NO140926B - PROCEDURE FOR OXIDIZATION OF IRON (II) SULPHATE IN AQUATIC SULFURIC ACID SOLUTION TO IRON (III) SULPHATE - Google Patents

PROCEDURE FOR OXIDIZATION OF IRON (II) SULPHATE IN AQUATIC SULFURIC ACID SOLUTION TO IRON (III) SULPHATE Download PDF

Info

Publication number
NO140926B
NO140926B NO762363A NO762363A NO140926B NO 140926 B NO140926 B NO 140926B NO 762363 A NO762363 A NO 762363A NO 762363 A NO762363 A NO 762363A NO 140926 B NO140926 B NO 140926B
Authority
NO
Norway
Prior art keywords
iron
solution
sulphate
sulfuric acid
oxygen
Prior art date
Application number
NO762363A
Other languages
Norwegian (no)
Other versions
NO762363L (en
NO140926C (en
Inventor
Joseph Cohen
Pierre Maurel
Original Assignee
Pechiney Aluminium
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Aluminium filed Critical Pechiney Aluminium
Publication of NO762363L publication Critical patent/NO762363L/no
Publication of NO140926B publication Critical patent/NO140926B/en
Publication of NO140926C publication Critical patent/NO140926C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/14Sulfates

Description

Foreliggende oppfinnelse angår oksydering av jern som foreligger The present invention relates to the oxidation of existing iron

i form av jern(II)sulfat i en vandig løsning med innhold av store mengder fri svovelsyre og eventuelt aluminiumsulfat. in the form of iron (II) sulphate in an aqueous solution containing large amounts of free sulfuric acid and possibly aluminum sulphate.

Jern(II)-salter anses vanligvis å være lett å oksydere i nærvær Iron(II) salts are generally considered to be easily oxidized in the presence

av vann, således at de lett kan omformes til jern(III)-salter. of water, so that they can easily be transformed into iron(III) salts.

På den annen side er disse salter forholdsvis godt løsbare i løs-ninger av ovenfor angitt type som inneholder betraktelige mengder av fri svovelsyre. On the other hand, these salts are relatively well soluble in solutions of the above type which contain considerable amounts of free sulfuric acid.

Den takt hvormed jern(II)sulfat i vandig løsning kan oksyderes er imidlertid vesentlig nedsatt hvis løsningen også inneholder klo-rider eller sulfater (encyclopedia of Chemical Technology, bind 8, side 64, utgave 19 52. Kirk & Othmer, The interscience Encyclopedia Inc. New York). However, the rate at which iron(II) sulfate in aqueous solution can be oxidized is significantly reduced if the solution also contains chlorides or sulfates (encyclopedia of Chemical Technology, volume 8, page 64, issue 19 52. Kirk & Othmer, The interscience Encyclopedia Inc .New York).

I den nye "Traite de Chimie Minerale, bind XVIII, sidene 10 og 81, Masson & Cie., Paris, er det angitt at jern(II)sulfat i kontakt med luft og rent vann frembringer et grunnleggende jern(III)sulfat, nemlig Fe (SO^)^ • Fe2^3 samt svovelsyre, men også at nærvær av et overskudd av svovelsyre hindrer jern(II)sulfat fra å bli hydro-lysert (hydrolyse ville føre til dannelse av et lett oksyderbart sulfat Fe2- (S04)2 OH). In the new "Traite de Chimie Minerale, Volume XVIII, pages 10 and 81, Masson & Cie., Paris, it is stated that iron (II) sulphate in contact with air and pure water produces a basic iron (III) sulphate, viz. Fe (SO^)^ • Fe2^3 as well as sulfuric acid, but also that the presence of an excess of sulfuric acid prevents iron (II) sulphate from being hydrolysed (hydrolysis would lead to the formation of an easily oxidizable sulphate Fe2- (S04) 2 OH).

Hvis en vandig løsning med innhold av 400 g/l H2S04 og 7,2 g/l FeO bringes i intim kontakt med oksygen ved 70°C, vil faktisk 94% av det foreliggende jerninnhold fremdeles befinne seg i jern(Il)-tilstand en time senere, og 91% vil fremdeles være i denne tilstand etter to timer. Nærvær av andre sulfater i løs-ningen vil bare sinke oksyderingen ytterligere. If an aqueous solution containing 400 g/l H2S04 and 7.2 g/l FeO is brought into intimate contact with oxygen at 70°C, in fact 94% of the iron content present will still be in the ferrous state a hour later, and 91% will still be in this state after two hours. The presence of other sulphates in the solution will only slow down the oxidation further.

En industriell prosess for oksydering av jern(II) til jern(III) kan ikke utføres på grunnlag av en sådan langsom reaksjon, og den nettopp nevnte fremgangsmåte for oksydering av en løsning som inneholder jern(II)sulfat, fri svovelsyre og eventuelt andre sulfater ved hjelp av lufttilførsel kan ikke betraktes som en indutriell prosess. An industrial process for oxidizing iron (II) to iron (III) cannot be carried out on the basis of such a slow reaction, and the just-mentioned method for oxidizing a solution containing iron (II) sulfate, free sulfuric acid and possibly other sulfates using air supply cannot be considered an industrial process.

I forbindelse med foreliggende oppfinnelse er det gjort den over-raskende oppdagelse at oksydering av det foreliggende jern(II)-sulfat i en vandig løsning som også inneholder betraktelig eller til og med store mengder av fri svovelsyre, samt eventuelt en stor andel av aluminiumsulfat og muligens også mindre mengder av forskjellige ytterligere sulfater, særlig alkaliske sulfater, vil kunne finne sted meget raskt hvis løsningen også inneholder saltsyre, selv om dette er en reduserende forbindelse. In connection with the present invention, the surprising discovery has been made that oxidation of the present iron (II) sulfate in an aqueous solution which also contains considerable or even large amounts of free sulfuric acid, as well as possibly a large proportion of aluminum sulfate and possibly also smaller amounts of various additional sulfates, especially alkaline sulfates, will be able to take place very quickly if the solution also contains hydrochloric acid, even if this is a reducing compound.

Oppfinnelsen gjelder således en fremgangsmåte for oksydering av jern(II)sulfat oppløst i en vandig løsning som inneholder 250 - 600 g/l svovelsyre, til jern(lll)sulfat ved hjelp av en oksygenholdig gass og en katalysator, idet fremgangsmåtens særtrekk i henhold til oppfinnelsen består i at løsningen tilsettes saltsyre som katalysator i en mengde på 60 - 250 g/l og deretter bringes i intim kontakt med den oksygenholdige gass. The invention thus relates to a method for oxidizing iron (II) sulphate dissolved in an aqueous solution containing 250 - 600 g/l sulfuric acid to iron (II) sulphate with the aid of an oxygen-containing gas and a catalyst, the special features of the method according to the invention consists in the solution adding hydrochloric acid as a catalyst in an amount of 60 - 250 g/l and then bringing it into intimate contact with the oxygen-containing gas.

Ved uttrykket "en oksygenholdig gass" forstås her rent oksygen, ozon eller gassblandinger med vesentlig innhold av oksygen, f.eks. luft. The expression "an oxygen-containing gas" here means pure oxygen, ozone or gas mixtures with a significant content of oxygen, e.g. air.

Temperaturen for den reaksjon som finner sted er ikke kritisk. Det foretrekkes imidlertid å arbeide ved moderate eller lave temperaturer, f.eks. mellom romtemperatur og omkring 50°C, hvor løsbarheten av HCl i svovelsyreløsninger er forhøyet. The temperature of the reaction taking place is not critical. However, it is preferred to work at moderate or low temperatures, e.g. between room temperature and around 50°C, where the solubility of HCl in sulfuric acid solutions is increased.

Reaksjonen kan utføres kontinuerlig eller diskontinuerlig og oksyderingen av jern finner sted meget raskt. I tilfeller hvor den løsning som skal behandles, inneholder aluminiumsulfat som kan være gjenstand for dobbelt spaltning, f.eks. ved reaksjonen: The reaction can be carried out continuously or discontinuously and the oxidation of iron takes place very quickly. In cases where the solution to be treated contains aluminum sulphate which may be subject to double cleavage, e.g. by the reaction:

ledsaget av krystallisasjon av heksahydrert aluminiumklorid, må accompanied by crystallization of hexahydrated aluminum chloride, must

den tilførte mengde saltsyre overskride den mengde som er påkrevet for dobbelt spalting i sådan grad at den frembragte væske vil inne-holde fra 60 - 250 g/l HCl. the added amount of hydrochloric acid exceeds the amount required for double cleavage to such an extent that the liquid produced will contain from 60 - 250 g/l HCl.

En sådan fremgangsmåte kan f.eks. benyttes i en prosess hvor en aluminiumholdig substans med innhold av jern som i det minste del-vis befinner seg i jern(II)-tilstand, reagerer med svovelsyre ute' noen oksydering før denne reaksjon, og danner en svovelholdig løs-ning som hovedsakelig inneholder aluminiumsulfat og jern(II)sulfat. ^. Hvis en sådan løsning behandles for å oppnå utfelling av aluminiumklorid, vil det utfelte materiale bli forurenset av jern(Hj-eller jern(III)-ioner som er nærværende i modervæsken, samt eventuelt også av jern(II)klorid som utfelles samtidig som aluminiumklorid. Selv om størstedelen av det jern som er nærværende i modervæsken kan elimineres ved gjentatte vaskeprosesser, vil dette ikke kunne fjerne den utfelte jern(II)klorid. Forurensning med jern(II)-salter kan unngås hvis vedkommende jern(II)-salt oksyderes til løselig jern(III)-salt, en prosess som lett kan utføres ved hjelp av oppfinnelsens fremgangsmåte. Such a method can e.g. is used in a process where an aluminum-containing substance containing iron, which is at least partially in the iron (II) state, reacts with sulfuric acid without any oxidation before this reaction, and forms a sulfur-containing solution which mainly contains aluminum sulfate and iron(II) sulfate. ^. If such a solution is treated to achieve precipitation of aluminum chloride, the precipitated material will be contaminated by iron (Hj) or iron (III) ions which are present in the mother liquor, and possibly also by iron (II) chloride which is precipitated at the same time as aluminum chloride . Although most of the iron present in the mother liquor can be eliminated by repeated washing processes, this will not be able to remove the precipitated iron(II) chloride. Contamination with iron(II) salts can be avoided if the iron(II) salt in question is oxidized to soluble iron(III) salt, a process which can be easily carried out by means of the method of the invention.

Fremgangsmåten i henhold til foreliggende oppfinnelse gjør det The method according to the present invention does that

mulig å oppnå påfølgende fjerning av jernet i form av dobbelt jern(III)sulfat og kaliumsulfat. possible to achieve subsequent removal of the iron in the form of double iron(III) sulphate and potassium sulphate.

Claims (1)

EKSEMPEL 1. Løsningen som skulle behandles, inneholdt 6,5 g/l FeO og 485 g/l fri svovelsyre, og befant seg ved en temperatur på 40°C. 155 g/l HCL ble tilsatt. Løsningen ble så bragt til å strømme i lukket krets i et venturirør sammen med rent oksygen i en første forsøks-utførelse samt med luft i andre tilsvarende utførelser. En time senere ble det funnet at jernet var fullstendig oksydert til jern(II)-tilstand. EKSEMPEL 2. En løsning av heksahydrert aluminiumklorid befant seg i en løsning med følgende sammensetning:EXAMPLE 1. The solution to be treated contained 6.5 g/l FeO and 485 g/l free sulfuric acid, and was at a temperature of 40°C. 155 g/l HCL was added. The solution was then brought to flow in a closed circuit in a venturi tube together with pure oxygen in a first experimental design and with air in other similar designs. An hour later, it was found that the iron was completely oxidized to the iron(II) state. EXAMPLE 2. A solution of hexahydrated aluminum chloride was in a solution with the following composition: Denne løsning ble behandlet med en gass som inneholdt oksygen, i en time ved 40°C. Etter denne tid viste det seg at moderløsningen bare inneholdt spor av jern i jern(II)-tilstand.This solution was treated with a gas containing oxygen for one hour at 40°C. After this time, it turned out that the mother solution only contained traces of iron in the iron(II) state. PATENTKRAV.PATENT CLAIMS. Fremgangsmåte for oksydering av jern(II)sulfat oppløst i en vandig løsning som inneholder 250 - 600 g/l svovelsyre, til jern(III)sulfat ved hjelp av en oksygenholdig gass og en katalysator.Process for oxidizing iron (II) sulfate dissolved in an aqueous solution containing 250 - 600 g/l sulfuric acid to iron (III) sulfate using an oxygen-containing gas and a catalyst. karakterisert ved at løsningen tilsettes saltsyre som katalysator i en mengde på 60 - 2 50 g/l og deretter bringes i intim kontakt med den oksygenholdige gass.characterized in that hydrochloric acid is added to the solution as a catalyst in an amount of 60 - 250 g/l and then brought into intimate contact with the oxygen-containing gas.
NO762363A 1975-07-09 1976-07-07 PROCEDURE FOR OXIDIZATION OF IRON (II) SULPHATE IN AQUATIC SULFURIC ACID SOLUTION TO IRON (III) SULPHATE NO140926C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7521556A FR2317231A1 (en) 1975-07-09 1975-07-09 PROCESS FOR OXIDIZING FERROUS SULPHATE IN AQUEOUS SULFURIC SOLUTION

Publications (3)

Publication Number Publication Date
NO762363L NO762363L (en) 1977-01-11
NO140926B true NO140926B (en) 1979-09-03
NO140926C NO140926C (en) 1979-12-12

Family

ID=9157717

Family Applications (1)

Application Number Title Priority Date Filing Date
NO762363A NO140926C (en) 1975-07-09 1976-07-07 PROCEDURE FOR OXIDIZATION OF IRON (II) SULPHATE IN AQUATIC SULFURIC ACID SOLUTION TO IRON (III) SULPHATE

Country Status (17)

Country Link
JP (1) JPS529697A (en)
AU (1) AU501423B2 (en)
BE (1) BE843925A (en)
BR (1) BR7604434A (en)
CA (1) CA1078137A (en)
CH (1) CH615650A5 (en)
DE (1) DE2630628C3 (en)
ES (1) ES449665A1 (en)
FR (1) FR2317231A1 (en)
GB (1) GB1486759A (en)
IL (1) IL49977A (en)
IT (1) IT1064884B (en)
LU (1) LU75327A1 (en)
NL (1) NL181986C (en)
NO (1) NO140926C (en)
SE (1) SE412576B (en)
ZA (1) ZA764043B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE433843B (en) * 1982-11-01 1984-06-18 Boliden Ab PROCEDURE FOR PREPARING A WATER PURIFICATION CHEMICAL
JPS648116A (en) * 1987-06-26 1989-01-12 Toa Gosei Chem Ind Manufacture of locking screw
US5266297A (en) * 1989-01-20 1993-11-30 Sugita Wire Mfg. Co., Ltd. Liquid oxidizing method and apparatus
JPH02191541A (en) * 1989-01-20 1990-07-27 Sugita Seisen Kojo:Kk Oxidation of liquid and equipment thereof
JPH0739961U (en) * 1993-12-28 1995-07-18 タナカプリコート株式会社 Anti-loosening agent applicator
CN112934919B (en) * 2021-02-05 2022-07-01 云南大地丰源环保有限公司 Method for treating waste anhydrous aluminum chloride

Also Published As

Publication number Publication date
FR2317231B1 (en) 1977-12-16
CH615650A5 (en) 1980-02-15
DE2630628C3 (en) 1978-10-26
SE7607679L (en) 1977-01-10
IL49977A0 (en) 1976-09-30
IL49977A (en) 1979-01-31
NO762363L (en) 1977-01-11
LU75327A1 (en) 1977-04-01
DE2630628A1 (en) 1977-01-13
SE412576B (en) 1980-03-10
JPS529697A (en) 1977-01-25
NO140926C (en) 1979-12-12
JPS5329679B2 (en) 1978-08-22
GB1486759A (en) 1977-09-21
CA1078137A (en) 1980-05-27
IT1064884B (en) 1985-02-25
AU501423B2 (en) 1979-06-21
ES449665A1 (en) 1977-07-01
DE2630628B2 (en) 1978-03-02
NL181986C (en) 1987-12-16
FR2317231A1 (en) 1977-02-04
NL7607523A (en) 1977-01-11
ZA764043B (en) 1977-08-31
BE843925A (en) 1976-11-03
AU1562476A (en) 1978-01-12
BR7604434A (en) 1978-01-31
NL181986B (en) 1987-07-16

Similar Documents

Publication Publication Date Title
USRE31236E (en) Method of removing sulfur dioxide from combustion exhaust gas
BRPI0611358A2 (en) method for the recovery of precious metals and arsenic from a solution
BRPI0721494A2 (en) A process for converting technical molybdenum oxide into a purified molybdenum trioxide product; AND SOLID PURIFIED MOLYDEN TRIOXIDE
US3862293A (en) Process for the continuous acid treatment of crude clays and schists
GB1041822A (en) Process of treating waste gas containing sulphur oxide
US9315393B2 (en) Hydrogen chloride removal process
NO140926B (en) PROCEDURE FOR OXIDIZATION OF IRON (II) SULPHATE IN AQUATIC SULFURIC ACID SOLUTION TO IRON (III) SULPHATE
PT88498B (en) PROCESS FOR THE REMOVAL AND RECOVERY OF DICROMATE IN ELECTROLYTIC SYSTEMS CONTAINING CHLORIDE
JP5951303B2 (en) Method for producing ferric nitrate aqueous solution and sodium nitrite
EP0246871B1 (en) Removal of chromium from cell liquor
US2384010A (en) Method of producing magnesium sulphate
JPS63118086A (en) Production of hexavalent chromium used in chlorate electrolytic cell
EP0110848B1 (en) A method for producing water-purifying chemicals
KR100275347B1 (en) Process for the preparation of a sulfate- and hydroxide-based ferric compound
KR850007580A (en) Waste sulfuric acid treatment method in the production of titanium oxide by sulfuric acid method
US2577739A (en) Purification of cobalt sulfate solution
US1674077A (en) Production of alkali metal nitrates
SU1724585A1 (en) Method of ferric hydroxide preparation
JPS6090027A (en) Waste gas desulfurization method
JPH0251843B2 (en)
PL101552B1 (en) A METHOD OF REMOVING SULPHUR DIOXIDE FROM WASTE GASES
CN116081887A (en) Recovery method of cobalt-containing rare earth waste liquid
KR800001526B1 (en) Method of manufacture for fe2o3 salt
CN109453615A (en) A kind of processing method of methylsufonyl chloride production tail gas
JPH0251844B2 (en)