KR970007203B1 - 가공성이 우수한 인장강도 80kg/㎟급 열연강판의 제조방법 - Google Patents

가공성이 우수한 인장강도 80kg/㎟급 열연강판의 제조방법 Download PDF

Info

Publication number
KR970007203B1
KR970007203B1 KR1019940026122A KR19940026122A KR970007203B1 KR 970007203 B1 KR970007203 B1 KR 970007203B1 KR 1019940026122 A KR1019940026122 A KR 1019940026122A KR 19940026122 A KR19940026122 A KR 19940026122A KR 970007203 B1 KR970007203 B1 KR 970007203B1
Authority
KR
South Korea
Prior art keywords
steel sheet
cooling
rolled steel
hot rolled
steel
Prior art date
Application number
KR1019940026122A
Other languages
English (en)
Other versions
KR960014367A (ko
Inventor
노광섭
Original Assignee
김만제
포항종합제철주식회사
신창식
재단법인 산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김만제, 포항종합제철주식회사, 신창식, 재단법인 산업과학기술연구소 filed Critical 김만제
Priority to KR1019940026122A priority Critical patent/KR970007203B1/ko
Publication of KR960014367A publication Critical patent/KR960014367A/ko
Application granted granted Critical
Publication of KR970007203B1 publication Critical patent/KR970007203B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

내용없음

Description

가공성이 우수한 인장강도 80kg/㎟급 열연강판의 제조방법
본 발명은 자동차, 산업용 기계등에 사용되는 가공성이 우수한 열연강판의 제조방법에 판한 것으로서, 보다 상세하게는 고연성을 나타내는 인장강도 80kg/㎟ 급 열연강판의 제조방법에 관한 것이다.
근래에 들어와, 자동차의 연비절감 및 충돌시의 안전성 향상을 위해서 여러 가지의 대책이 검토되고 있고, 그중에서도 자동차의 차체 경량화는 가장 효과적인 수단으로 간주되고 있어 차체의 소형화와 더불어 고장력강판을 채용하려는 많은 시도가 이루어지고 있다. 그러나, 이와같은 고장력강판에 대한 가공성 향상에 대한 요구 역시 매우 높아 강도와 가공성을 동시에 만족시키는 강판이 절실히 요구되고 있다. 이러한 부품에 사용되는 고장력강판으로는 페라이트와 마르텐사이트로 구성된 이상 조직강판(dual-phase강판)이 사용되고 있는데, 이 강판은 항복비가 낮고, 강도×연성(TS×EL)값이 크며 형상동결성이 우수한 특징이 있다.
그러나, 이와같은 강판의 인장강도×연성값의 한계가 TS×EL≤2000에 머무르고 있어 보다 우수한 연성을 갖는 고강도 열연강판에 대한 요구를 만족시키지 못하고 있다.
이와같은 문제점을 해결하여 TS×EL2000을 나타내는 고장력강재를 제조하기 위하여 잔류 오스테나이트를 이용한 방법이 시도되고 있는데, 그 대표적인 시도로써 일본특개소 64-79345호에 의한 방법을 들수 있다. 즉, 일본특개소 64-79345호에 의하면 중량%로, C : 0.15-0.4%, Si : 0.5-2.0%, S : 0.01% 이하, 잔부 Fe 및 기타 불가피한 불순물을 함유한 강을 전압하율을 80% 이상으로 열간압연하고 그 종료 온도를 Ar3±50℃ 이상으로 한 후, Ar3부터 Ar1까지의 온도범위내에서 T1T2의 2개의 임의의 온도를 설정하여 T1까지는 냉각속도 40℃/s이상으로 냉각하고 계속해서 냉각속도 40℃/s 미만으로 T2까지 냉각한 다음 다시 냉각속도 40℃/s 이상으로 냉각하여 350-500℃에서 권취하여 잔류오스테나이트가 함유된 열연강판을 제조하는 방법이 제시되어 있다.
그러나, 상기와 같은 방법으로 열간압연을 한 후 Ar3-Ar1사이에서 임의의 온도 T1, T2를 설정하여 온도구간별로 냉각속도를 규제하므로써 실제 공정에서 냉각속도를 정확히 유지하기 어려운 단점이 있으며 권취후 코일의 냉각속도를 제어하므로써 실생산공정에 적용시키기 어려운 단점이 있다. 즉, 열간압연후 전후단 냉각을 할 때 수냉을 통한 종료 온도의 설정 및 상기 수냉후 공냉을 거쳐 재차 수냉시 일정한 냉각속도를 요구할 뿐만 아니라 수냉개시 온도의 조절이 매우 어렵기 때문에 실제 생산공정에 적용이 쉽지가 않다.
따라서, 본 발명은 상기와 같은 문제점을 해결하고자 제안된 것으로서, 잔류 오스테나이트 형성을 촉진하는 원소인 P 함량을 제어하고, 열간압연, 냉각속도 및 권취조건을 제어하므로서, 권취후 체적율 5% 이상의 잔류오스테나이트를 함유한 페라이트-베이나이트 3상 복합조직을 갖게 하여 고연성이면서 인장강도가 80kg/㎟ 급인 열연강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.
이하, 본 발명을 설명한다.
본 발명은 고강도 고연성 열연강판의 제조방법에 있어서, 중량%로, C : 0.15-0.30%, Si : 1.0-2.5%, Mn : 1.0-2.5%, P : 0.04-0.15%, S : 0.01% 이하, Al : 0.01-0.08%, 잔부 Fe 및 기타 불가피한 불순물 원소로 조성되는 강을 800-850℃의 온도범위에서 마무리 압연하고, 700-750℃의 온도범위까지 수냉각한 후, 계속하여 630-680℃의 온도범위까지 공랭한 다음, 재차 수냉각하여 370-430℃의 온도범위에서 권취함을 특징으로 하는 가공성이 우수한 인장강도 80kg/㎟ 급 열연강판의 제조방법에 관한 것이다.
이하, 본 발명에 따른 강조성에 대한 수치한정 이유를 상세히 설명한다.
상기 C는 강을 강화시키는데 가장 경제적이며 효과적인 원소로서, 적어도 0.15중량%(이하, % 라함)이상을 첨가하여야 유효한 효과를 발휘하는데, 탄소량이 0.15%미만이 되면 본 발명에서 추구하는 우수한 연성을 발휘시키기 위한 잔류 오스테나이트가 충분히 형성되지 않으며, 또한 탄소를 과도하게 0.3% 이상 첨가시키면 용접성이 저하되고 소재의 취성이 증가하기 때문에 탄소의 첨가량은 0.15-0.3%로 함이 바람직하다.
상기 Si은 용강을 탈산시키기 위해서도 필요하고 고용강화원소로도 효과를 나타내지만, 무엇보다도 고강도-고연성의 복합조직강판을 제조하기 위해서는 C, N 등의 침입형 원소가 페라이트에 고용되지 않고 미변태 오스테나이트중에 농축되어 잔류 오스테나이트를 형성시켜야 하기 때문에 적어도 1.0% 이상 첨가되어야 하며 2.5% 이상 첨가되면, 강판의 표면에 박리성이 나쁜 스케일이 형성되고 용접성이 저하되기 때문에 상기 Si의 첨가량은 1.0~2.5%의 범위로 제한함이 바람직하다.
Mn은 강을 고용강화시키는데 효과적인 원소로서, 그 첨가량은 1.0-2.5%의 범위로 함이 바람직한데, 그 이유는 Mn의 첨가량이 1.0% 이상 첨가되어야 소입성 증가효과와 더불어 오스테나이트를 안정화시켜 잔류 오스테나이트를 효과적으로 형성시킬 수 있다. 그러나 2.5% 이상 첨가시키면, 제강공정에서 슬라브로 주조시 두께 중심부에서 편석부가 크게 발달되고 최종제품의 용접성을 해치므로 바람직하지 않기 때문이다.
상기 S는 강판의 연신율 및 성형성에 미치는 영향이 매우 크고, 특히 스트레치-플렌징성에 있어서는 크랙파괴의 원인으로 작용하기 때문에 첨가량은 낮으면 낮을수록 좋으나, 제공공정에서의 탈류능력을 감안하여 상한을 0.01%로 제한함이 바람직하다.
상기 P는 Si와 같이 페라이트 안정화원소로서, 고강도-고연성의 복합조직 강판을 제조하기 위해서는 잔류 오스테나이트 형성이 원활히 이루어져야 하기 때문에 P 첨가에 의해서 열간압연 공정중에 페라이트를 조기에 형성시키므로써 미변태 오스테나이트에 C, N등의 원소를 농축시켜 오스테나이트를 잔류시키게 된다. 이를 위해 P는 적어도 0.04% 이상 첨가되어야 하며 0.15% 이상 첨가되면, 슬라브 주조시 편석이 심하게 나타나고 가공성을 악화시키는 화합물이 형성되기 때문에 P의 첨가량은 0.04-0.15%로 제한함이 바람직하다.
상기 Al은 탈산원소로서 강의 불순물을 저감시키는 역할을 하는데, 본 발명에서는 강의 청정성을 향상시키도록 하기 위하여 통상 첨가되는 범위인 0.01-0.08%로 한다.
이하, 본 발명의 제조방법에 대하여 상세히 설명한다.
상기와 같은 조성을 갖는 강을 열간업연함에 있어 800-850℃의 온도범위에서 마무리 압연함이 바람직한데, 그 이유는 상기 온도범위에서 마루리 압연이 되어야 오스테나이트로부터 페라이트로 변태하기 위한 구동력을 증가시키고 이에 따라 이후의 냉각과정에서 형성되는 페라이트의 미세화 및 핵생성 수를 증가시키기 때문이다.
또한, 상기와 같은 압연조건을 통하여 열연조직상의 페라이트를 미세화시키는 동시에 잔류 오스테나이트상의 체적율을 증가시키기 위해서는 저온압연, 대압하압연, Ar3변태점까지의 급냉, 페라이트 변태 노즈(nose)에서의 서냉, 및 페라이트 변태후의 급냉방법이 유효한데, 이와같은 개념에 의해 본 발명에서는 다음과 같은 전후단 냉각방식을 한다.
즉, 상기 마무리 압연을 한 후, 1차 수냉시 700-750℃(Ar1온도직상)까지 수냉각함이 바람직한데, 그 이유는 오스테나이트/페라이트 변태개시를 가능한 한 낮은 온도로 이끄므로써 미세한 페라이트를 형성시키고 한편으로 고연성을 나타내는데 절대적인 역활을 하는 오스테나이트를 적정량 미변태시키기 위함이다.
이후 열연강판을 630-680℃의 온도범위(Ar1온도직하)까지 공냉함이 바람직한데, 이는 합금성분계에 첨가되어 있는 Si와 P의 역할에 도움을 받아 미변태 오스테나이트로 C 및 N을 확산이동시키므로써 미변태 오스테나이트 중의 탄소함유량을 증가시켜 이 부분의 Ms 온도(마르텐사이트 개시온도)를 저하시켜 이후 계속되는 과정중에 오스테나이트가 변태되지 않도록 하기 위함이다.
한편, 계속적으로 공냉하면 펄라이트 및 베이나이트가 과도하게 형성되기 때문에 재차 수냉각하므로써 우선 펄라이트의 형성을 극소화시키는 것이 필요하다.
이때, 권취온도가 450℃ 이상이 되면 권취후 베이나이트 변태가 과도하게 진행되거나 펄라이트가 발달되기 때문에 체적율 5% 이상의 잔류 오스테나이트를 함유시키기가 곤란하고, 또한 350℃ 이하로 권취하게 되면 연성 향상에 크게 기여하는 잔류 오스테나이트 대신에 마르텐사이트가 형성되기 때문에 공랭후 2차수냉시 450-350℃의 온도범위까지 수냉을 한 다음 권치하는 것이 바람직하며, 보다 바람직한 권취온도 범위는 370-430℃ 이다.
상기와 같이 본 발명에 따르면 종래의 기술에 의한 제조방법 보다도 경제적이며 안정적인 방법으로 고강도-고연성을 갖는 열연강판의 제조가 가능하며, 상기 제조된 열연강판을 미세조직중에 잔류 오스테나이트를 적어도 5% 이상을 잔류시킨 페라이트+베이나이트 조직을 나타내어 인장강도×연성, 즉 TS×EL≥2600의 범위를 가지므로서 극히 우수한 가공성을 발휘하는 동시에 80kg/㎟ 이상의 인장강도를 갖는 특징이 있다.
이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.
실시예
하기 표 1과 같은 조성을 갖는 발명강과 비교강을 용해하여 잉코트로 제조한 다음, 하기표 2와 같은 조건으로 열간압연하여 두께 3.0mm의 판재로 제조하고, 런 아웃 테이블에서 현장 생산공정에서의 냉각속도와 동일조건으로 냉각한 후 권취하였다.
상기 권취열연강판에서 시편을 채취하여 기계적 성질 및 시편의 미세조직을 관찰하고, 그 결과를 하기표 3에 나타내었다.
발명강과 비교강의 화학성분
[표 1]
발명강과 비교강의 열간압연 및 권취 조건
[표 2]
여기서, FDT : 마무리 열간압연온도
T1 : 1차 수냉각 정지온도
T2 : 2차 수냉각 개시온도
CT : 권취온도
발명강과 비교강의 기계적 성질 및 미세조직
[표 3]
여기서 F : 페라이트 B : 베이나이트 RA : 잔류 오스테나이트 M : 마르텐사이트
본 발명에 따른 조성범위를 벗어나는 비교강(D1-D4)을 본 발명조건을 적용하여 제조한 열연강판에 대한 경우인 비교예(1-3) 및 비교예(24-26)을 살펴보면 다음과 같다. 즉, 상기표 3에 나타난 바와같이, 비교예(1-2) 및 (26)의 경우에는 각각 C,P,Mn 함유량이 적기 때문에 압연 및 냉각조건을 발명범위내로 하더라도 목적으로 하는 인장강도를 얻기 힘들고 TS×EL 값도 최대 2300 수준에 머무르고 있음을 알 수 있다.
또한, C 첨가량이 과도한 비교예(24)의 경우에는 연신율이 적고 미세조직에 있어서도 마르텐사이트가 존재하였으며, Si 함유량이 적은 비교예(25)의 경우에는 잔류 오스테나이트가 형성되지 않고 마르텐사이트가 형성되므로써 연성이 저하됨을 알 수 있다.
한편, 본 발명조성강(T5-T8)을 사용하여 제조조건을 변경한 경우를 살펴보면 다음과 같다. 열간압연 마무리온도를 높게 실시한 비교예(7),(15) 및 (21)의 경우 FDT증가에 따라 오스테나이트 결정립이 조대하여 잔류 오스테나이트 대신 마르텐사이트가 형성되므로써 연성이 저하하였으며, 권취 오스테나이트 대신 마르텐사이트가 형성되므로써 연성이 저하하였으며, 권취온도가 높은 비교예(3),(10) 및 (18)의 경우에는 고온에서 권취하므로써 과도한 베이나이트 형성과 잔류 오스테나이트가 5%미만으로 형성되었고 TS×EL 값도 2200 수준에 마무르고 있다. 또한, 권취온도가 본 발명 범위보다 다소 낮은 비교예(6),(14) 및 (20)의 경우에는 저온권취에 따라 상당량의 마르텐사이트가 존재하여 연성이 저하하였다. 그리고 런 아웃 테이블 냉각패턴이 본 발명범위와 사이한 비교예(8),(16),(22),(9),(17) 및 (23)의 경우 역시 부적정한 냉각패턴에 따라 잔류 오스테나이트가 5% 미만에 불과하였으며 이에 따라 TS×EL 역시 최대 2300 수준에 머무르고 있었다.
이에 반하여, 발명강의 조성범위와 발명조건으로 열간압연한 경우인 발명예(4-5),(11-13) 및 (19)에 있어서는 전부 잔류 오스테나이트량이 5% 이상으로 안정적으로 형성되어 있으며 인장강도 역시 80kg/㎟이상이고 TS×EL2600의 범위를 가지므로 가공성이 우수하고 페라이트+베이나이트+잔류오스테나이트로 형성된 미세한 복합 3상 조직을 나타냄을 알 수 있다.
상술한 바와같이 본 발명은 강의 화학성분을 조절하고 열간압연, 냉각 및 권취조건을 제어하므로써, 페라이트-베이나이트-잔류오스테나이트의 3상 조직을 갖는 열연강판을 제공할 수 있고, 이러한 3상 조직강은 종래의 페라이트-마르텐사이트 2상 조직강보다 높은 80kg/㎟급 이상의 인장강도를 용이하게 얻을 수 있으며, 극히 우수한 연성(TS×EL 2600)을 발휘하는 특성을 나타내기 때문에 가공성이 우수하다. 또한 본 발명에 따른 열연강판의 제조방법은 복잡한 수냉각 제어를 할 필요가 없을 뿐만 아니라 부수적인 열처리가 필요하지 않기 때문에 제조원가의 절감을 도모할 수 있는 경제적인 효과가 매우 크다.

Claims (1)

  1. 고강도, 고연성, 열연강판의 제조방법에 있어서, 중량%로, C : 0.15-0.30%, Si : 1.0-2.5%, Mn : 1.0-2.5%, P : 0.04-0.15%, S : 0.0l% 이하, Al : 0.01-0.08%, 잔부 Fe 및 기타 불가피한 불순물 윈소로 조성되는 강을 800-850℃의 온도범위에서 마무리 압연하고, 700-750℃의 온도범위까기 수냉각한 후, 계속하여 630-680℃의 온도범위까지 공랭한 다음, 재차 수냉각하여 370-430℃의 온도범위에서 권취함을 특징으로하는 가공성이 우수한 인장강도 80kg/㎟급 열연강판의 제조방법.
KR1019940026122A 1994-10-12 1994-10-12 가공성이 우수한 인장강도 80kg/㎟급 열연강판의 제조방법 KR970007203B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940026122A KR970007203B1 (ko) 1994-10-12 1994-10-12 가공성이 우수한 인장강도 80kg/㎟급 열연강판의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940026122A KR970007203B1 (ko) 1994-10-12 1994-10-12 가공성이 우수한 인장강도 80kg/㎟급 열연강판의 제조방법

Publications (2)

Publication Number Publication Date
KR960014367A KR960014367A (ko) 1996-05-22
KR970007203B1 true KR970007203B1 (ko) 1997-05-07

Family

ID=19394980

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940026122A KR970007203B1 (ko) 1994-10-12 1994-10-12 가공성이 우수한 인장강도 80kg/㎟급 열연강판의 제조방법

Country Status (1)

Country Link
KR (1) KR970007203B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970061463A (ko) * 1996-02-29 1997-09-12 유상부 차량이송용 로봇
KR100711476B1 (ko) * 2005-12-26 2007-04-24 주식회사 포스코 가공성이 우수한 고강도 열연강판의 제조방법

Also Published As

Publication number Publication date
KR960014367A (ko) 1996-05-22

Similar Documents

Publication Publication Date Title
US5567250A (en) Thin steel sheet having excellent stretch-flange ability and process for producing the same
KR890003975B1 (ko) 복합조직 열연 고장력 강판 및 이의 제법
JP2001220647A (ja) 加工性に優れた高強度冷延鋼板およびその製造方法
JP2001226741A (ja) 伸びフランジ加工性に優れた高強度冷延鋼板およびその製造方法
KR20010060760A (ko) 고강도 구조용 강 및 그 제조방법
JP3541726B2 (ja) 高延性熱延鋼板およびその製造方法
JPH09279233A (ja) 靱性に優れた高張力鋼の製造方法
US4421573A (en) Method for producing hot-rolled dual-phase high-tensile steel sheets
US20040040633A1 (en) Method for the production of hot strip or sheet from a micro-alloyed steel
JP2001247918A (ja) 高強度薄鋼板の製造方法
KR970007203B1 (ko) 가공성이 우수한 인장강도 80kg/㎟급 열연강판의 제조방법
KR100370473B1 (ko) 페라이트 세립형 구조용강의 제조방법
KR910002941B1 (ko) 고장력, 고인성 유정용 열연강판의 제조법
JP2003034825A (ja) 高強度冷延鋼板の製造方法
JP3870840B2 (ja) 深絞り性と伸びフランジ性に優れた複合組織型高張力冷延鋼板およびその製造方法
JP2555436B2 (ja) 加工性の優れた熱延鋼板とその製造法
KR970009505B1 (ko) 연성이 우수한 인장강도 100kg/mm^2급 열연강판의 제조방법
JPS6367524B2 (ko)
JPH0756053B2 (ja) 加工性に優れた亜鉛メッキ熱延鋼板の製造法
JPS6337166B2 (ko)
JP2562964B2 (ja) 強加工用熱延高張力鋼板の製造方法
KR0136157B1 (ko) 연성이 우수한 열연강판 및 그 제조방법
JP2004232018A (ja) 深絞り性に優れた複合組織型高張力冷延鋼板の製造方法
JPH0452229A (ja) 加工性の極めて優れた冷延鋼板の高効率な製造方法
KR920008687B1 (ko) 스트레치-플렌징성이 우수한 고장력 열연강판의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020902

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee