NL8005922A - METHOD FOR FORMING A WIRE JOINT - Google Patents

METHOD FOR FORMING A WIRE JOINT Download PDF

Info

Publication number
NL8005922A
NL8005922A NL8005922A NL8005922A NL8005922A NL 8005922 A NL8005922 A NL 8005922A NL 8005922 A NL8005922 A NL 8005922A NL 8005922 A NL8005922 A NL 8005922A NL 8005922 A NL8005922 A NL 8005922A
Authority
NL
Netherlands
Prior art keywords
wire
spark discharge
electrode
sphere
voltage
Prior art date
Application number
NL8005922A
Other languages
Dutch (nl)
Original Assignee
Philips Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Nv filed Critical Philips Nv
Priority to NL8005922A priority Critical patent/NL8005922A/en
Priority to CA000388476A priority patent/CA1178664A/en
Priority to DE3141842A priority patent/DE3141842A1/en
Priority to JP56170252A priority patent/JPS5916409B2/en
Priority to PL1981233586A priority patent/PL133893B1/en
Priority to GB8132183A priority patent/GB2086297B/en
Priority to BR8106902A priority patent/BR8106902A/en
Priority to FR8120025A priority patent/FR2493044B1/en
Priority to CH6815/81A priority patent/CH654142A5/en
Priority to ES506580A priority patent/ES506580A0/en
Priority to BE0/206365A priority patent/BE890887A/en
Priority to DD81234387A priority patent/DD205294A5/en
Priority to IT24731/81A priority patent/IT1139570B/en
Priority to KR1019810004107A priority patent/KR890000585B1/en
Priority to AU76893/81A priority patent/AU546818B2/en
Publication of NL8005922A publication Critical patent/NL8005922A/en
Priority to SG219/84A priority patent/SG21984G/en
Priority to HK408/85A priority patent/HK40885A/en
Priority to MY623/85A priority patent/MY8500623A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12033Gunn diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance

Description

'''«··· ΡΗΝ 9872 1 N.V. Philips' Gloeilampenfabrieken te Eindhoven'' '«··· ΡΗΝ 9872 1 N.V. Philips' Incandescent light factories in Eindhoven

Werkwijze voor het vormen van een draadverbinding.Method of forming a wire connection.

De uitvinding heeft betrekking op een werkwijze voor het vormen van een draadverbinding tussen een kontaktplaats op een elektrisch ’ microcircuit en een aansluitgeleider, waarbij een draad uit aluminium of een aluminiumlegering wordt toegepast, die is gevoerd door een kapillair, 5 waarbij aan het uiteinde van de draad een bol wordt gevormd met behulp van een vonk-ontlading tussen de draad en een elektrode, welke vonk-ontlading plaatvindt in een beschermende gasatmosfeer, waarna de draad met behulp van het kapillair met een kontaktplaats op het elektronische microcircuit en vervolgens met de aansluitgeleider wordt verbonden.The invention relates to a method for forming a wire connection between a contact point on an electrical microcircuit and a connecting conductor, in which a wire of aluminum or an aluminum alloy is used, which is passed through a capillary, wherein at the end of the wire a sphere is formed by means of a spark discharge between the wire and an electrode, which spark discharge takes place in a protective gas atmosphere, after which the wire is connected by means of the capillary with a contact point on the electronic microcircuit and then with the connection conductor connected.

1010

Voor het maken van een draadverbinding tussen een kontaktplaats öp bijvoorbeeld een hal'fgeleiderlichaam en een elektrische geleider is het gunstig gebleken, om bij de hechting van de draad met het halfge- leiderlichaam een bol-verbinding (ball bond) toe te passen. De bol kan met behulp van een ultrasoon laswerktuig of door middel van een warmte-druk-15 verbinding eventueel met een combinatie van beide, aan de kontaktplaats worden bevestigd. Bij een draad uit goud kan de bol bij voorkeur worden gevormd met behulp van een elektrische vonk -ontlading. Het vonten van een bol aan een draad uit aluminium of een aluminiumlegering stuit evenwel op moeilijkheden.For making a wire connection between a contact point on, for example, a semiconductor body and an electric conductor, it has proved advantageous to use a ball bond when the wire is bonded to the semiconductor body. The sphere can be attached to the contact point by means of an ultrasonic welding tool or by means of a heat-pressure connection, optionally with a combination of the two. With a gold wire, the sphere can preferably be formed by means of an electric spark discharge. However, forming a sphere on an aluminum or aluminum alloy wire is encountering difficulties.

2020

Er is reeds voorgesteld cm met behulp van een elektrische vonk-ontlading een bol aan het einde van een aluminiumdraad te vormen, door bij een spanningsverschil tussen de draad en de elektrode van minder dan 200 V en in een beschermende gasatmosfeer de draad en de elektrode korte tijd met elkaar in kontakt te brengen. Daarbij smelt 25 het einde van de draad en wordt de aanraking verbroken, met het gevolg dat een vonk-ontlading plaatvindt, die de bol doet ontstaan. Het beschermend gas dient om te voorkomen dat bij het ontstaan van de bol oxydatieverschijnselen optreden. Deze wijze van aanbrengen van de bol, waarbij kontakt tussen de draad en de elektrode nodig is, is omslachtig 30 voor massaproduktie. Voorts treedt overmatige slijtage van de elektrode op, die daardoor vaak vervangen moet worden.It has already been proposed to form a sphere at the end of an aluminum wire by means of an electric spark discharge, by shortening the wire and the electrode in a protective gas atmosphere with a voltage difference of less than 200 V between the wire and the electrode and in a protective gas atmosphere. time to contact each other. Thereby the end of the wire melts and the contact is broken, with the result that a spark discharge takes place, which creates the sphere. The protective gas serves to prevent oxidation phenomena when the bulb is formed. This manner of applying the bulb, which requires contact between the wire and the electrode, is laborious for mass production. In addition, excessive wear of the electrode occurs, which must therefore often be replaced.

jj

Er is verder voorgesteld cm bij een spanningsverschil van 8005922 ---— EHN 9872 2 — 350 V tot 10.000 V het draadeinde en de elektrode qp een onderling geringe afstand te brengen, ter verkrijging van een vonk-ontlading, waarbij de ohmse weerstand in de ontladingsstroomkring zodanig wordt gekozen, dat de topwaarde van de stroomdichtheid in de draaddoorsnede 9 2 9 2 5 1,2.10 A/m tot 13,5.10 A/m bedraagt. Het is evenwel te prefereren om de vonk-ontlading bij een lagere spanning te laten plaatsvinden. Daarenboven moet bij deze bekende werkwijze een zeer geringe afstand, ongeveer 0,125 mm, tussen het draadeinde en de elektrode vrij nauwkeurig worden ingesteld. Bij massafabrikage wil men echter liefst niet af-10 hankelijk zijn van een nauwkeurige instelling en wordt voorts de afstand tussen het draadeinde en de elektrode bij voorkeur aanzienlijk groter gekozen dan bij de bekende werkwijze.It has further been proposed to bring the wire end and the electrode qp at a mutual distance at a voltage difference of 8005922 --- EHN 9872 2 - 350 V to 10,000 V, in order to obtain a spark discharge, whereby the ohmic resistance in the discharge circuit is selected such that the peak value of the current density in the wire cross section is 9 2 9 2 5 1.2.10 A / m to 13.5.10 A / m. However, it is preferable to allow the spark discharge to take place at a lower voltage. In addition, in this known method, a very small distance, about 0.125 mm, between the wire end and the electrode must be set quite accurately. In mass production, however, it is preferable not to be dependent on an accurate adjustment, and the distance between the wire end and the electrode is preferably chosen to be considerably larger than in the known method.

De uitvinding heeft tot doel, een werkwijze, van de, in de aanhef genoemde soort te verschaffen, waarbij een vonk-ontlading wordt 15 verkregen, bij toepassing van een relatief klein spanningsverschil tussen het draadeinde en de elektrode en waarbij de onderlinge afstand tussen deze beide relatief groot kan zijn en niet nauwkeurig behoeft te werden ingesteld. Daartoe wordt, volgens de uitvinding, een elektrische vonkontlading teweeg gebracht tussen twee hulpeléktroden, waarbij door 20 ionisering van het beschermende gas een plasma wordt gevormd, terwijl door de lage weerstand in het plasma een elektrische vonk-ontlading wordt teweeg gebracht tussen de elektrode en de draad bij een spanning gelegen tussen 25 V en 200 V, door welke vonk-ontlading een bol wordt gevormd aan het einde van de draad.The object of the invention is to provide a method of the type mentioned in the preamble, in which a spark discharge is obtained, when a relatively small voltage difference between the wire end and the electrode is applied and wherein the mutual distance between the two can be relatively large and does not need to be set accurately. To this end, according to the invention, an electric spark discharge is produced between two auxiliary electrodes, whereby a plasma is formed by ionization of the protective gas, while due to the low resistance in the plasma, an electric spark discharge is produced between the electrode and the wire at a voltage between 25 V and 200 V, through which spark discharge a sphere is formed at the end of the wire.

25 De ontlading tussen de hulpelektroden, waartussen een vrij groot spanningsverschil mag worden gevormd, doet een plasma in het beschermende gas ontstaan. De weerstand in het plasma is zeer gering ten opzichte van de weerstand in het ongeïoniseerde gas. Hierdoor kant bij een relatief gering spanningsverschil tussen de elektrode en de 30 draad een vonk-ontlading tot stand, die de bol aan de draad doet ontstaan. De afstand tussen elektrode en draadeinde is daarbij niet kritisch; als de weerstand van het gas gering genoeg is geworden zal de volvormende vonk-ontlading autanatisch plaatsvinden.The discharge between the auxiliary electrodes, between which a fairly large voltage difference may be formed, creates a plasma in the protective gas. The resistance in the plasma is very low compared to the resistance in the non-ionized gas. As a result, at a relatively small voltage difference between the electrode and the wire, a spark discharge is established, which causes the bulb to form on the wire. The distance between the electrode and the wire end is not critical here; if the resistance of the gas has become low enough, the full-forming spark discharge will take place automatically.

Op deze, voor seriefabricage geschikte wijze wordt aan een 35 draad uit aluminium of een aluminiumlegering een bol gevormd van een goed reproduceerbare grootte. Deze grootte is afhankelijk van het 8005922 t PHN 9872 3 . spanningsverschil tussen de elektrode en de draad en van de elektrische lading; het is gebleken dat voor het verkrijgen van een goede vorm van de bol het spanningsverschil bij voorkeur kleiner moet zijn dan 200V.In this manner, suitable for series production, a sphere of an easily reproducible size is formed on a wire of aluminum or an aluminum alloy. This size depends on the 8005922 t PHN 9872 3. voltage difference between the electrode and the wire and of the electric charge; it has been found that in order to obtain a good shape of the sphere the voltage difference should preferably be less than 200V.

Bij een gunstige uitvoering van de werkwijze volgens de uit- door 5 vinding wordt het plasma gevormd^een vonk-ontlading met behulp van een bobine, waarbij de spanning tussen de hulpelektroden is gelegen in de grootte-orde van 10.000-20.000 V. Er zijn dan slechts eenvoudige middelen nodig ter vorming van het plasma in het beschermende gas.In a favorable embodiment of the method according to the invention, the plasma is formed and a spark discharge is made using a coil, the voltage between the auxiliary electrodes being on the order of 10,000-20,000 V. There are then only simple means are required to form the plasma in the protective gas.

Het verdient de voorkeur dat de vonkontlading tussen de 10 elektrode en de draad wordt verkregen door ontlading van een elektrische condensator bij een spanning van 50-100V.It is preferable that the spark discharge between the electrode and the wire is obtained by discharging an electric capacitor at a voltage of 50-100V.

In een voorkeursuitvoering van de werkwijze volgens de uitvinding wordt de afstand tussen de elektrode en het einde van de draad op een waarde in de ordegrootte van 2mm gehouden tijdens het vonten 15 van de bol. Weliswaar kan de afstand groter of kleiner worden gekozen, maar de afstand van ongeveer 2mm is uitermate geschikt gebleken, zowel ten behoeve van seriefabricage als ter verkrijging van een gunstige bolvorm.In a preferred embodiment of the method according to the invention, the distance between the electrode and the end of the wire is kept at a value in the order of 2 mm during the shaping of the sphere. It is true that the distance can be chosen larger or smaller, but the distance of about 2 mm has proved to be extremely suitable, both for series production and to obtain a favorable spherical shape.

De uitvinding zal aan de hand van een in de tekening weerge-20 geven uitvoeringsvoorbeeld nader worden toegelicht.The invention will be explained in more detail with reference to an exemplary embodiment shown in the drawing.

Figuur 1 toont schematisch een inrichting voor het aanbrengen van de draadverbinding,Figure 1 schematically shows a device for applying the wire connection,

Figuur 2-4 toont een langsdoorsnede, bovenaanzicht respectievelijk vooraanzicht van een apparaat waarin de bol aan de draad wordt 25 gevormd,2-4 show a longitudinal section, top view and front view, respectively, of an apparatus in which the sphere is formed on the wire,

Figuur 5 geeft een elektrische schakeling weer, voor het verkrijgen van de vonkontlading.Figure 5 shows an electrical circuit for obtaining the spark discharge.

De figuren 6-8 tonen het verbinden van de draad met het elektronische microcircuit respectievelijk met een strocmgeleider.Figures 6-8 show the connection of the wire to the electronic microcircuit or to a current conductor, respectively.

30 In figuur 1 is een ultrasone generator 1 getoond, welke generator schamierbaar is cm een as 2, die is opgencmen in een steun 3. De las-arm 4 van generator 1 is voorzien van een kapillair 5, waardoor een draad 6 uit aluminium of een aluminiumlegering is gevoerd. Aan het einde van draad 6 moet een bol worden gevormd. De draad is hiertoe gevoerd 35 in een sleuf 7 van een vonkeenheid 8 (zie ook Figuur 2, 3 en 4). Het lichaam van de vonkeenheid bestaat uit een isolerend materiaal, bijvoorbeeld @n kunststof. In de sleuf 7 eindigt een boring 9, waardoor een beschermend gas, bijvoorbeeld argon, wordt gevoerd via een slang 10.Figure 1 shows an ultrasonic generator 1, which generator is pivotable about an axis 2, which is accommodated in a support 3. The welding arm 4 of generator 1 is provided with a capillary 5, through which a wire 6 of aluminum or an aluminum alloy is lined. A sphere must be formed at the end of wire 6. The wire is fed for this purpose into a slot 7 of a spark unit 8 (see also Figures 2, 3 and 4). The body of the spark unit consists of an insulating material, for example @n plastic. A bore 9 ends in the slot 7, through which a protective gas, for example argon, is passed through a hose 10.

8005922 ' . -» PHN 9872 48005922 '. - »PHN 9872 4

In de vonkeenheid 8 is een elektrode 11 opgencmen, evenals twee hulp-elektroden 12 en 13. De afstand tussen de einden van de hulpelektroden is bijvcorkeur ongeveer 2 irm. Ook de afstand tussen de elektrode 11 en het einde van de draad 6 is ongeveer 2mm. De vonkeenheid is schamier-5 baar cm een as 19 en kan' zodoende naar het kapillair 5 en ook ervan weg worden gedraaid.An electrode 11 is included in the spark unit 8, as are two auxiliary electrodes 12 and 13. The distance between the ends of the auxiliary electrodes is preferably approximately 2 µm. Also the distance between the electrode 11 and the end of the wire 6 is about 2mm. The spark unit is pivotable about an axis 19 and can thus be turned towards the capillary 5 and also away from it.

De inrichting uit figuur 1 bevat voorts een drager 14, waarop een slede 15 is aangebracht. Op slede 15 kan een geleiderrooster worden geplaats. Op een dragerdeel 16 van het geleiderrooster bevindt zich een 10 halfgeleiderelement 17, dat is voorzien van kontaktplaatsen voor het aanbrengen van een elektrisch geleidende draad. De draad wordt van een kontaktplaats van de halfgeleiderinrichting 17 gevoerd naar een geleider 18 van het geleiderrooster.The device of figure 1 further comprises a carrier 14 on which a slide 15 is mounted. A guide grid can be placed on slide 15. A semiconductor element 17 is provided on a support part 16 of the conductor grid and is provided with contact locations for applying an electrically conductive wire. The wire is passed from a contact point of the semiconductor device 17 to a conductor 18 of the conductor grid.

Het vormen van een bol aan de draad 6 uit aluminium of een 15 aluminiumlegering wordt toegelicht aan de hand van de figuur 2-5. Het einde van draad 6 wordt in de sleuf 7 van de vonkeenheid 8 gebracht.The formation of a sphere on the wire 6 of aluminum or an aluminum alloy is explained with reference to figure 2-5. The end of wire 6 is inserted into the slot 7 of the spark unit 8.

In de sleuf wordt een beschermend gas, zoals argon, gevoerd via de boring 9; bij voorkeur vindt de gastoevoer slechts korlstondig plaats, n.1. alleen tijdens het vormen van de bol. Tussen de hulpelektroden 20 12 en 13 wordt nu een spanningsvers chil opgewekt, bij voorkeur van 10.000-20.000 V met behulp van een bobine, waardoor een vonkontlading plaatvindt. Deze vonkontlading veroorzaakt een plasma in het beschermende argongas. In dit gas daalt hierdoor de elektrische weerstand tot een zeer lage waarde. Tussen de elektrode 11 en het einde van de draad 6 25 wordt een spanningsverschil onderhouden van 200V of minder, bij voorkeur ongeveer 70V.A protective gas, such as argon, is fed into the slot through the bore 9; the gas is preferably supplied only in a granular manner, n.1. only during the formation of the sphere. A voltage difference is now generated between the auxiliary electrodes 12 and 13, preferably of 10,000-20,000 V by means of a coil, whereby a spark discharge takes place. This spark discharge creates a plasma in the protective argon gas. As a result, the electrical resistance in this gas drops to a very low value. A voltage difference of 200V or less, preferably about 70V, is maintained between the electrode 11 and the end of the wire 6.

- Tengevolge van de lage waarde van de elektrische weerstand in het plasma kan een vonkontlading plaatvonden tussen de elektrode 11 en het einde van de draad 6, ondanks het feit dat de afstand tussen 30 deze beide relatief groot kan zijn, bijvoorbeeld 2 mm kan bedragen.Due to the low value of the electrical resistance in the plasma, a spark discharge can occur between the electrode 11 and the end of the wire 6, despite the fact that the distance between them can be relatively large, for example, 2 mm.

Door de vonkontlading wordt aan het einde van de draad een bol gevormd, waarvan de grootte zeer goed reproduceerbaar is.Due to the spark discharge, a sphere is formed at the end of the wire, the size of which is very reproducible.

Figuur 5 geeft schematisch een schakeling weer, voor het opwekken van een vonk ter vorming van een bol aan de aluminiumdraad. Een 35 van een niet weergegeven monostabiele multivibrator afkomstige puls 20 brengt de basis van een transistor 21 op een voldoende hoge spanning om stroom door de transistor te laten vloeien. Tengevolge van deze stroom 8005922 PHN 9872 5 - wordt de basis van een transistor 22 op een zodanige spanning .gebracht, dat ook door transistor 22 stroom loopt. De stroom door transistor 22 is voldoende groot cm een hoogspanningstransistor 23 te besturen; er loopt daarbij stroom door de primaire tak 24 van een bobine 26. Aan 5 het einde van de korte puls 20 schakelen achtereenvolgens de transistoren 21, 22 en 23 dicht en neemt de stroom in de primaire tak 24 van de bobine plotseling af tot een waarde nul. Door inductiewerking wordt nu in de secundaire tak 25 van dé bobine een hoge spanning opgewekt, bijvoorbeeld 20.000 V. Hierdoor ontstaat de elektrische vonkontlading tussen 10 de elektroden 12 en 13, en wordt een-plasma in het beschermende argongas gevormd.Figure 5 schematically shows a circuit for generating a spark to form a sphere on the aluminum wire. A pulse 20 from a monostable multivibrator (not shown) brings the base of a transistor 21 to a voltage high enough to allow current to flow through the transistor. As a result of this current 8005922 PHN 9872 5 - the base of a transistor 22 is applied to such a voltage that current also flows through transistor 22. The current through transistor 22 is sufficiently large to control a high voltage transistor 23; current flows through the primary branch 24 of a coil 26. At the end of the short pulse 20, the transistors 21, 22 and 23 successively close and the current in the primary branch 24 of the coil suddenly decreases to a value zero. Induction operation now produces a high voltage in the secondary branch 25 of the ignition coil, for example 20,000 V. This results in the electrical spark discharge between the electrodes 12 and 13, and a plasma is formed in the protective argon gas.

Tussen de draad 6 en de elektrode 11 is een elektrische condensator 27 geschakeld; de condensator staat in verbinding met een spanningsbron en is dientengevolge opgeladen. Tengevolge van de lage weerstand in 15 het plasma zal de condensator 27 ontladen, onder vorming van een vonk tussen'de elektrode 11 en het einde van de draad 6. Hierbij wordt aan de draad de bol gevormd.^ 6Γ1An electric capacitor 27 is connected between the wire 6 and the electrode 11; the capacitor is connected to a voltage source and is consequently charged. Due to the low resistance in the plasma, the capacitor 27 will discharge, creating a spark between the electrode 11 and the end of the wire 6. The ball is formed on the wire.

De spanning over/de capaciteit van de condensator 27 kan worden gekozen afhankelijk van de diameter van de draad waaraan de bol wordt ge-20 vormd. Het is bijvoorbeeld zeer gunstig gebleken bij een draad met een diameter van 200^um een condensator toe te passen van 500 ^,uF bij een spanning van 70V. Bij een draad met een diameter van 40^um werd een gunstige bolvorm verkregen door ontlading van een condensator van 15^uF, die bij een spanning van 70V was opgeladen.The voltage across / capacitance of capacitor 27 can be selected depending on the diameter of the wire to which the sphere is formed. For example, it has proved very advantageous to use a capacitor of 500 µF at a voltage of 70V for a wire with a diameter of 200 µm. With a 40 µm diameter wire, a favorable spherical shape was obtained by discharging a 15 µF capacitor charged at a voltage of 70V.

25 Ih de Figuur 6-8 wordt het verbinden van de draad aan enerzijds het elektronische microcircuit en anderzijds een strocmgeleider getoond.In Figure 6-8 the connection of the wire to the electronic microcircuit on the one hand and a current conductor on the other hand is shown.

Op de ook in Figuur 1 getoonde slede 15 is een geleiderrooster geplaatst, met een dr^erdeel 16 waarop een halfgeleiderelement 17 is bevestigd. Een strocmgeleider is aangeduid met het verwijzingscijfer 18.On the slide 15, also shown in Figure 1, a conductor grid is placed, with a conductor part 16 on which a semiconductor element 17 is mounted. A current conductor is indicated by the reference numeral 18.

30 Het kapillair 5, met daarin de draad 6, waaraan een bol is gevormd, bevindt . zich boven een kontaktplaats qp het halfgeleiderelement 17.The capillary 5, containing the wire 6 on which a sphere is formed. located above a contact point qp the semiconductor element 17.

Het kapillair wordt naar het halfgeleiderlement bewogen, bijvoorbeeld door draaien van de ultrasone generator 1 cm as 2 (figuur 1). Als de bol tegen de kontaktplaats op het halfgeleiderelement drukt, wordt 35 door middel van ultrasone trillingen de verbinding tot stand gebracht (figuur 7), waarbij de bol tot een platte kop wordt gevormd. Vervolgens wordt het kapillair omhoog bewogen en verplaatst naar strocmgeleider 18.The capillary is moved to the semiconductor element, for example by rotating the ultrasonic generator 1 cm axis 2 (Figure 1). When the sphere presses against the contact site on the semiconductor element, the connection is established by ultrasonication (figure 7), whereby the sphere is formed into a flat head. Then the capillary is moved up and moved to flow guide 18.

8005922 5 EHN 9872 68005922 5 EHN 9872 6

Daar wordt de draad tussen geleider 18 en de onderzijde van het kapillair geklemd en met behulp van ultrasone energie aan geleider 18 bevestigd. Figuur 8 toont de uiteindelijke draadverbinding.There the wire is clamped between conductor 18 and the bottom of the capillary and attached to conductor 18 by means of ultrasonic energy. Figure 8 shows the final wire connection.

10 15 20 25 30 8005922 3510 15 20 25 30 8005922 35

Claims (5)

1. Werkwijze voor het vormen van een draadverbinding tussen een kontaktplaats op een elektronisch- ’-microcircuit en een aansluit-geleider, waarbij een draad Uit aluminium of een aluminiumlegering wordt 5 toegepast, die is gevoerd door een kapillair, waarbij aan het uiteinde van. de draad een bol wordt gevormd met behulp van een vonkontlading tussen de draad en een elektrode, welke vonkontlading plaatvindt in een beschermende gasatmosfeer, waarna de:draad net behulp van het kapillair met een kontaktplaats op het elektronische microcircuit en 10 vervolgens met de aansluitgeleider wordt verbonden, met het kenmerk, dat een elektrische vonkontlading wordt teweeg gebracht tussen twee hulp-elektroden, waarbij door ionisering van het beschermende gas een plasma wordt gevormd, terwijl door de lage weerstand in het plasma een elektrische vonkontlading wordt teweeg gebracht tussen de elektrode en 15 de draad bij een spanning gelegen tussen 25V en 200V, door welke vonkontlading een bol wordt gevormd aan het einde van de draad.1. A method of forming a wire connection between a contact site on an electronic microcircuit and a connecting conductor using a wire made of aluminum or an aluminum alloy, which is passed through a capillary, at the end of which is connected. the wire is formed into a sphere by means of a spark discharge between the wire and an electrode, which spark discharge takes place in a protective gas atmosphere, after which the wire is connected by means of the capillary to a contact point on the electronic microcircuit and then to the connecting conductor characterized in that an electric spark discharge is produced between two auxiliary electrodes, a plasma being formed by ionization of the protective gas, while the low resistance in the plasma produces an electric spark discharge between the electrode and the wire at a voltage between 25V and 200V, through which spark discharge a sphere is formed at the end of the wire. 2. Werkwijze volgens conclusie 1, met he-t- kenmerk, dat het. plasma wordt gevormd door een vonkontlading met behulp van een bobine, waarbij de spanning tussen, de hulpelektroden is gelegen in de grootte- 20 orde van 10.000-20-000 V.Method according to claim 1, characterized in that it. plasma is formed by a spark discharge with the help of a coil, the voltage between the auxiliary electrodes being in the order of 10,000-20-000 V. 3. Werkwijze volgens conclusie 1 of 2, met het kenmerk, dat de vonkontlading tussen de elektrode en de draad wordt verkregen door ontlading van een elektrische condensator, bij een spanning van 50-100 V.Method according to claim 1 or 2, characterized in that the spark discharge between the electrode and the wire is obtained by discharge of an electric capacitor, at a voltage of 50-100 V. 4. Werkwijze volgens een der voorgaand conclusies, met het 2g kenmerk, dat de afstand tussen de elektrode en het einde van de draad en de afstand tussen de hulpelektroden op een waarde in de ondergrootte van 2mm wordt gehouden tijdens het vormen van de bol.Method according to any one of the preceding claims, characterized in that the distance between the electrode and the end of the wire and the distance between the auxiliary electrodes is kept at a value in the bottom size of 2 mm during the formation of the sphere. 5. Werkwijze volgens een der voorgaande conclusies, met het kenmerk, dat de toevoer van beschermend gas slechts plaatsvindt ge- 30 durende het vormen van de bol. 35 80059225. A method according to any one of the preceding claims, characterized in that the protective gas is supplied only during the formation of the sphere. 35 8005922
NL8005922A 1980-10-29 1980-10-29 METHOD FOR FORMING A WIRE JOINT NL8005922A (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
NL8005922A NL8005922A (en) 1980-10-29 1980-10-29 METHOD FOR FORMING A WIRE JOINT
CA000388476A CA1178664A (en) 1980-10-29 1981-10-22 Method of welding of connection wires to microcircuit contacts
DE3141842A DE3141842A1 (en) 1980-10-29 1981-10-22 METHOD FOR PRODUCING A WIRE CONNECTION
JP56170252A JPS5916409B2 (en) 1980-10-29 1981-10-26 Wire bond forming method
PL1981233586A PL133893B1 (en) 1980-10-29 1981-10-26 Method of connecting with wire an electronic microcircuit to its connection conductor
GB8132183A GB2086297B (en) 1980-10-29 1981-10-26 Method of forming a wire bond
BR8106902A BR8106902A (en) 1980-10-29 1981-10-26 PROCESS TO FORM A WIRE CONNECTION
FR8120025A FR2493044B1 (en) 1980-10-29 1981-10-26 METHOD FOR PROVIDING A WIRE LINK
CH6815/81A CH654142A5 (en) 1980-10-29 1981-10-26 METHOD FOR PRODUCING A WIRE CONNECTION.
ES506580A ES506580A0 (en) 1980-10-29 1981-10-27 A METHOD OF FORMING A WIRE JOINT BETWEEN A PLACE OF CONTACT IN AN ELECTRONIC MICRO CIRCUIT AND A CONNECTOR CONNECTOR
BE0/206365A BE890887A (en) 1980-10-29 1981-10-27 METHOD FOR FORMING A WIRE LINK
DD81234387A DD205294A5 (en) 1980-10-29 1981-10-27 METHOD FOR PRODUCING A WIRE COMPOUND
IT24731/81A IT1139570B (en) 1980-10-29 1981-10-27 METHOD TO FORM A CONNECTION THROUGH A METALLIC WIRE
KR1019810004107A KR890000585B1 (en) 1980-10-29 1981-10-28 Method of forming a wire bond
AU76893/81A AU546818B2 (en) 1980-10-29 1981-10-28 Method of forming a wire bond
SG219/84A SG21984G (en) 1980-10-29 1984-03-12 Method of forming a wire bond
HK408/85A HK40885A (en) 1980-10-29 1985-05-23 Method of forming a wire bond
MY623/85A MY8500623A (en) 1980-10-29 1985-12-30 Method of forming a wire bond

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL8005922A NL8005922A (en) 1980-10-29 1980-10-29 METHOD FOR FORMING A WIRE JOINT
NL8005922 1980-10-29

Publications (1)

Publication Number Publication Date
NL8005922A true NL8005922A (en) 1982-05-17

Family

ID=19836074

Family Applications (1)

Application Number Title Priority Date Filing Date
NL8005922A NL8005922A (en) 1980-10-29 1980-10-29 METHOD FOR FORMING A WIRE JOINT

Country Status (18)

Country Link
JP (1) JPS5916409B2 (en)
KR (1) KR890000585B1 (en)
AU (1) AU546818B2 (en)
BE (1) BE890887A (en)
BR (1) BR8106902A (en)
CA (1) CA1178664A (en)
CH (1) CH654142A5 (en)
DD (1) DD205294A5 (en)
DE (1) DE3141842A1 (en)
ES (1) ES506580A0 (en)
FR (1) FR2493044B1 (en)
GB (1) GB2086297B (en)
HK (1) HK40885A (en)
IT (1) IT1139570B (en)
MY (1) MY8500623A (en)
NL (1) NL8005922A (en)
PL (1) PL133893B1 (en)
SG (1) SG21984G (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476365A (en) * 1982-10-08 1984-10-09 Fairchild Camera & Instrument Corp. Cover gas control of bonding ball formation
US4549059A (en) * 1982-11-24 1985-10-22 Nec Corporation Wire bonder with controlled atmosphere
US4476366A (en) * 1983-02-01 1984-10-09 Fairchild Camera & Instrument Corp. Controlled bonding wire ball formation
US4594493A (en) * 1983-07-25 1986-06-10 Fairchild Camera & Instrument Corp. Method and apparatus for forming ball bonds
FR2555813B1 (en) * 1983-09-28 1986-06-20 Hitachi Ltd SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SUCH A DEVICE
US4705204A (en) * 1985-03-01 1987-11-10 Mitsubishi Denki Kabushiki Kaisha Method of ball forming for wire bonding
US5031821A (en) * 1988-08-19 1991-07-16 Hitachi, Ltd. Semiconductor integrated circuit device, method for producing or assembling same, and producing or assembling apparatus for use in the method
US5628922A (en) * 1995-07-14 1997-05-13 Motorola, Inc. Electrical flame-off wand
DE29608277U1 (en) * 1996-04-30 1996-09-19 F&K Delvotec Bondtechnik Gmbh Ball bonding device
JP2003163235A (en) * 2001-11-29 2003-06-06 Shinkawa Ltd Apparatus for wire bonding
TWI229022B (en) * 2002-06-20 2005-03-11 Esec Trading Sa Device with electrodes for the formation of a ball at the end of a wire
WO2014054305A1 (en) * 2012-10-05 2014-04-10 株式会社新川 Antioxidant gas blow-off unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH568656A5 (en) * 1974-03-20 1975-10-31 Transistor Ag Welding of contact blobs to semiconductor lead wires - uses electric DC light arc of preset current strength for melting lead wire end
NL7406783A (en) * 1974-05-21 1975-11-25 Philips Nv PROCEDURE FOR MOUNTING A WIRE CONNECTION TO A SEMICONDUCTOR DEVICE.
GB1536872A (en) * 1975-05-15 1978-12-20 Welding Inst Electrical inter-connection method and apparatus
GB1468974A (en) * 1975-05-23 1977-03-30 Ferranti Ltd Manufacture of semiconductor devices
GB1600021A (en) * 1977-07-26 1981-10-14 Welding Inst Electrical inter-connection method and apparatus

Also Published As

Publication number Publication date
AU546818B2 (en) 1985-09-19
SG21984G (en) 1985-01-04
ES8301390A1 (en) 1982-11-16
DD205294A5 (en) 1983-12-21
JPS57102036A (en) 1982-06-24
PL133893B1 (en) 1985-07-31
DE3141842C2 (en) 1990-09-20
JPS5916409B2 (en) 1984-04-16
BE890887A (en) 1982-04-27
KR830008394A (en) 1983-11-18
CH654142A5 (en) 1986-01-31
CA1178664A (en) 1984-11-27
PL233586A1 (en) 1982-05-10
BR8106902A (en) 1982-07-13
KR890000585B1 (en) 1989-03-21
FR2493044B1 (en) 1986-03-28
IT1139570B (en) 1986-09-24
GB2086297B (en) 1983-12-21
GB2086297A (en) 1982-05-12
IT8124731A0 (en) 1981-10-27
AU7689381A (en) 1982-05-06
DE3141842A1 (en) 1982-10-21
MY8500623A (en) 1985-12-31
FR2493044A1 (en) 1982-04-30
HK40885A (en) 1985-05-31
ES506580A0 (en) 1982-11-16

Similar Documents

Publication Publication Date Title
EP0506786B1 (en) Weakening wire supplied through a wire bonder
NL8005922A (en) METHOD FOR FORMING A WIRE JOINT
US4098447A (en) Bonding method and apparatus
US4323759A (en) Electrical inter-connection method
US4390771A (en) Bonding wire ball forming method and apparatus
JPS5824941B2 (en) welding equipment
TW272312B (en)
US3718968A (en) Method for connecting a wire to a component
US3614375A (en) Welding of sheet metal coated with layers
US1066468A (en) Process and apparatus for electric welding.
US5370300A (en) Method and apparatus for wire bonding
US3934108A (en) Lead bonding method and apparatus
US4388512A (en) Aluminum wire ball bonding apparatus and method
US5616258A (en) Process and apparatus for micro-arc welding
US3950631A (en) Device for welding a wire by means of thermo-compression bonding
KR100451411B1 (en) Micro-welder
JPH01189500A (en) Igniter for electric detonator
Francis Techniques, Equipment and Procedures for Production Welding of Electronics
JPS5835794B2 (en) electric welding method
JPH10508432A (en) Method and apparatus for coil winding contacts
JPS6124821B2 (en)
EP0064010A2 (en) System and process for automatic wire welding
JP2000294595A (en) Wire bonding method
JPH0837191A (en) Bump forming method
JPH05212548A (en) Welding method for fine wires

Legal Events

Date Code Title Description
A1B A search report has been drawn up
A85 Still pending on 85-01-01
BC A request for examination has been filed
BV The patent application has lapsed