NL1013590C2 - Werkwijze voor de selectieve verwijdering van metalen uit geconcentreerde metaalhoudende stromen. - Google Patents

Werkwijze voor de selectieve verwijdering van metalen uit geconcentreerde metaalhoudende stromen. Download PDF

Info

Publication number
NL1013590C2
NL1013590C2 NL1013590A NL1013590A NL1013590C2 NL 1013590 C2 NL1013590 C2 NL 1013590C2 NL 1013590 A NL1013590 A NL 1013590A NL 1013590 A NL1013590 A NL 1013590A NL 1013590 C2 NL1013590 C2 NL 1013590C2
Authority
NL
Netherlands
Prior art keywords
sulfide
metal
copper
process according
precipitated
Prior art date
Application number
NL1013590A
Other languages
English (en)
Inventor
Cees Jan Nico Buisman
Roy Johannes Matthias Van Lier
Guido Hubertus Reinier Janssen
Anna Sabine Peters
Original Assignee
Paques Biosystems B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paques Biosystems B V filed Critical Paques Biosystems B V
Priority to NL1013590A priority Critical patent/NL1013590C2/nl
Priority to AU25568/01A priority patent/AU2556801A/en
Priority to PCT/NL2000/000841 priority patent/WO2001036333A1/en
Application granted granted Critical
Publication of NL1013590C2 publication Critical patent/NL1013590C2/nl

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/12Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Removal Of Specific Substances (AREA)

Description

Werkwijze voor de selectieve verwijdering van metalen uit geconcentreerde metaalhoudende stromen.
Gebied van de uitvinding 5 De uitvinding heeft betrekking op een werkwijze waarbij, gebruikmakend van sulfide, een betere scheiding kan worden bewerkstelligd tussen metalen die voor wat betreft hun oplosbaarheid als metaalsulfide in de specifieke oplossing dichtbij elkaar liggen. Tevens wordt de ontwaterbaarheid van de gevormde metaalsulfideprecipitaten, gebruikmakend van de nieuwe methode, een stuk beter dan tot voorheen werd bereikt.
10
Achtergrond
Er zijn veel processen bekend, waarbij metalen selectief worden teruggewonnen uit geconcentreerde stromen, waarin meerdere metalen aanwezig zijn. Vaak wordt voor de selectieve scheiding van metalen sulfide gebruikt, waarbij een scheiding wordt 15 bewerkstelligd op basis van de verschillen in oplosbaarheid van de verschillende metaalsulfiden bij verschillende pH’s.
Vooral de scheiding met behulp van sulfide van koper en arseen uit afgewerkt elektrolyt van elektroraffinageprocessen, zoals die op grote schaal worden toegepast 20 om zuiver koper te produceren, werd tot nu toe als erg moeilijk ervaren en wordt dan ook niet vaak toegepast. De spuistroom wordt normaal gesproken verwerkt in een apart circuit bestaande uit de volgende processtappen: 1. ontkopering via elektrowinning; 2. arseenverwijdering via elektrowinning; 25 3. nikkelsulfaatkristallisatie.
De ontkoperingselektrolyse en arseenverwijdering zijn nauw met elkaar verbonden: op het moment dat de residuele koperconcentratie laag wordt (zeg enkele grammen per liter) begint arseen zich met het koper samen af te zetten in de vorm van een koper-30 arseenlegering. Deze legering valt na vorming aan de kathode grotendeels naar de bodem van de cel. Dit betekent dat de cellen regelmatig schoon gemaakt moeten worden.
Behalve arbeidsintensief is elektrolytische arseenverwijdering levensgevaarlijk i.v.m. 35 de mogelijke vorming van dodelijk AsE^ gas wanneer de koperconcentratie te laag wordt (<0,1-0,5 g/L). Verder moet het CuxAs residu uit de cellen verder verwerkt worden. Hier zijn verschillende processen voor.
1013590 2
Uit de dan zeer zure koper- en arseenvrije oplossing wordt vervolgens nikkelsulfaat gekristalliseerd in verdampers of door onderkoeling. Het ruwe nikkelsulfaatproduct wordt als zodanig verkocht of verder opgewaardeerd bijvoorbeeld voor elektrogalvanische toepassingen. Condensaat en moederloog worden typisch 5 teruggevoerd voor de water- respectievelijk zuurhuishouding van de koperfabriek.
Uiteraard bestaan er tal van varianten op het klassieke proces. Zo zijn er verschillende koperraffinaderijen in de wereld waar arseen d.m.v. vloeistof-vloeistofextractie gescheiden wordt van koper en nikkel. Andere raffinaderijen passen ionenwisseling toe 10 om de concentraties van arseen, antimoon en bismut op peil te houden. Falconbridge in Ontario, Canada, gebruikt een ionenwisselingssysteem juist voor de selectieve verwijdering van zwavelzuur uit de spuistroom. Weer andere fabrieken verwijderen een gedeelte van het koper in oplossing door kristallisatie van kopersulfaat. Ten slotte zijn er maar een paar koperfabrieken in de wereld waar koper en arseen selectief uit de spui 15 geprecipiteerd worden m.b.v. sulfide. In Utah (VS) gebruikt de Kennecott Company 100% H2S-gas, om een scheiding tussen koper en arseen te bereiken. Er worden selectiviteiten van slechts 70 % bereikt.
Behalve de scheiding van koper en arseen uit afgewerkte elektrolyt zijn er ook andere 20 concrete toepassingen waarbij de werkwijze volgens de uitvinding grote voordelen voor wat betreft selectiviteit en ontwaterbaarheid kan hebben, zoals de scheiding van nikkel uit nikkel, kobalt en ijzerhoudende (bio)leach stromen en de terugwinning van zink uit magnesiumbleedstromen uit zinkelektrolyseprocessen. Tevens is deze nieuwe werkwijze toepasbaar voor de productie van kristallijn loodsulfide en kopersulfïde.
25
Precipitatieprocessen voor de scheiding van metalen zijn bekend uit de literatuur.
In US 4,404,071 wordt de precipitatie van kopersulfïde met gebruik van zwavelwaterstof beschreven. In het continue proces wordt de meting van de redoxpotentiaal gebruikt, om de H2S-voeding te controleren. Er worden selectiviteiten 30 tussen koper en arseen van 70 % behaald.
Volgens US 4,432,880 is het mogelijk om door middel van sulfideprecipitatie lagere metaalconcentraties in met metalen verontreinigd water te verkrijgen dan alleen met gebruik van hydroxideprecipitatie.
35 US 5,498,398 stelt de mogelijkheid voor om koper van arseen te scheiden, waarbij in een eerste stap het metaal compleet uit het water wordt neergeslagen. Vervolgens worden As, Sb, en Bi met zuurstof geoxideerd en weer opgelost in het water. Het 1013590 3 overgebleven precipitaat is in hoofdzaak kopersulfide. Vervolgens worden ook arseen, antimoon en bismut weer met zwavelwaterstof geprecipiteerd.
In US 5,616,168 wordt de precipitatie van metaalsulfide door gebruik van zwavel en 5 zwaveldioxide beschreven. Scheiding van metalen wordt bereikt door gecontroleerd zwavel en zwaveldioxide aan de oplossing aan toe te voegen.
Beschrijving van de uitvinding
Een probleem bij selectieve precipitatie van metalen met sulfide is dat door locale 10 oververzadiging, behalve het gewenste metaal ook andere metalen neerslaan, welke niet meer makkelijk in oplossing gaan. Dit probleem kan gedeeltelijk worden opgelost door de menging in de precipitatiestap te verhogen. Echter vooral bij, op basis van hun oplosbaarheid, moeilijk te scheiden metalen is de menging die kan worden bereikt door bijvoorbeeld een roerwerk vaak niet goed voldoende om echt hoge selectiviteiten (>95 15 %) te bereiken. De oplossing van dit probleem is om, in combinatie met een hoge concentratie entmateriaal in de precipitatiestap, het sulfide gecontroleerd langzaam en gelijkmatig verdeeld aan de vloeistof toe te voeren. Dit kan worden bereikt door het H2S in de vorm van een gas in de precipitatiestap toe te voeren, waarbij de H2S concentratie in het gas gecontroleerd laag wordt gehouden en afgestemd op de 20 precipitatiesnelheid in de vloeistof. Hierdoor kan de locale oververzadiging sterk worden geminimaliseerd, waardoor hoge selectiviteiten haalbaar zijn. Ook de ontwaterbaarheid van de hierdoor gevormde kristallijne sulfïdeprecipitaten wordt sterk verbeterd.
25 Het benodigde H2S wordt toegevoegd aan een gasstroom die wordt gerecirculeerd over de precipitatiestap, waarbij de H2S-concentratie is het gas bij voorkeur tussen de 0,5 en 25 % wordt gehouden. Met meer voorkeur wordt de concentratie tussen 1 en 15 vol5 gehouden, en liefst tussen 2 en 10%. Als dragergas kan bijvoorbeeld stikstofgas worden gebruikt. Bij voorkeur wordt het H2S geproduceerd in een bioreactor waar sulfaat, 30 zwavel of een ander geoxideerde zwavelverbinding wordt gereduceerd tot H2S. Voor bacteriën en reactieomstandigheden in een dergelijk proces, zie bijv. WO 97/29055. In dit geval wordt het H2S uit de bioreactor gestript met hetzelfde gas dat als drager voor de precipitatie wordt gebruikt. Als dragergas kan dan ook waterstofgas, dat als elektronendonor voor zwavel/sulfaatreductie wordt gebruikt, of in de bioreactor 3 5 geproduceerd methaan en kooldioxide als dragergas worden gebruikt.
In figuur 1 is het processchema van de sulfideprecipitatie te zien. Het met metaalionen verontreinigde water (1) [bij voorbeeld elektrolyt] wordt in een mixer (MT1) met 10135gπ 4 gerecirculeerd entmateriaal gemengd. Vervolgens wordt dit materiaal in de precipitator (Prec.l) met gecontroleerd verdund H2S gas (7) begast. In de precipitator slaat het metaal selectief neer (b.v. koper). Het effluent (3) wordt in een indikker (Thick. 1) gedeeltelijk ontwaterd. De onderloop van de indikker (4) wordt gedeeltelijk weer als 5 entmateriaal in de mixer (MT1) gestuurd. Het overgebleven materiaal wordt verder ontwaterd in een vastestofMoeistof-scheider (S/Ll). De gewonnen vaste stof (5) heeft een laag vochtgehalte van ongeveer 40 wt-% en bevat een bepaald metaalsulfide (b.v. kopersulfide) met een hoge zuiverheid. De wasvloeistof (6) uit (S/Ll) wordt weer naar de indikker (Thick. 1) terug gestuurd. Uit de overloop (8) van de indikker (Thick. 1) kan 10 door een tweede precipitatiestap een volgend metaal selectief worden verwijderd. Indien nodig wordt de pH in de precipitatiestappen gecontroleerd.
Procesbeheersing'
Om het metaalsulfide selectief neer te kunnen slaan moet de absolute H2S toevoer 15 worden aangepast aan de metaalvracht naar de precipitator. Dit wordt gecontroleerd door de absolute H2S toevoer te sturen op de redoxpotentiaal in de vloeistof.
Een tweede mogelijkheid om de locale oververzadiging in een precipitiestap te minimaliseren, dusdanig dat hoge selectiviteiten en goed ontwaterbare kristallijne 20 neerslagen ontstaan, is om het H2S gecontroleerd langzaam en gelijkmatig in de vloeistof te produceren. In dit geval kan bijvoorbeeld de bioreactor gecombineerd worden met de precipitatieunit. Aan een zeer goed gemengde bioreactor kan een geconcentreerde metaalhoudende stroom worden gevoed, waarbij het metaal in de bioreactor, waarin de metaalsulfide-concentratie hoog wordt gehouden door vaste-25 stofretentie toe te passen, als kristallijn metaalsulfide neerslaat ten gevolge van de productie van sulfide in de bioreactor. Dit is in figuur 2 weergegeven. Deze mogelijkheid is vooral nuttig voor het afscheiden van niet of slecht als sulfide te precipiteren verontreinigende metalen zoals magnesium, waarbij een dergelijk metaal als zij stroom uit de productie-eenheid wordt afgevoerd en het meegekomen 30 geproduceerde metaal, zoals zink, wordt neergeslagen en wordt teruggevoerd naar de productie-eenheid.
Het metaal(sulfaat) houdende water (1) wordt gevoed aan een goed gemengde bioreactor, bijvoorkeur een gasliftloop reactor (Rl), waarin de menging wordt 35 gerealiseerd door gas te recyclen. Eventueel kan een gasvormige elektronendonor voor de biologische reductie stap, in de vorm van H2 (7), worden toegevoerd of een kleine hoeveelheid inert gas, zoals N2 (7), welke kan worden gebruikt om het biologische geproduceerde C02 af te voeren via de gasbleed. (8). Verder wordt entmateriaal (4) 1013590 5 van de indikker gerecirculeerd. Het effluent (2) uit de reactor wordt met behulp van een indikker (Thick.3) ontwaterd. De overloop (3) bevat van sulfaat en metalen gezuiverd water. De onderloop (4) wordt gedeeltelijk gerecirculeerd. De overgebleven onderloop wordt met behulp van een vastestof-vloeistofscheider (S/L3) verdert ontwaterd. Het 5 product (5) is metaalsulfide met ongeveer 40 % vocht. Het waswater (6) uit de vastestof-vloeistofscheider (S/L 3) wordt weer naar de indikker (Thick.3) gestuurd. De bioreactor kan ook met een interne bezinker worden uitgevoerd. In dit geval wordt een kleinere stroom uit de bioreactor naar de indikker gestuurd.
10 Procesbeheersing
Ook in dit geval kan de H2S productie worden geregeld op basis van het redoxsignaal in de vloeistof in de bioreactor. Een andere mogelijkheid is een on-line sulfide meting in de vloeistof- of gasfase.
15 VOORBEELDEN Voorbeeld 1:
Een geroerde-tankreactor van 1L met een synthetisch elektrolytoplossing wordt door een glaspijp gevoed met een H2S houdend (25 vol.-%) gasmengsel. Het effluentgas wordt door een wasfles met natronloog geleid om overmaat H2S op te vangen. Tijdens 20 de precipitatie wordt geen overmaat H2S gemeten. De reactietemperatuur is 60 °C en de druk is 1 bar. De elektrolytoplossing bevat 10.47 g/L koper, 6.75 g/L arseen, 200 g/L zwavelzuur en 60 g/L kopersulfide als entmateriaal. In tabel 1 is te zien, dat koper en arseen simultaan neerslaan. De selectiviteit voor koper bedraagt slechts 50 tot 60 %. De fïltratiesnelheid van het effluent is 313 kg droge stof per m2 en urn·. Röntgen-25 diffractie laat zien, dat het kopersulfide kristallijn is.
Op analoge wijze wordt een geroerde-tankreactor van 1L met daarin een synthetische elektrolytoplossing door een glaspijp gevoed met een H2S houdend (15 vol.-%) gasmengsel. Het effluentgas wordt door een wasfles met natronloog geleid om 30 overmaat H2S op te vangen. Tijdens de precipitatie wordt geen overmaat H2S gemeten. De reactietemperatuur is 60 °C en de druk is 1 bar. De elektrolytoplossing bevat 10.34 g/L koper, 6.85 g/L arseen, 200 g/L zwavelzuur en 60 g/L kopersulfide als entmateriaal. In tabel 2 is te zien, dat er meer koper neer slaat dan arseen. De selectiviteit voor koper bedraagt zo’n 60 -70 %. De fïltratiesnelheid van het effluent is 35 142.5 kg droge stof per m2 en uur. Röntgen-diffractie laat zien, dat het kopersulfide kristallijn is.
Tabel 1: Verandering van de metaalconcentratie met de tijd 101 3590 6
Tijd Cu-winning As-winning Selectiviteit [min] [wt-%] [wt-%] [%] Ö ÖfiÖ iöö 15 4,59 2,71 62,91 30 13,94 6,09 69,58 45 16,90 17,03 49,80 60 28,66 25,91 52,53 90 48,36 40,24 54,58 120 67,41 55,14 55,01 180 97,45 88,20 52,49 240 100,00 87,95 53,21
Tabel 2: Verandering van de metaalconcentratie met de tijd Tijd Cu-winning As-winning Selectiviteit [min] [wt-%] [wt-%] [%] öfiö ÓiÖÖ 0 2,32 0,00 100,00 15 6,11 3,39 64,33 30 14,09 7,23 66,08 45 22,72 10,68 68,02 60 34,78 15,09 69,74 90 46,26 24,65 65,24 120 70,99 36,35 66,14 180 86,06 42,88 66,75 210 92,28 56,70 61,94 240 99,70 70,26 58,66 5 Op analoge wijze wordt een geroerde-tankreactor van 1L met daarin een synthetische elektrolytoplossing door een glaspijp gevoed met een H2S houdend (5 vol.-%) gasmengsel. Het effluentgas wordt door een wasfles met natronloog geleid om overmaat H2S op te vangen. Tijdens de precipitatie wordt geen overmaat H2S gemeten. De reactietemperatuur is 60 °C en de druk is 1 bar. De elektrolytoplossing bevat 9.78 10 g/L koper, 6.09 g/L arseen, 200 g/L zwavelzuur en 60 g/L kopersulfide als entmateriaal. In tabel 3 is te zien, dat alleen koper neer slaat. Een zeer hoge selectiviteit voor koper wordt bereikt (> 95%). De fïltratiesnelheid van het effluent is 173.15 kg droge stof per m2 en uur. Röntgen-diffractie laat zien, dat het kopersulfide kristallijn is.
1013590 7
Tabel 3: Verandering van de metaalconcentratie met de tijd Tijd Cu-winning As-winning Selectiviteit [min] [wt-%] [wt-%] [%] 0 0,00 0,00 60 5,26 0,00 100,00 120 10,75 0,00 100,00 180 22,24 0,00 100,00 240 28,71 2,20 92,89 300 37,70 0,61 98,41 360 52,97 0,00 100,00
In figuur 3 zijn de resultaten van de drie testen nog eens weergegeven. Te zien is dat bij lagere H2S concentraties in het gas de selectiviteit voor koperprecipitatie sterk 5 toeneemt.
Voorbeeld 2:
Behandeling van magnesium-bleed uit het zink elektrolyseproces.
10 25 liter per uur magnesiumbleed met daarin 150 g/L zink, 16 g/L magnesium en 280 g/L sulfaat werd rechtstreeks aan een sulfaatreducerende bioreactor gevoed. De bioreactor bestond uit een 5 m3 gasliftloopreactor met een waterstof gasrecycle voor de menging en overdracht van waterstof gas naar de bacteriën t.b.v. het sulfaatreductieproces. In de bioreactor werd tot 150 g/1 ZnS opgehoopt en het effluent 15 van de bioreactor bevatte 50 mg/1 sulfide, <0.1 mg/1 zink en <100 mg/1 sulfaat. Het geproduceerde ZnS was kristallijn en kon eenvoudig worden ontwaterd tot een pasta met 20 tot 40 % vocht.
1013590

Claims (9)

1. Werkwijze voor het precipiteren van metalen als metaalsulfïde uit een geconcentreerde oplossing met behulp van sulfide in een precipitator, met het kenmerk 5 dat men (a) het sulfide aan de oplossing in de precipitator toevoegt uit een verdunde H2S gasstroom die maximaal 25vol% H2S bevat, dan wel het sulfide in de precipitator doet ontstaan door biologische reductie van sulfaat, (b) entmateriaal van het te precipiteren metaalsulfïde toevoegt in een concentratie van ten minste 5 g/1., en (c) de precipitator goed mengt. 10
2. Werkwijze volgens conclusie 1, met het kenmerk dat men (b) entmateriaal van het te precipiteren metaalsulfïde toevoegt in een concentratie van ten minste 10 g/1.
3. Werkwijze volgens conclusie 2, met het kenmerk dat men (a) het sulfide toevoegt 15 uit een verdunde H2S gasstoom die 1 -15 % H2S bevat.
4. Werkwijze volgens een der conclusies 1-3, met het kenmerk dat men (a) het sulfide zodanig toevoegt, dat de concentratie aan opgelost sulfide beneden 10 mg/1 blijft. 20
5. Werkwijze volgens een der conclusies 1-4, met het kenmerk dat de metaaloplossing voortkomt uit een elektrowinningsproces.
6. Werkwijze volgens conclusie 5, met het kenmerk dat men kopersulfide selectief 25 precipiteert.
7. Werkwijze volgens conclusie 1, met het kenmerk dat men (a) het sulfide doet ontstaan door biologische reductie van sulfaat en de metaaloplossing toevoegt met een metaalconcentratie van ten minste 2 g/1, bij voorkeur meer dan 5 g/1, in het bijzonder 30 meer dan 10 g/1.
8. Werkwijze volgens een der conclusies 1-7, met het kenmerk dat men de pH zodanig instelt dat het te precipiteren metaalsulfïde neerslaat, maar een metaalsulfïde dat bij dezelfde pH een hogere oplosbaarheid heeft niet neerslaat. 35
9. Werkwijze volgens een der conclusies 1-8, met het kenmerk dat men het metaalsulfïde in kristallijne vorm precipiteert. 1 01 3590
NL1013590A 1999-11-17 1999-11-17 Werkwijze voor de selectieve verwijdering van metalen uit geconcentreerde metaalhoudende stromen. NL1013590C2 (nl)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL1013590A NL1013590C2 (nl) 1999-11-17 1999-11-17 Werkwijze voor de selectieve verwijdering van metalen uit geconcentreerde metaalhoudende stromen.
AU25568/01A AU2556801A (en) 1999-11-17 2000-11-17 Method for the selective removal of metals from concentrated metal-containing streams
PCT/NL2000/000841 WO2001036333A1 (en) 1999-11-17 2000-11-17 Method for the selective removal of metals from concentrated metal-containing streams

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1013590A NL1013590C2 (nl) 1999-11-17 1999-11-17 Werkwijze voor de selectieve verwijdering van metalen uit geconcentreerde metaalhoudende stromen.
NL1013590 1999-11-17

Publications (1)

Publication Number Publication Date
NL1013590C2 true NL1013590C2 (nl) 2001-05-18

Family

ID=19770266

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1013590A NL1013590C2 (nl) 1999-11-17 1999-11-17 Werkwijze voor de selectieve verwijdering van metalen uit geconcentreerde metaalhoudende stromen.

Country Status (3)

Country Link
AU (1) AU2556801A (nl)
NL (1) NL1013590C2 (nl)
WO (1) WO2001036333A1 (nl)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722840B2 (en) * 2002-11-15 2010-05-25 Placer Dome Technical Services Limited Method for thiosulfate leaching of precious metal-containing materials
EP1433860A1 (en) * 2002-12-23 2004-06-30 Paques B.V. Process for regenerating thiosulphate from a spent thiosulphate gold leachant
ATE356786T1 (de) * 2003-12-29 2007-04-15 Univ Kassel Verfahren zur entfernung von schwermetallionen aus hochkonzentrierten schwermetallhaltigen l sungen
BR112013014005B1 (pt) 2010-12-07 2020-01-28 Barrick Gold Corp método de lixiviação de ouro e/ou prata
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
AR086933A1 (es) 2011-06-15 2014-01-29 Barrick Gold Corp Metodo para recuperar metales preciosos y cobre de soluciones de lixiviado
US10161016B2 (en) 2013-05-29 2018-12-25 Barrick Gold Corporation Method for pre-treatment of gold-bearing oxide ores
JP6495316B2 (ja) 2014-03-07 2019-04-03 セキュア ナチュラル リソーシズ エルエルシーSecure Natural Resources Llc 極めて優れたヒ素除去特性を備える酸化セリウム(iv)
PE20211512A1 (es) 2019-01-21 2021-08-11 Barrick Gold Corp Metodo para la lixiviacion con tiosulfato catalizado con carbon de materiales que contienen oro

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1468988A (en) * 1923-09-25 Hydeqgen sulphide in the separa
DE1467316A1 (de) * 1963-02-25 1969-01-09 Akad Wissenschaften Ddr Verfahren zur Herstellung von wasserunloeslichen Sulfiden in kristallisierter Form durch Umsetzung mineralsaurer Salzloesungen mit Schwefelwasserstoff
US4522723A (en) * 1984-06-01 1985-06-11 Kerr-Mcgee Corporation Process for the removal and recovery of heavy metals from aqueous solutions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1468988A (en) * 1923-09-25 Hydeqgen sulphide in the separa
DE1467316A1 (de) * 1963-02-25 1969-01-09 Akad Wissenschaften Ddr Verfahren zur Herstellung von wasserunloeslichen Sulfiden in kristallisierter Form durch Umsetzung mineralsaurer Salzloesungen mit Schwefelwasserstoff
US4522723A (en) * 1984-06-01 1985-06-11 Kerr-Mcgee Corporation Process for the removal and recovery of heavy metals from aqueous solutions

Also Published As

Publication number Publication date
AU2556801A (en) 2001-05-30
WO2001036333A1 (en) 2001-05-25

Similar Documents

Publication Publication Date Title
CA2138777C (en) Production of metals from minerals
US4033763A (en) Process for recovery of selected metal values from waste waters
CN104039991B (zh) 从混合氧化型材料中回收铅
CA2454821C (en) Process for direct electrowinning of copper
BG62290B1 (bg) Хидрометалургично извличане на метал с помощта на хлорид
US9630844B2 (en) Hydrometallurgical process for the recovery of tellurium from high lead bearing copper refinery anode slime
CA1119817A (en) Method for the recovery of metallic copper
NL1013590C2 (nl) Werkwijze voor de selectieve verwijdering van metalen uit geconcentreerde metaalhoudende stromen.
US9175411B2 (en) Gold and silver extraction technology
EA020759B1 (ru) Способ переработки никельсодержащего сырья
AU2014328409A1 (en) Process for preparing a ferric nitrate reagent from copper raffinate solution
NO772810L (no) Fremgangsm}te for gjenvinning av sink og mangandioksyd
US3961028A (en) Method of producing cuprous sulfate and bisulfate solutions
KR19980702701A (ko) 구리 매트의 전해 채취 방법
NO342953B1 (no) Fremgangsmåte for fremstilling av elektrolyttisk mangan fra avfall fra fremstilling av ferrolegeringer
NO139096B (no) Fremgangsmaate til fremstilling av hoeyrent elektrolyttkobber ved reduksjonselektrolyse
WO2016027158A1 (en) Leaching of minerals
US4632738A (en) Hydrometallurgical copper process
US4444666A (en) Method of removing antimony from an antimony-containing copper electrolyte
US3966890A (en) Method of producing solutions containing cuprous ions
AU1297700A (en) Process for the production of hydrogen sulphide from elemental sulphur and use thereof in heavy metal recovery
EP0654547A1 (en) Electrochemical refining of metals
EP0214324B1 (en) Method for separation and leaching of the valuable metals in metal sulphide materials
WO2005012582A1 (en) Improved hydrometallurgical processing of manganese containing materials
AU734584B2 (en) Production of electrolytic copper from dilute solutions contaminated by other metals

Legal Events

Date Code Title Description
PD2B A search report has been drawn up
VD1 Lapsed due to non-payment of the annual fee

Effective date: 20050601