid an unwanted flat rolling of the attached stretch plastic.
Fig. 1 viser en sammensatt separator ifølge oppfinnelsen, bestående av den mikroporøse grunnfolie 1 og et strekk-kunststofflag 2. De stiplede linjer fører over foretrukkede passasjer for gass, som er dannet ved reduksjon av stegtykkel-sen i disse områder. Fig. 1 shows a composite separator according to the invention, consisting of the microporous base foil 1 and a stretch plastic layer 2. The dashed lines lead over preferred passages for gas, which are formed by reducing the step thickness in these areas.
Hele sjikttykkelsen til separatoren svarer til tykk-elsen på vanlige separatorer i startbatteriet. The entire layer thickness of the separator corresponds to the thickness of normal separators in the starter battery.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2847463A DE2847463C2 (en) | 1978-11-02 | 1978-11-02 | Separator for electrical accumulators made from a microporous base material |
Publications (3)
Publication Number | Publication Date |
---|---|
NO793514L NO793514L (en) | 1980-05-05 |
NO150657B true NO150657B (en) | 1984-08-13 |
NO150657C NO150657C (en) | 1984-11-21 |
Family
ID=6053638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO793514A NO150657C (en) | 1978-11-02 | 1979-11-01 | DISPENSER FOR ELECTRICAL ACCUMULATORS CONSISTING OF A MICROPOROUS BASIC MATERIAL, AND PROCEDURE FOR THE PREPARATION OF THE DISPENSER |
Country Status (14)
Country | Link |
---|---|
JP (1) | JPS5564363A (en) |
AT (1) | AT373444B (en) |
BE (1) | BE879707A (en) |
CA (1) | CA1135331A (en) |
DE (1) | DE2847463C2 (en) |
DK (1) | DK458179A (en) |
ES (1) | ES246498Y (en) |
FI (1) | FI793419A (en) |
FR (1) | FR2441274A1 (en) |
GB (1) | GB2038715B (en) |
IT (1) | IT1124909B (en) |
NL (1) | NL7908014A (en) |
NO (1) | NO150657C (en) |
SE (1) | SE436312B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59121775A (en) * | 1982-12-28 | 1984-07-13 | Shin Kobe Electric Mach Co Ltd | Sealed type lead storage battery |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1348420A (en) * | 1964-04-10 | |||
US2360658A (en) * | 1943-05-27 | 1944-10-17 | Carlile & Doughty Inc | Separator for batteries |
US2531504A (en) * | 1944-06-12 | 1950-11-28 | Richardson Co | Separator for electric storage batteries |
DE1681854U (en) * | 1952-04-22 | 1954-08-19 | Gottfried Hagen A G | COMPOSITE SEPARATOR. |
CH314111A (en) * | 1952-06-28 | 1956-05-31 | Bosch Gmbh Robert | Separator for electrical collector batteries |
FR1067287A (en) * | 1952-11-29 | 1954-06-14 | Accumulator separator | |
FR94909E (en) * | 1965-07-29 | 1970-01-23 | Accumulateurs Fixes | Process for separating the electrodes of batteries from primary cells or from electric accumulators, in particular from cells said to be primed with seawater, and batteries obtained by this process. |
-
1978
- 1978-11-02 DE DE2847463A patent/DE2847463C2/en not_active Expired
-
1979
- 1979-08-31 SE SE7907260A patent/SE436312B/en unknown
- 1979-10-12 GB GB7935601A patent/GB2038715B/en not_active Expired
- 1979-10-29 BE BE0/197874A patent/BE879707A/en not_active IP Right Cessation
- 1979-10-30 ES ES1979246498U patent/ES246498Y/en not_active Expired
- 1979-10-30 DK DK458179A patent/DK458179A/en not_active Application Discontinuation
- 1979-10-31 CA CA000338855A patent/CA1135331A/en not_active Expired
- 1979-10-31 FR FR7927048A patent/FR2441274A1/en active Granted
- 1979-10-31 AT AT0702979A patent/AT373444B/en not_active IP Right Cessation
- 1979-11-01 FI FI793419A patent/FI793419A/en not_active Application Discontinuation
- 1979-11-01 JP JP14052079A patent/JPS5564363A/en active Pending
- 1979-11-01 NL NL7908014A patent/NL7908014A/en not_active Application Discontinuation
- 1979-11-01 NO NO793514A patent/NO150657C/en unknown
- 1979-11-02 IT IT27016/79A patent/IT1124909B/en active
Also Published As
Publication number | Publication date |
---|---|
DK458179A (en) | 1980-05-03 |
FI793419A (en) | 1980-05-03 |
BE879707A (en) | 1980-02-15 |
ES246498U (en) | 1980-02-16 |
ATA702979A (en) | 1983-05-15 |
AT373444B (en) | 1984-01-25 |
NO150657C (en) | 1984-11-21 |
DE2847463C2 (en) | 1986-02-06 |
NL7908014A (en) | 1980-05-07 |
GB2038715B (en) | 1983-02-09 |
IT7927016A0 (en) | 1979-11-02 |
JPS5564363A (en) | 1980-05-15 |
NO793514L (en) | 1980-05-05 |
IT1124909B (en) | 1986-05-14 |
SE436312B (en) | 1984-11-26 |
ES246498Y (en) | 1980-08-16 |
SE7907260L (en) | 1980-05-03 |
CA1135331A (en) | 1982-11-09 |
DE2847463A1 (en) | 1980-05-14 |
FR2441274B3 (en) | 1981-08-14 |
FR2441274A1 (en) | 1980-06-06 |
GB2038715A (en) | 1980-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110869179B (en) | Method for producing dry film, roll press device, dry film, and electrochemical storage element or electrochemical converter | |
CN111212734B (en) | Polyolefin microporous membrane and lithium ion secondary battery using same | |
JP5337366B2 (en) | Battery manufacturing method and battery | |
KR20120081997A (en) | Battery manufacturing using laminated assemblies | |
KR101628483B1 (en) | Manufacture method of MEA | |
JP2003223906A (en) | Manufacturing method of conductive component and manufacturing method of separator for fuel cell | |
KR20160085812A (en) | Laminating method | |
JP2007172929A5 (en) | ||
CA2591542A1 (en) | Sheet molding material for fuel cell bipolar plate, method of producing same and bipolar plate or fuel cell | |
KR20150071889A (en) | Manufacture method of MEA for fuel cell | |
TW201815921A (en) | Microporous membrane, lithium ion secondary battery, and microporous membrane production method | |
JP5946305B2 (en) | Hollow structure plate manufacturing method and manufacturing apparatus | |
US3354247A (en) | Method of producing porous separators | |
JP2009134953A (en) | Membrane electrode assembly with frame, and method of continuously manufacturing fuel battery cell | |
JP4441950B2 (en) | Manufacturing method of fuel cell separator | |
JP2024525291A (en) | Dry battery plates and batteries | |
JPH0661857B2 (en) | Method for manufacturing expanded fiber composite structure | |
NO150657B (en) | DISPENSER FOR ELECTRICAL ACCUMULATORS CONSISTING OF A MICROPOROUS BASIC MATERIAL, AND PROCEDURE FOR THE PREPARATION OF THE DISPENSER | |
JP6673241B2 (en) | Band-like member bonding method and band-like member bonding apparatus | |
US10164232B2 (en) | Manufacturing method and manufacturing apparatus of electrode body | |
KR102552154B1 (en) | manufacturing device of membrane electrode assembly with excellent mass transfer characteristics and durability, and method using thereof | |
CN108466415B (en) | Wet diaphragm membrane preparation device and preparation method | |
JP2003109583A (en) | Manufacturing method of joined body for polymer secondary battery, and manufacturing device for the same | |
JP3970215B2 (en) | Method for producing tetrafluoroethylene resin sheet | |
KR20180004575A (en) | Wrinkle Structure for Membrane Electrode Assembly of Fuel Cell and Manufacturing Method Therefor |