SE436312B - ELECTRICAL ACCUMULATORS SEPARATOR - Google Patents

ELECTRICAL ACCUMULATORS SEPARATOR

Info

Publication number
SE436312B
SE436312B SE7907260A SE7907260A SE436312B SE 436312 B SE436312 B SE 436312B SE 7907260 A SE7907260 A SE 7907260A SE 7907260 A SE7907260 A SE 7907260A SE 436312 B SE436312 B SE 436312B
Authority
SE
Sweden
Prior art keywords
separator
plastic
stretch
foil
strip
Prior art date
Application number
SE7907260A
Other languages
Swedish (sv)
Other versions
SE7907260L (en
Inventor
H-J Golz
Original Assignee
Varta Batterie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varta Batterie filed Critical Varta Batterie
Publication of SE7907260L publication Critical patent/SE7907260L/en
Publication of SE436312B publication Critical patent/SE436312B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Materials For Medical Uses (AREA)

Description

7907260-9 tiva batterielektroder är exempelvis kända från DE utläggnings- skriften nr 1 771 227. Listerna respektive distanshållarna erhålles här genom utstansning från ett foliematerial med öns- kad tjocklek och pålimmas, påsvetsas eller inpressas i paral- lella banor på den egentliga separatorn. Vid ett annat känt förfarande enligt DE utläggningsskriften 1 269 212 anbringar man genom strängsprutning en värmehärdbar plastblandning i form av parallella strängar på den egentliga porösa separatorfolien och leder produkten genom en luftgenomströmmad ugn med inställd temperatur, vid vilken strängarna smälter på underlaget och samtidigt sluthärdas tillsammans med detta, som impregnerats med delvis sluthärdat fenol-formaldehyd-harts. 7907260-9 active battery electrodes are known, for example, from DE Offenlegungsschrift No. 1 771 227. The strips or spacers are obtained here by punching out a foil material of the desired thickness and glued, welded or pressed into parallel paths on the actual separator. In another known method according to DE Offenlegungsschrift 1 269 212, a thermosetting plastic mixture in the form of parallel strands is applied to the actual porous separator foil by extrusion and the product is passed through an air-permeable oven with a set temperature, at which the strands melt on the substrate this, which is impregnated with partially cured phenol-formaldehyde resin.

'Eftersom listerna endast kan gå i längsgående banor för att tillförsäkra en nödvändig passage av de uppstigande syre- blâsorna, har separatorn endast en god stabilitet i en rikt- ning, medan den i andra riktningen lätt kan bli veckad eller ~intryckt.Since the strips can only go in longitudinal paths to ensure a necessary passage of the ascending oxygen bubbles, the separator has only good stability in one direction, while in the other direction it can easily be folded or pressed.

En separator av det inledningsvis angivna slaget är tidiga- re känd.' Densamma innebär en lösning av problemet att till- handahâlla en separator, i synnerhet för blyackuulatorer res- pektive startbatterier, som utom sin egentliga funktion som hög- poröst diafragma också uppvisar en god styvhet över hela ytan och som trots en trång inmontering gör det möjligt för ladd- ningsgaserna att utan svårighet bortgå från elektrolyten.A separator of the type initially indicated is previously known. ' The same means a solution to the problem of providing a separator, in particular for lead-acid accumulators or starter batteries, which in addition to their actual function as a highly porous diaphragm also has a good rigidity over the entire surface and which despite a narrow installation makes it possible to the charge gases to leave the electrolyte without difficulty.

Detta problem har lösts genom att den mot den positiva elektroden vända sidan är förbunden med en nätstruktur av plast.This problem has been solved by connecting the side facing the positive electrode to a plastic mesh structure.

Förbindningen med det egentliga grundmaterialet behöver i och för sig endast upprätthållas till dess att separatorn för alltid intagit sin plats i cellen mellan elektroderna med olika polaritet. Nätverkets uppgift är att ett såvitt möjligt ytterst flexibelt grundmaterial under fabrikationens gång manipulerbart skall stabiliseras till den stela separatorn.The connection with the actual base material only needs to be maintained per se until the separator has taken its place in the cell forever between the electrodes of different polarity. The task of the network is that as far as possible an extremely flexible base material can be manipulably stabilized during the manufacturing process to the rigid separator.

Grundmaterial i separatorn enligt ovan är en högporös folie, bestående av en mot syror beständig termoplast. .Som lämpligt material kommer polyeten, företrädesvis emellertid polypropen i fråga. En känd polypropenfolie har t.ex. en tjocklek av ca 25 pm och.en porositet av 35 %, varvid porernas diameter är mindre än 0,1 pm. Porerna i denna folie kan tänkas uåèššáèo-9 som diskreta, lätt söndrade kanaler från ena ytan till den andra. Den därav resulterande särdeles jämna strukturen ger folien utomordentligt gynnsamma mekaniska och elektriska egenskaper för dess användningssyfte.The base material in the separator as above is a highly porous foil, consisting of an acid-resistant thermoplastic. The suitable material is polyethylene, but preferably polypropylene. A known polypropylene film has e.g. a thickness of about 25 μm and a porosity of 35%, the diameter of the pores being less than 0.1 μm. The pores of this foil may be considered uåèššáèo-9 as discrete, slightly separated channels from one surface to the other. The resulting extremely smooth structure gives the foil extremely favorable mechanical and electrical properties for its intended use.

Pâ ena sidan av separatorns grundmaterial har fasthäftats en nätstruktur av en plast, som lämpligen utvalts från Samma grupp av termoplaster, men som eventuellt också kan vara en duroplast.' Nätstrukturen tjänar som en distanshållare, varvid separa- torn i alla riktningarna erhåller en ökad böjhållfasthet, som de kända laminära strukturerna såsom de inledningsvis nämnda listseparatorerna endast ofullständigt uppvisar. Först i före- ning med det nätartade distanshållarskiktet, över vilket den florstunna folien i viss mån är uppspänd, kan den utöva sin separatorfunktion optimalt.On one side of the base material of the separator, a mesh structure of a plastic has been adhered, which is suitably selected from the same group of thermoplastics, but which may also be a thermosetting plastic. ' The net structure serves as a spacer, the separator in all directions obtaining an increased bending strength, which the known laminar structures such as the initially mentioned strip separators only incompletely show. Only in conjunction with the mesh-like spacer layer, over which the florin-thin foil is to some extent stretched, can it perform its separator function optimally.

Nätstrukturen själv kan vara bildad av varandra korsande parallella grupper av plaststavar eller -trådar.The net structure itself may be formed by intersecting parallel groups of plastic rods or wires.

Enligt föreliggande uppfinning är nätstrukturen en sträck- plast, som på liknande sätt som en sträckmetall framställts av ett slätt bandmaterial. Till grund för denna sträckbearbet- ning ligger en i och för sig känd sträckprocess, som plastmate- rialet i nätstrukturen har att tacka för sin formstabilitet.According to the present invention, the mesh structure is a stretch plastic, which in a similar manner as a stretch metal is made of a smooth strip material. The basis for this stretch processing is a stretch process known per se, which the plastic material in the net structure has to thank for its dimensional stability.

Genom sträckning undergår nämligen de flesta linjära plaster en betydande hållfasthetsökning under samtidig tillbakagång av töjningen. Stabiliseringen beror på att de i allmänhet hop- gyttrade trådmolekylerna vid sträckning ordnar sig till kris- talliknande strukturer i vilka de intermolekylära bindningskraf- terna förstärks.By stretching, most linear plastics undergo a significant increase in strength during a simultaneous decline in the elongation. The stabilization is due to the fact that the generally welded-together wire molecules, when stretched, arrange themselves into crystal-like structures in which the intermolecular binding forces are strengthened.

På grundval av ovanstående kännetecknas en separator av det inledningsvis angivna slaget av att stommen utgöres av en sträckplast, vars nätstrukturen tillhörande banddelar har oli- ka bredd, varvid endast banddelar med mindre bredd förekomer i en riktning, i vilken elektrolysgaser är avsedda att avgå, och att sträckplasten är termiskt förbunden med grundfolien.On the basis of the above, a separator of the initially stated type is characterized in that the body consists of a stretch plastic, the mesh structure of which belongs to the strip parts of different widths, only strip sections of smaller width occurring in a direction in which electrolysis gases are intended to escape, and that the stretch plastic is thermally bonded to the base foil.

En deformering genom sträckning är tillgänglig både för glasartat amorfa termoplaster och vid rumstemperatur partiellt kristallina termoplaster såsom polyeten och polypropen. I sistnämnda fallet är det fördelaktigt att genomföra sträck- ningen vid förhöjd temperatur, i området 100 - 150°C (varm- 7907260-9 formningstemperatur), som redan ligger i närheten av kristal- liternas smältområde. 'I varje fall bör man välja en så hög deformeringstemperatur att en efterföljande hastig kylning_ fortfarande kan genomföras till en temperatur under den s.k. infrysningstemperaturen, varvid det termoelastiska tillstånds- området passeras. Formändringen blir då permanent upp till kristallitsmältområdet, åtminstone vid de vanliga användnings- temperaturerna.A stretch deformation is available both for glassy amorphous thermoplastics and at room temperature partially crystalline thermoplastics such as polyethylene and polypropylene. In the latter case, it is advantageous to carry out the stretching at elevated temperature, in the range 100 - 150 ° C (hot forming temperature), which is already close to the melting range of the crystals. In any case, one should choose such a high deformation temperature that a subsequent rapid cooling can still be carried out to a temperature below the so-called the freezing temperature, whereby the thermoelastic state range is passed. The shape change then becomes permanent up to the crystallite melting range, at least at the usual operating temperatures.

Sträckplastpålägget av separatorn enligt uppfinningen har företrädesvis steg med olika tjocklekar. Stegen med den mind- re tjockleken är anordnade i sträcknätet på sådant sätt att det i preferensriktningen bildas passager för elektrolytgaser- nas bortgång sedan separatorn inmonterats tätt mellan elektrod- plattorna. En sådan utformning av sträckplasten kan åstadkom- mas på olika sätt. Så kan t.ex. slitsarna, med vilka plastfo- lien försetts på precis samma sätt som vid sträckning av ett metalliskt bandmaterial, vara förskjutna i förhållande till varandra enligt ett förutbestämt mönster på sådant_sätt att de mellan slitsarna befintliga ytorna genom sträckverktygets kni- var blir dels starkare, dels mindre starkt uttryckta åt sidor- na. Därvid kan man erhålla banor med mindre tjocka steg med sicksackformigt förlopp. En annan möjlighet att erhålla stör- re och mindre stegtjocklekar bredvid varandra består i att de i övrigt lika, på ett kamartat sätt anordnade slitsknivarna av sträckverktyget delvis och i en bestämd ordningsföljd ut- byts mot stansknivar.The stretch plastic overlay of the separator according to the invention preferably has steps of different thicknesses. The steps with the smaller thickness are arranged in the stretching network in such a way that passages are formed in the direction of preference for the passage of the electrolyte gases after the separator has been installed tightly between the electrode plates. Such a design of the stretch plastic can be achieved in different ways. Then e.g. the slits, with which the plastic foil is provided in exactly the same way as when stretching a metallic strip material, are displaced relative to each other according to a predetermined pattern in such a way that the surfaces between the slits through the knives of the stretching tool become stronger and less strong. expressed to the sides. In this case, it is possible to obtain webs with less thick steps with a zigzag-shaped course. Another possibility of obtaining larger and smaller step thicknesses next to each other is that the otherwise equal, in a uniform manner arranged the wear knives of the stretching tool are partially and in a certain order replaced with punch knives.

Nätstrukturens förbindning med det mikroporösa grundmate- rialet till en enhetlig kropp kan på grund av termoplasternas speciella egenskaper genomföras på så sätt att de för förbind- ning med varandra avsedda ytorna värms till begynnande mjuk- ning och hoptrycks under lindrigt presstryck, respektive grund- materialet med ett järn stryks på nätstrukturen. Värmnings- tiden bör emellertid vara kort tillmätt och temperaturen så inställd att ytorna nätt och jämnt blir klibbiga och hopsvet- sade med varandra vid användning av tryck.The connection of the net structure with the microporous base material to a uniform body can, due to the special properties of the thermoplastics, be carried out in such a way that the surfaces intended for connection to each other are heated to incipient softening and compressed under light pressure, and the base material with an iron is ironed on the mesh structure. However, the heating time should be short measured and the temperature set so that the surfaces become sticky and evenly welded together when using pressure.

För detta ändamål är det fördelaktigt att leda det mikro- porösa grundmaterialet och sträckplasten, båda i bandform, se- parat över värmningsbara valsar, som de lämnar med den för hop- ' 7907260-9 limningen nödvändiga temperaturen på den mot valsytan liggan- de sidan. Omedelbart därefter upptas banden av två tätt in- till varandra anordnade brytvalsar och hoptrycks lätt mellan dessa. Spaltbredden mellan brytvalsarna skall endast vara något mindre än tjockleken av den färdiga produkten för att en oönskad planvalsning av den stelnade sträckplasten skall undvikas.For this purpose, it is advantageous to conduct the microporous base material and the stretch plastic, both in strip form, separately over heatable rollers, which they leave with the temperature necessary for gluing on the side facing the roll surface. . Immediately afterwards, the belts are taken up by two closely spaced breaking rollers and are easily compressed between them. The gap width between the breaking rollers must only be slightly less than the thickness of the finished product in order to avoid an undesired flat rolling of the solidified stretch plastic.

Fig. 1 visar en laminatseparator enligt uppfinningen, be- stående av den mikroporösa grundfolien 1 och ett sträckplast- pålägg 2. De streckade linjerna går över föredragna passa- ger för gasen; vilka bildas genom minskning av stegtjockle- karna i dessa områden.Fig. 1 shows a laminate separator according to the invention, consisting of the microporous base foil 1 and a stretch plastic overlay 2. The dashed lines pass over preferred passages for the gas; which are formed by reducing the step thicknesses in these areas.

Laminatseparatorns totala skikttjocklek motsvarar tjock- leken av brukliga separatorer i startbatterier.The total layer thickness of the laminate separator corresponds to the thickness of conventional separators in starter batteries.

Claims (1)

1. vsavzso-si PATENTKRAV Separator för elektriska ackumulatorer, i synnerhet bly- ackumulatorer, med en mikroporös grundfolie (1), vars mot den positiva elektroden vända sida är försedd med en distans- hållare i form av en av plast bestående stomme, k ä n n e- t e c k n a d d ä r a v, att stommen utgöres av en sträck- plast (2), vars nätstrukturen tillhörande banddelar har olika bredd, varvid endast banddelar med mindre bredd förekommer i den riktning, i vilken elektrolysgaser är avsedda att avgå,_ och att sträckplasten är termiskt förbunden med grundfolien.1. vsavzso-si PATENT REQUIREMENTS Separator for electric accumulators, in particular lead-acid accumulators, with a microporous base foil (1), the side of which faces the positive electrode is provided with a spacer in the form of a plastic body, k ä It is characterized in that the body consists of a stretch plastic (2), the mesh structure of which belongs to the strip parts has different widths, only strip sections with a smaller width occurring in the direction in which electrolysis gases are intended to escape, and that the stretch plastic is thermally connected to the base foil.
SE7907260A 1978-11-02 1979-08-31 ELECTRICAL ACCUMULATORS SEPARATOR SE436312B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2847463A DE2847463C2 (en) 1978-11-02 1978-11-02 Separator for electrical accumulators made from a microporous base material

Publications (2)

Publication Number Publication Date
SE7907260L SE7907260L (en) 1980-05-03
SE436312B true SE436312B (en) 1984-11-26

Family

ID=6053638

Family Applications (1)

Application Number Title Priority Date Filing Date
SE7907260A SE436312B (en) 1978-11-02 1979-08-31 ELECTRICAL ACCUMULATORS SEPARATOR

Country Status (14)

Country Link
JP (1) JPS5564363A (en)
AT (1) AT373444B (en)
BE (1) BE879707A (en)
CA (1) CA1135331A (en)
DE (1) DE2847463C2 (en)
DK (1) DK458179A (en)
ES (1) ES246498Y (en)
FI (1) FI793419A (en)
FR (1) FR2441274A1 (en)
GB (1) GB2038715B (en)
IT (1) IT1124909B (en)
NL (1) NL7908014A (en)
NO (1) NO150657C (en)
SE (1) SE436312B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121775A (en) * 1982-12-28 1984-07-13 Shin Kobe Electric Mach Co Ltd Sealed type lead storage battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1348420A (en) * 1964-04-10
US2360658A (en) * 1943-05-27 1944-10-17 Carlile & Doughty Inc Separator for batteries
US2531504A (en) * 1944-06-12 1950-11-28 Richardson Co Separator for electric storage batteries
DE1681854U (en) * 1952-04-22 1954-08-19 Gottfried Hagen A G COMPOSITE SEPARATOR.
CH314111A (en) * 1952-06-28 1956-05-31 Bosch Gmbh Robert Separator for electrical collector batteries
FR1067287A (en) * 1952-11-29 1954-06-14 Accumulator separator
FR94909E (en) * 1965-07-29 1970-01-23 Accumulateurs Fixes Process for separating the electrodes of batteries from primary cells or from electric accumulators, in particular from cells said to be primed with seawater, and batteries obtained by this process.

Also Published As

Publication number Publication date
NO150657B (en) 1984-08-13
GB2038715A (en) 1980-07-30
DE2847463A1 (en) 1980-05-14
JPS5564363A (en) 1980-05-15
BE879707A (en) 1980-02-15
DK458179A (en) 1980-05-03
NO150657C (en) 1984-11-21
NL7908014A (en) 1980-05-07
GB2038715B (en) 1983-02-09
CA1135331A (en) 1982-11-09
IT1124909B (en) 1986-05-14
FR2441274B3 (en) 1981-08-14
AT373444B (en) 1984-01-25
ATA702979A (en) 1983-05-15
ES246498Y (en) 1980-08-16
NO793514L (en) 1980-05-05
FI793419A (en) 1980-05-03
IT7927016A0 (en) 1979-11-02
ES246498U (en) 1980-02-16
FR2441274A1 (en) 1980-06-06
SE7907260L (en) 1980-05-03
DE2847463C2 (en) 1986-02-06

Similar Documents

Publication Publication Date Title
EP1320142B1 (en) Sealing structure for fuel cells
US8518603B2 (en) Sheet molding compound flow field plate, bipolar plate and fuel cell
US4048386A (en) Process for making an electrochemical cell or battery, e.g. a fuel cell or fuel cell battery, and a cell or battery made by the process
US7510621B2 (en) Conductive adhesive bonding
US4221854A (en) Lightweight laminated grid for lead-acid storage batteries
WO2007110397A1 (en) Method for producing a membrane electrode unit for a fuel cell
CN112513335A (en) Method for making porous transport layer for electrochemical cell
CA2591542A1 (en) Sheet molding material for fuel cell bipolar plate, method of producing same and bipolar plate or fuel cell
DE10303431A1 (en) Conductive element, a method of manufacturing the same and a method of manufacturing a separator for use in a fuel cell
JP2003077491A (en) Sealed structure of membrane electrode and method of manufacturing sealed structure
RU2008129678A (en) METHOD FOR PRODUCING A MEMBRANE ELECTRONIC NODE AND REINFORCED ELECTROLYTIC MEMBRANE IN A FUEL ELEMENT WITH A POLYMER ELECTROLYTE, AND A MEMBRANE ELECTRONIC NODE AND REINFORCED ELECTROMOLOMIC ELECTROMYAN EL
RU2714695C1 (en) Method of manufacturing fuel cell and fuel cell
CN104321904B (en) Method of manufacturing multiple fuel cell separtator plate assemblies
JP2007172929A5 (en)
JP2006236647A (en) Separator electrode integral power storage member
EP0203657B1 (en) Electrochemical cells construction comprising electrodes and spacers
SE436312B (en) ELECTRICAL ACCUMULATORS SEPARATOR
US20170298200A1 (en) Thermoplastic prepreg intermediate material for fuel cell separation plate and method for manufacturing thermoplastic prepreg for fuel cell separation plate by using same
US20020170169A1 (en) System and method for multilayer fabrication of lithium polymer batteries and cells using surface treated separators
WO2005117165A1 (en) Separator plate for fuel cell and production system for products for use in fuel cells
US3770509A (en) Duplex gas diffusion electrodes with gas diffusion means
WO2004010524A1 (en) Method of manufacturing separator for fuel cell, and method of connecting the separator to electrode diffusion layer
CN100517837C (en) Method of manufacturing separator for fuel cell
US20160172725A1 (en) Method for the production of a cooling plate for a cooling device of a battery
US20140318703A1 (en) Continuous production process for polytetrafluoroethylene functional film for electro-mechanical energy conversion