MD784Z - Process for biohydrogen cleaning from impurity gases - Google Patents

Process for biohydrogen cleaning from impurity gases Download PDF

Info

Publication number
MD784Z
MD784Z MDS20130199A MDS20130199A MD784Z MD 784 Z MD784 Z MD 784Z MD S20130199 A MDS20130199 A MD S20130199A MD S20130199 A MDS20130199 A MD S20130199A MD 784 Z MD784 Z MD 784Z
Authority
MD
Moldova
Prior art keywords
biohydrogen
solution
purification
regeneration
conditions
Prior art date
Application number
MDS20130199A
Other languages
Moldavian (mo)
Romanian (ro)
Russian (ru)
Inventor
Виктор КОВАЛЁВ
Ольга КОВАЛЁВА
Валентин БОБЕЙКЭ
Георге ДУКА
Владимир НЕННО
Original Assignee
Государственный Университет Молд0
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственный Университет Молд0 filed Critical Государственный Университет Молд0
Priority to MDS20130199A priority Critical patent/MD784Z/en
Publication of MD784Y publication Critical patent/MD784Y/en
Publication of MD784Z publication Critical patent/MD784Z/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к способу очистки биоводорода от примесных газов.Способ, согласно изобретению, включает обработку биоводорода методом абсорбции в растворе содержащем моноэтаноламин и формиатно-аммиачный комплекс меди(I). Процесс проводят при температуре 10…20ºС и давлении 5…10 атм.Технический результат при применении данного способа состоит в повышении эффективности и упрощении процесса очистки биоводорода от примесных газов - диоксида углерода, монооксида углерода и сероводорода.The invention relates to a method for purification of biohydrogen from impurity gases. The method according to the invention includes the treatment of biohydrogen by absorption in a solution containing monoethanolamine and formate-ammonium complex of copper (I). The process is carried out at a temperature of 10 ... 20 ° C and a pressure of 5 ... 10 atm. The technical result when using this method is to increase the efficiency and simplify the process of cleaning biohydrogen from impurity gases - carbon dioxide, carbon monoxide and hydrogen sulfide.

Description

Invenţia se referă la un procedeu de purificare a biohidrogenului de impurităţi gazoase. The invention relates to a process for purifying biohydrogen from gaseous impurities.

Unul dintre mecanismele de formare a hidrogenului în condiţii anaerobe de fermentare a substratului organic în apele uzate este datorat faptului că la etapa iniţială bacteriile elimină monoxid de carbon (CO), care apoi, ca urmare a reacţiei de conversie, interacţionează cu moleculele de apă cu formarea de hidrogen molecular prin reacţia: One of the mechanisms of hydrogen formation under anaerobic conditions of fermentation of organic substrate in wastewater is due to the fact that at the initial stage the bacteria eliminate carbon monoxide (CO), which then, as a result of the conversion reaction, interacts with water molecules to form molecular hydrogen through the reaction:

СО + Н2О → СО2 + Н2. СО + Н2О → СО2 + Н2.

Concomitent, în condiţii anaerobe în prezenţa bacteriilor de sulf are loc reducerea ionilor de SO4 2-, care practic întotdeauna sunt prezenţi în apă, cu formarea de hidrogen sulfurat (H2S). Datorită acestor procese biogazul care se formează conţine până la 70% biohidrogen şi până la 30% impurităţi gazoase, principalele dintre ele fiind: CO2, CO şi mici cantităţi de H2S. Acestea reduc potenţialul energetic al biohidrogenului obţinut prin metoda fermentării anaerobe a substratului organic. Totodată hidrogenul sulfurat este coroziv pentru metale, provocând degradarea accelerată a echipamentului şi mecanismelor, în condiţiile de funcţionare. Prin urmare, biohidrogenul obţinut necesită o purificare prin separarea impurităţilor gazoase, înainte de utilizarea acestuia pe scară largă ca sursă energetică ecologic pură în sistemele de producere a energiei din surse alternative. At the same time, under anaerobic conditions in the presence of sulfur bacteria, the reduction of SO4 2- ions, which are practically always present in water, occurs with the formation of hydrogen sulfide (H2S). Due to these processes, the biogas that is formed contains up to 70% biohydrogen and up to 30% gaseous impurities, the main ones being: CO2, CO and small amounts of H2S. These reduce the energy potential of biohydrogen obtained by the method of anaerobic fermentation of organic substrate. At the same time, hydrogen sulfide is corrosive to metals, causing accelerated degradation of equipment and mechanisms, under operating conditions. Therefore, the obtained biohydrogen requires purification by separating gaseous impurities, before its widespread use as an ecologically pure energy source in energy production systems from alternative sources.

Este cunoscut un procedeu de separare a monoxidului de carbon dintr-un amestec de gaze prin metoda absorbţiei într-o soluţie a sării de cupru monovalent şi bivalent cu o componentă alcalină, totodată în calitate de componentă alcalină se utilizează etanolamina. Procesul de absorbţie se efectuează la temperatura de 0…30ºC şi presiunea de 1…50 atm., iar procesul de regenerare a soluţiei se efectuează la temperatura de 30…70ºC şi presiunea de 0,1…2 atm. [1]. A process for separating carbon monoxide from a gas mixture by absorption in a solution of monovalent and bivalent copper salt with an alkaline component is known, while ethanolamine is used as the alkaline component. The absorption process is carried out at a temperature of 0…30ºC and a pressure of 1…50 atm., and the regeneration process of the solution is carried out at a temperature of 30…70ºC and a pressure of 0.1…2 atm. [1].

Se mai cunoaşte un procedeu de separare simultană a dioxidului de carbon şi a hidrogenului sulfurat din biogaz prin absorbţie în soluţia de monoetanolamină, precum şi regenerarea acestei soluţii [2]. A process for simultaneous separation of carbon dioxide and hydrogen sulfide from biogas by absorption in monoethanolamine solution, as well as regeneration of this solution, is also known [2].

Dezavantajele acestor procedee constau în aceea că ele sunt complicate din punct de vedere tehnologic şi nu asigură un grad înalt de epurare a biohidrogenului. The disadvantages of these processes are that they are technologically complicated and do not ensure a high degree of biohydrogen purification.

În calitate de cea mai apropiată soluţie serveşte procedeul de separare a dioxidului de carbon şi monoxidului de carbon dintr-un amestec de gaze (H2, CO2, CO, N2, CH4) realizat în două etape, prima fiind separarea dioxidului de carbon prin metoda absorbţiei în soluţie de etanolamină, şi cea de-a doua - separarea monoxidului de carbon prin metoda absorbţiei în soluţia complexului formiat sau acetat de cupru(I) amoniacal, după care se efectuează regenerarea acestor soluţii [3]. Acest proces se realizează ţinându-se cont de particularităţile producerii oxidului de carbon şi a gazului inert din fracţiuni rezultate de la distilarea petrolului. The closest solution is the process of separating carbon dioxide and carbon monoxide from a gas mixture (H2, CO2, CO, N2, CH4) carried out in two stages, the first being the separation of carbon dioxide by the absorption method in ethanolamine solution, and the second - the separation of carbon monoxide by the absorption method in the solution of the formate complex or copper(I) acetate ammoniacal, after which the regeneration of these solutions is carried out [3]. This process is carried out taking into account the peculiarities of the production of carbon monoxide and inert gas from fractions resulting from oil distillation.

Dezavantajele procedeului constau în aceea că este ineficient, deoarece se realizează în două etape, prima fiind separarea dioxidului de carbon, şi cea de-a doua - separarea monoxidului de carbon, şi nu asigură un grad înalt de epurare a biohidrogenului, iar regimurile de regenerare a soluţiilor de absorbţie uzate sunt diferite. The disadvantages of the process are that it is inefficient, because it is carried out in two stages, the first being the separation of carbon dioxide, and the second - the separation of carbon monoxide, and it does not ensure a high degree of biohydrogen purification, and the regeneration regimes of the used absorption solutions are different.

Problema pe care o rezolvă invenţia constă în majorarea eficacităţii şi simplificarea procesului de purificare a biohidrogenului de impurităţi gazoase, care se formează în condiţii anaerobe la fermentarea biomasei în prezenţa bioadaosurilor stimulatoare. The problem solved by the invention consists in increasing the effectiveness and simplifying the process of purifying biohydrogen from gaseous impurities, which are formed under anaerobic conditions during biomass fermentation in the presence of stimulating bioadditives.

Problema se rezolvă prin aceea că procedeul de purificare a biohidrogenului de impurităţi gazoase include tratarea acestuia prin metoda absorbţiei cu soluţie ce conţine monoetanolamină şi complexul formiato-amoniacal de cupru(I), în următorul raport al componentelor, % mas.: The problem is solved by the fact that the process of purifying biohydrogen from gaseous impurities includes its treatment by the absorption method with a solution containing monoethanolamine and the formate-ammonia complex of copper(I), in the following ratio of components, % mass:

monoetanolamină 20…25 complex formiato-amoniacal de cupru(I) 3…5,monoethanolamine 20…25 formate-ammonia complex of copper(I) 3…5,

procesul se efectuează la o temperatură de 10…20ºC şi o presiune de 5…10 atm. the process is carried out at a temperature of 10…20ºC and a pressure of 5…10 atm.

Rezultatul tehnic al aplicării acestui procedeu constă în majorarea eficacităţii şi simplificarea procesului de purificare a biohidrogenului de impurităţile gazoase - dioxidul de carbon, monoxidul de carbon şi hidrogenul sulfurat. The technical result of applying this process consists in increasing the effectiveness and simplifying the process of purifying biohydrogen from gaseous impurities - carbon dioxide, carbon monoxide and hydrogen sulfide.

Avantajele sunt asigurate prin desfăşurarea procedeului într-o singură etapă, ceea ce duce la simplificarea procesului de epurare a biohidrogenului. Diminuarea cheltuielilor energetice se asigură prin temperaturi mai mici, datorită vidării soluţiei în timpul efectuării procesului de regenerare a soluţiilor. Totodată se obţine apropierea regimurilor de temperatură pentru epurarea gazelor, precum şi pentru regenerarea soluţiilor, ceea ce permite de a realiza aceste procese continuu. The advantages are provided by carrying out the process in a single stage, which leads to the simplification of the biohydrogen purification process. The reduction of energy costs is ensured by lower temperatures, due to the evacuation of the solution during the solution regeneration process. At the same time, the approximation of the temperature regimes for gas purification, as well as for solution regeneration, is achieved, which allows these processes to be carried out continuously.

Majorarea eficacităţii procesului de epurare se obţine datorită faptului că componentele soluţiei intră în reacţie simultan cu impurităţile gazoase, formând compuşi intermediari, şi se atinge un nivel de epurare mai mare. The increase in the effectiveness of the purification process is achieved due to the fact that the solution components react simultaneously with the gaseous impurities, forming intermediate compounds, and a higher level of purification is achieved.

Procesele de regenerare sunt izotermice şi decurg cu majorarea volumului datorită gazelor, care se elimină. De aceea vidarea nu numai că micşorează temperatura de fierbere a soluţiilor de săruri, dar şi facilitează accelerarea reacţiilor reversibile de regenerare. Datorită majorării vitezei reacţiei reversibile are loc un proces continuu de îndepărtare la interfaţa lichid-gaz a produselor reacţiei - gazelor ce se degajă din volumul de reacţie, ceea ce diminuează presiunea parţială a acestora deasupra fazei lichide. Toate acestea în ansamblu facilitează majorarea eficacităţii reacţiilor de regenerare combinate. The regeneration processes are isothermal and proceed with an increase in volume due to gases, which are eliminated. Therefore, vacuuming not only lowers the boiling point of salt solutions, but also facilitates the acceleration of reversible regeneration reactions. Due to the increase in the rate of the reversible reaction, a continuous process of removal of the reaction products - gases released from the reaction volume - from the liquid-gas interface occurs, which reduces their partial pressure above the liquid phase. All this together facilitates the increase in the efficiency of combined regeneration reactions.

Totodată, toate reacţiile care au loc la absorbţia impurităţilor gazoase sunt reversibile, la modificarea condiţiilor acestor reacţii - majorarea nesemnificativă a temperaturii şi diminuarea presiunii prin vidare, acestea decurg în direcţie opusă şi compuşii complecşi formaţi se transformă în formele moleculare iniţiale, degajând gazele absorbite. Drept urmare, soluţia regenerată poate fi utilizată multiplu în procesele de epurare a biohidrogenului. At the same time, all reactions that take place during the absorption of gaseous impurities are reversible, when changing the conditions of these reactions - insignificant increase in temperature and decrease in pressure by vacuum, they proceed in the opposite direction and the complex compounds formed are transformed into the initial molecular forms, releasing the absorbed gases. As a result, the regenerated solution can be used multiple times in biohydrogen purification processes.

În procesul de purificare a biohidrogenului de CO2 în condiţiile propuse decurg următoarele reacţii: In the process of purifying biohydrogen from CO2 under the proposed conditions, the following reactions occur:

2RNH2 + CO2 + H2O ↔ (RHNH2)2CO3 2RNH2 + CO2 + H2O ↔ (RHNH2)2CO3

2R2NH + H2O + CO2 ↔(R2HNH)2CO3 2R2NH + H2O + CO2 ↔(R2HNH)2CO3

(RHNH2)2CO3 + H2O + CO2 ↔2RHNH2HCO3 (RHNH2)2CO3 + H2O + CO2 ↔2RHNH2HCO3

(R2HNH)2CO3 + H2O + CO2 ↔ 2R2NH2HCO3, (R2HNH)2CO3 + H2O + CO2 ↔ 2R2NH2HCO3,

unde R este CH2CH2(OH). where R is CH2CH2(OH).

Astfel, dioxidul de carbon intră într-un compus cu monoetanolamina formând carbonaţi şi bicarbonaţi, iar hidrogenul trece prin stratul de etanolamină şi într-o formă purificată este direcţionat spre utilizare. Thus, carbon dioxide enters into a compound with monoethanolamine, forming carbonates and bicarbonates, and hydrogen passes through the ethanolamine layer and in a purified form is directed for use.

Interacţiunea monoetanolaminei cu hidrogenul sulfurat, conţinutul căruia în biohidrogen, în aceste condiţii, este substanţial mai mic decât de dioxid de carbon, decurge conform schemei: The interaction of monoethanolamine with hydrogen sulfide, the content of which in biohydrogen, under these conditions, is substantially lower than that of carbon dioxide, proceeds according to the scheme:

2RNH2+ H2S ↔ (RHNH2)2S 2RNH2+ H2S ↔ (RHNH2)2S

2R2NH+ H2S ↔ (R2NH2)2S. 2R2NH+ H2S ↔ (R2NH2)2S.

Monoxidul de carbon (CO) reacţionează selectiv cu complexul formiato-amoniacal de cupru(I), sau similar cu complexul cupru-etanolaminic, care se poate forma ca urmare a schimbului de liganzi în soluţie, conform reacţiei: Carbon monoxide (CO) reacts selectively with the formate-ammonia complex of copper(I), or similarly with the copper-ethanolamine complex, which can form as a result of ligand exchange in solution, according to the reaction:

[Cu(NH4)n]OOCH + CO ↔ [Cu(NH4)nCO]OOCH + NH3. [Cu(NH4)n]OOCH + CO ↔ [Cu(NH4)nCO]OOCH + NH3.

Amoniacul liber produs în urma acestor reacţii în condiţiile menţionate reacţionează cu dioxidul de carbon conform reacţiei: 2NH3 + CO2 + H2O → (NH4)2CO3, legându-l în carbonat de amoniu. Toate reacţiile prezentate cu monoetanolamina şi complexul formiato-amoniacal de cupru sunt preponderent exoterme, decurgând cu micşorarea volumului. De aceea scăderea temperaturii deplasează echilibrul acestor reacţii spre dreapta şi procesele de absorbţie a gazelor în soluţie se efectuează la temperatura optimă de 10…20°C şi presiunea de 5…10 atm. The free ammonia produced as a result of these reactions under the mentioned conditions reacts with carbon dioxide according to the reaction: 2NH3 + CO2 + H2O → (NH4)2CO3, binding it into ammonium carbonate. All the reactions presented with monoethanolamine and the formate-ammonia complex of copper are predominantly exothermic, proceeding with a decrease in volume. Therefore, the decrease in temperature shifts the equilibrium of these reactions to the right and the processes of absorption of gases in solution are carried out at the optimum temperature of 10…20°C and pressure of 5…10 atm.

Pe măsura saturării volumului de absorbţie şi, corespunzător, reducerii capacităţii de absorbţie a soluţiei, aceasta poate fi supusă regenerării, care se poate realiza prin vidarea soluţiei până la 75…150 mm Hg şi încălzire până la temperatura de 50…80°C, cu eliminarea inversă a CO2, CO, H2S, după care soluţia poate fi reutilizată la procesul de purificare a biohidrogenului. As the absorption volume is saturated and, accordingly, the absorption capacity of the solution is reduced, it can be subjected to regeneration, which can be achieved by vacuuming the solution to 75…150 mm Hg and heating to a temperature of 50…80°C, with the reverse elimination of CO2, CO, H2S, after which the solution can be reused in the biohydrogen purification process.

Astfel, toate procesele de purificare a biohidrogenului de impurităţile gazoase se desfăşoară concomitent, capacitatea de absorbţie a componentelor din soluţie este destul de mare, procesele de absorbţie şi desorbţie a gazelor la descompunerea sărurilor complexe în procesul de regenerare a acestor soluţii, în condiţiile indicate, decurg uşor şi rapid, ceea ce asigură simplificarea procesului de purificare a biohidrogenului de impurităţi şi facilitează majorarea eficacităţii acestuia datorită purificării complexe şi asigurării purităţii necesare a produsului final. Thus, all processes of purification of biohydrogen from gaseous impurities take place simultaneously, the absorption capacity of the components in the solution is quite high, the processes of absorption and desorption of gases during the decomposition of complex salts in the regeneration process of these solutions, under the indicated conditions, proceed easily and quickly, which ensures the simplification of the process of purification of biohydrogen from impurities and facilitates the increase of its effectiveness due to complex purification and ensuring the necessary purity of the final product.

Exemplu de realizare a invenţiei Example of embodiment of the invention

În scopul încercării procedeului de purificare, biohidrogenul a fost obţinut prin fermentarea anaerobă a borhotului, realizată în condiţii mezofile prin adăugarea microadaosului de gipsogenină introdusă în cantitate de 1·10-3% masă, care posedă proprietăţi stimulatorii la degajarea biohidrogenului. For the purpose of testing the purification process, biohydrogen was obtained through anaerobic fermentation of the wort, carried out under mesophilic conditions by adding the microaddition of gypsogenin introduced in an amount of 1·10-3% by mass, which possesses stimulating properties for the release of biohydrogen.

Biohidrogenul a fost introdus în absorberul de laborator prin barbotare printr-un strat de soluţie cu volumul de 0,1 l cu următorul conţinut, în % mas.: The biohydrogen was introduced into the laboratory absorber by bubbling through a layer of solution with a volume of 0.1 l with the following content, in wt.%:

monoetanolamină 25 complex formiato-amoniacal de cupru(I) 3,monoethanolamine 25 formate-ammonia complex of copper(I) 3,

la temperatura de 15°C. at a temperature of 15°C.

Prin metoda cromatografiei cu gaz s-a evaluat cantitatea de dioxid de carbon (СО2), hidrogen sulfurat (H2S), monoxid de carbon (CO) în componenţa biohidrogenului până şi după purificare, şi capacitatea de absorbţie a soluţiei după CO2 ca impuritate gazoasă principală. Rezultatele experimentelor privind purificarea biohidrogenului sunt prezentate în tabelul 1. The amount of carbon dioxide (CO2), hydrogen sulfide (H2S), carbon monoxide (CO) in the composition of biohydrogen before and after purification, and the absorption capacity of the solution for CO2 as the main gaseous impurity were evaluated by gas chromatography. The results of the experiments on the purification of biohydrogen are presented in Table 1.

Tabelul 1 Table 1

Nr. d/o Denumirea gazelor Conţinutul în biogazul iniţial, % După procedeul de purificare propus După purificarea în condiţiile cunoscute Conţinutul rezidual, % Gradul de purificare, % Conţinutul rezidual, % Gradul de purificare, % 1 Dioxid de carbon (СО2) 29,4 0,5 98,25 1,65 94,9 2 Hidrogen sulfurat (H2S) 0,42 0,02 95,7 0,07 83,3 3 Monoxid de carbon (СО) 0,32 0,03 93,63 0,32 0 4 Biohidrogen (H2) 69,8 98,5 96,8 No. d/o Name of gases Content in the initial biogas, % After the proposed purification process After purification under known conditions Residual content, % Degree of purification, % Residual content, % Degree of purification, % 1 Carbon dioxide (СО2) 29.4 0.5 98.25 1.65 94.9 2 Hydrogen sulfide (H2S) 0.42 0.02 95.7 0.07 83.3 3 Carbon monoxide (СО) 0.32 0.03 93.63 0.32 0 4 Biohydrogen (H2) 69.8 98.5 96.8

Capacitatea de absorbţie a soluţiei a fost evaluată după numărul de volume ale amestecului de gaze absorbite de un volum de soluţie. După saturarea soluţiei cu impurităţi gazoase s-a efectuat regenerarea acesteia în acelaşi absorber la încălzirea soluţiei până la 60°C, iar vidarea s-a realizat utilizând o pompă cu jet de apă, menţinând în acelaşi timp o presiune remanentă de 100 mm Hg. Eficienţa regenerării a fost determinată după volumul gazelor eliminate evaluat în timp, stabilit prin metoda volumetrică comparativă prin colectarea într-un recipient deasupra apei. Rezultatele experimentale sunt prezentate în tabelul 2. The absorption capacity of the solution was evaluated by the number of volumes of the gas mixture absorbed by a volume of solution. After saturation of the solution with gaseous impurities, its regeneration was carried out in the same absorber by heating the solution to 60°C, and the vacuum was performed using a water jet pump, while maintaining a residual pressure of 100 mm Hg. The efficiency of the regeneration was determined by the volume of gases removed evaluated over time, established by the comparative volumetric method by collecting in a container above water. The experimental results are presented in Table 2.

Tabelul 2 Table 2

Nr. d/o Condiţiile Condiţiile regenerării soluţiei Volumul gazelor la 1 volum de soluţie Temperatura, °С Presiunea, mm Hg Numărul volumelor de gaze absorbite în soluţia saturată Numărul volumelor de gaze eliminate la regenerare 1 Condiţiile propuse 60 100 16 15,2 2 Condiţiile cunoscute 105 atm. 16 13,7No. d/o Conditions Conditions for solution regeneration Volume of gases per 1 volume of solution Temperature, °С Pressure, mm Hg Number of volumes of gases absorbed in saturated solution Number of volumes of gases removed during regeneration 1 Proposed conditions 60 100 16 15.2 2 Known conditions 105 atm. 16 13.7

Astfel, după cum rezultă din datele obţinute, purificarea biohidrogenului din biogaz de impurităţi de CO2 şi H2S în condiţiile propuse este mai eficientă cu 3,35% şi 12,5%, respectiv, faţă de condiţiile cunoscute. În acelaşi timp, dacă în cazul condiţiilor cunoscute îndepărtarea CO nu este asigurată în totalitate, atunci în condiţiile propuse gradul de purificare de acest gaz atinge 93,63% masă de la conţinutul iniţial al acestuia în biogaz. Astfel, gradul obţinut de puritate a biohidrogenului este în limitele necesare pentru aplicarea ca sursă energetică ecologică în producţia de energie din surse alternative netradiţionale. Corespunzător, indicii tehnologici de regenerare a soluţiilor uzate sunt mai mari faţă de soluţiile cunoscute. În aşa mod se asigură simplificarea procesului de purificare a biohidrogenului de impurităţi gazoase, creşte eficacitatea acestuia datorită purificării complexe şi asigurării purităţii necesare a produsului final. Thus, as follows from the obtained data, the purification of biohydrogen from biogas from CO2 and H2S impurities under the proposed conditions is more efficient by 3.35% and 12.5%, respectively, compared to the known conditions. At the same time, if under the known conditions the removal of CO is not fully ensured, then under the proposed conditions the degree of purification of this gas reaches 93.63% mass from its initial content in biogas. Thus, the obtained degree of purity of biohydrogen is within the limits necessary for application as an ecological energy source in the production of energy from alternative non-traditional sources. Accordingly, the technological indices of regeneration of spent solutions are higher compared to the known solutions. In this way, the simplification of the process of purification of biohydrogen from gaseous impurities is ensured, its effectiveness increases due to complex purification and ensuring the necessary purity of the final product.

1. GB 886338 A 1962.01.03 1. GB 886338 A 1962.01.03

2. Tippayawong N., Thanompongchart P. Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy, 2010, p. 1-5 (regăsit în Internet la 2013.10.01 URL:< http://syreen.gov.sy/archive/docs/File/Articles/from%20dr.abd%20alrhman%20alchyah/book%20for%20biogas/biogas13.pdf>) 2. Tippayawong N., Thanompongchart P. Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy, 2010, p. 1-5 (found on the Internet at 2013.10.01 URL:< http://syreen.gov.sy/archive/docs/File/Articles/from%20dr.abd%20alrhman%20alchyah/book%20for%20biogas/biogas13.pdf>)

3. GB 1363756 A 1974.08.14 3. GB 1363756 A 1974.08.14

Claims (1)

Procedeu de purificare a biohidrogenului de impurităţi gazoase, care include tratarea acestuia prin metoda absorbţiei cu soluţie ce conţine monoetanolamină şi complexul formiato-amoniacal de cupru(I), în următorul raport al componentelor, % mas.:Process for purifying biohydrogen from gaseous impurities, which includes treating it by the absorption method with a solution containing monoethanolamine and the formate-ammonia complex of copper(I), in the following ratio of components, % mass: monoetanolamină 20…25 complex formiato-amoniacal de cupru(I) 3…5, procesul se efectuează la o temperatură de 10…20ºC şi o presiune de 5…10 atm.monoethanolamine 20…25 formate-ammonia complex of copper(I) 3…5, the process is carried out at a temperature of 10…20ºC and a pressure of 5…10 atm.
MDS20130199A 2012-03-29 2012-03-29 Process for biohydrogen cleaning from impurity gases MD784Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20130199A MD784Z (en) 2012-03-29 2012-03-29 Process for biohydrogen cleaning from impurity gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20130199A MD784Z (en) 2012-03-29 2012-03-29 Process for biohydrogen cleaning from impurity gases

Publications (2)

Publication Number Publication Date
MD784Y MD784Y (en) 2014-06-30
MD784Z true MD784Z (en) 2015-01-31

Family

ID=51022560

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20130199A MD784Z (en) 2012-03-29 2012-03-29 Process for biohydrogen cleaning from impurity gases

Country Status (1)

Country Link
MD (1) MD784Z (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191409271A (en) * 1914-04-14 1915-07-15 James Yate Johnson Improvements in Effecting the Removal of Carbon Monoxide from Gas Mixtures.
GB370289A (en) * 1930-08-30 1932-04-07 Humphreys & Glasgow Ltd Improvements in the production of hydrogen
GB643431A (en) * 1948-09-04 1950-09-20 Power Gas Ltd Process for the absorption of carbon monoxide
GB886338A (en) * 1958-02-17 1962-01-03 Hoechst Ag Process for separating carbon monoxide from gaseous mixtures
GB1102541A (en) * 1963-12-10 1968-02-07 Ici Ltd Copper salt solution
GB1259215A (en) * 1968-12-09 1972-01-05
GB1363756A (en) * 1970-10-19 1974-08-14 Azote & Prod Chim Process and apparatus for producing carbon monoxide and inert gas
CA1091429A (en) * 1977-01-06 1980-12-16 Guido Sartori Process for removing carbon dioxide containing acidic gases from gaseous mixtures
US5300271A (en) * 1990-08-23 1994-04-05 Air Products And Chemicals, Inc. Method for separation of carbon monoxide by highly dispersed cuprous compositions
MD2979F1 (en) * 2004-09-08 2006-02-28 Universitatea De Stat Din Moldova Process for waste gas cleaning and device for realization thereof
MD67Y (en) * 2008-11-10 2009-08-31 Universitatea De Stat Din Moldova Plant for biogas cleaning with regeneration of carbon dioxide
  • 2012

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191409271A (en) * 1914-04-14 1915-07-15 James Yate Johnson Improvements in Effecting the Removal of Carbon Monoxide from Gas Mixtures.
GB370289A (en) * 1930-08-30 1932-04-07 Humphreys & Glasgow Ltd Improvements in the production of hydrogen
GB643431A (en) * 1948-09-04 1950-09-20 Power Gas Ltd Process for the absorption of carbon monoxide
GB886338A (en) * 1958-02-17 1962-01-03 Hoechst Ag Process for separating carbon monoxide from gaseous mixtures
GB1102541A (en) * 1963-12-10 1968-02-07 Ici Ltd Copper salt solution
GB1259215A (en) * 1968-12-09 1972-01-05
GB1363756A (en) * 1970-10-19 1974-08-14 Azote & Prod Chim Process and apparatus for producing carbon monoxide and inert gas
CA1091429A (en) * 1977-01-06 1980-12-16 Guido Sartori Process for removing carbon dioxide containing acidic gases from gaseous mixtures
US5300271A (en) * 1990-08-23 1994-04-05 Air Products And Chemicals, Inc. Method for separation of carbon monoxide by highly dispersed cuprous compositions
MD2979F1 (en) * 2004-09-08 2006-02-28 Universitatea De Stat Din Moldova Process for waste gas cleaning and device for realization thereof
MD67Y (en) * 2008-11-10 2009-08-31 Universitatea De Stat Din Moldova Plant for biogas cleaning with regeneration of carbon dioxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tippayawong N., Thanompongchart P. Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy, 2010, p. 1-5 (regăsit în Internet la 2013.10.01 URL:< http://syreen.gov.sy/archive/docs/File/Articles/from%20dr.abd%20alrhman%20alchyah/book%20for%20biogas/biogas13.pdf>) *

Also Published As

Publication number Publication date
MD784Y (en) 2014-06-30

Similar Documents

Publication Publication Date Title
US4545965A (en) Process of selective separation of hydrogen sulfide from gaseous mixtures containing also carbon dioxide
RU2011116413A (en) MULTI-STEP METHOD FOR CLEANING CARBON DIOXIDE AND PRODUCTION OF SULFURIC ACID AND NITRIC ACID
RU2009131715A (en) METHODS FOR PRODUCING ETHYLENE OXIDE AND ETHYLENE GLYCOL
CN101352653B (en) Low-temperature micro-oxygen purification method for removing harmful gas in yellow phosphorus tail gas
CA2861431C (en) A method of forming urea by integration of an ammonia production process in a urea production process and a system therefor
CN101456537B (en) Method for reducing carbon dioxide in GTL synthesis cycle gas
JP2019500356A (en) Method of synthesizing urea by supplying carbon dioxide
CN103552984A (en) Method for producing hydrogen with high yield and high purity by reforming and transforming dry refinery gas
TW200631648A (en) Systems and processes for reducing the sulfur content of hydrocarbon streams
JP2015536237A (en) Improving the rate of CO2 absorption in aqueous potassium carbonate with ammonia-based catalysts
CN103509609A (en) Gas purification process method combining suck-up purification and adsorption purification
CN107567350B (en) For removing and recovering H from a gas stream2Improved method of S
CN101653688B (en) Process flow for removing CO2 and H2S in gas mixture
RU2600375C1 (en) Method for low-temperature decomposition of hydrogen sulphide to obtain hydrogen and sulphur
JP2019059650A (en) Oxygen isotope substitution method and oxygen isotope substitution apparatus
MD784Z (en) Process for biohydrogen cleaning from impurity gases
KR102140118B1 (en) Method for purification of ammonia, mixtures of nitrogen and hydrogen, or nitrogen, hydrogen and ammonia
CN106553995A (en) Natural gas and carbon dioxide dry reforming process for preparing synthetic gas
CN106672898A (en) Method for synthesizing ammonia by taking byproduct tail gas in process of producing acetylene by pyrolyzing natural gas as raw material
CL2018000936A1 (en) Process to produce a synthesis gas by reforming a hydrocarbon and including recovering carbon dioxide at high temperature.
JP2014015504A (en) Treatment method and treatment system of biogas
KR20240019412A (en) Process for Economic Co-Production of Blue Hydrogen and Acetic Acid Using Switching Reaction System between Sorption Enhanced Steam Methane Reforming and Dry Reforming Process
RU2721114C2 (en) Method of upgrading the co2 removal section intended for purifying hydrogen-containing gas
JPS62215540A (en) Method for producing cyclohexane using hydrogen in coke oven gas
ATE486830T1 (en) METHOD FOR REMOVAL OF CARBONYL COMPOUNDS FROM GASEOUS HYDROCARBONS

Legal Events

Date Code Title Description
FG9Y Short term patent issued
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)